Skip to main content

Testing General Relativity with Gravitational Waves

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

Gravitational-wave sources offer us unique testbeds for probing strong-field, dynamical, and nonlinear aspects of gravity. In this chapter, we give a brief overview of the current status and future prospects of testing general relativity with gravitational waves. In particular, we focus on three theory-agnostic tests (parameterized tests, inspiral-merger-ringdown consistency tests, and gravitational-wave propagation tests) and explain how one can apply such tests to example modified theories of gravity. We conclude by giving some open questions that need to be resolved to carry out more accurate tests of gravity with gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Popper K (1934) The logic of scientific discovery. Mohr Siebeck

    MATH  Google Scholar 

  2. Yunes N, Yagi K, Pretorius F (2016) Theoretical physics implications of the binary black-hole mergers gw150914 and gw151226. Phys Rev D 94:084002

    Article  ADS  Google Scholar 

  3. Abbott BP et al (2016) Tests of general relativity with GW150914. Phys Rev Lett 116(22):221101. [Erratum: (2018) Phys Rev Lett 121(12):129902]

    Google Scholar 

  4. Abbott BP et al (2017) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J 848(2):L13

    Article  ADS  Google Scholar 

  5. Abbott BP et al (2019) Tests of general relativity with GW170817. Phys Rev Lett 123(1):011102

    Article  ADS  Google Scholar 

  6. Arun KG, Iyer BR, Qusailah MSS, Sathyaprakash BS (2006) Testing post-Newtonian theory with gravitational wave observations. Class Quantum Gravity 23:L37–L43

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Yunes N, Pretorius F (2009) Fundamental theoretical bias in gravitational wave astrophysics and the parameterized post-Einsteinian framework. Phys Rev D80:122003

    ADS  Google Scholar 

  8. Tahura S, Yagi K (2018) Parameterized post-Einsteinian gravitational waveforms in various modified theories of gravity. Phys Rev D98(8):084042

    ADS  Google Scholar 

  9. Cutler C, Flanagan EE (1994) Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral waveform? Phys Rev D 49:2658–2697

    Article  ADS  Google Scholar 

  10. Carson Z, Yagi K (2020) Parametrized and inspiral-merger-ringdown consistency tests of gravity with multiband gravitational wave observations. Phys Rev D 101:044047

    Article  MathSciNet  ADS  Google Scholar 

  11. Abbott BP et al (2019) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X9(3):031040

    Article  Google Scholar 

  12. Tahura S, Yagi K, Carson Z (2019) Testing gravity with gravitational waves from binary black hole mergers: contributions from amplitude corrections. Phys Rev D100(10):104001

    ADS  Google Scholar 

  13. Abbott BP et al (2019) Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Phys Rev D100(10):104036

    ADS  Google Scholar 

  14. Yunes N, Hughes SA (2010) Binary pulsar constraints on the parameterized post-Einsteinian framework. Phys Rev D82:082002

    ADS  Google Scholar 

  15. Carson Z, Yagi K (2019) Parameterized and consistency tests of gravity with gravitational waves: current and future. In: Proceedings, recent progress in relativistic astrophysics: Shanghai, 6–8 May 2019

    Google Scholar 

  16. Carson Z, Yagi K (2020) Multi-band gravitational wave tests of general relativity. Class Quantum Gravity 37(2):02LT01

    Google Scholar 

  17. Sesana A (2016) Prospects for multiband gravitational-wave astronomy after GW150914. Phys Rev Lett 116(23):231102

    Article  ADS  Google Scholar 

  18. Barausse E, Yunes N, Chamberlain K (2016) Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics. Phys Rev Lett 116(24):241104

    Article  ADS  Google Scholar 

  19. Chamberlain K, Yunes N (2017) Theoretical physics implications of gravitational wave observation with future detectors. Phys Rev D96(8):084039

    ADS  Google Scholar 

  20. Carson Z, Seymour BC, Yagi K (2020) Future prospects for probing scalar–tensor theories with gravitational waves from mixed binaries. Class Quantum Gravity 37:065008

    Article  MathSciNet  ADS  Google Scholar 

  21. Ghosh A, Johnson-McDaniel NK, Ghosh A, Mishra CK, Ajith P, Pozzo WD, Berry CPL, Nielsen AB, London L (2017) Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes. Class Quantum Gravity 35:014002

    Article  ADS  Google Scholar 

  22. Abbott BP et al (2016) Properties of the binary black hole merger GW150914. Phys Rev Lett 116(24):241102

    Article  MathSciNet  ADS  Google Scholar 

  23. Husa S, Khan S, Hannam M, Pürrer M, Ohme F, Forteza XJ, Bohé A (2016) Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Phys Rev D 93:044006

    Google Scholar 

  24. Cutler C, Vallisneri M (2007) LISA detections of massive black hole inspirals: parameter extraction errors due to inaccurate template waveforms. Phys Rev D76:104018

    ADS  Google Scholar 

  25. Ghosh A et al (2016) Testing general relativity using golden black-hole binaries. Phys Rev D94(2):021101

    ADS  Google Scholar 

  26. Carson Z, Yagi K (2020) Probing string-inspired gravity with the inspiral-merger-ringdown consistency tests of gravitational waves. Class Quantum Gravity 37:215007

    Article  MathSciNet  ADS  Google Scholar 

  27. Carson Z, Yagi K (2020) Probing beyond-Kerr spacetimes with inspiral-ringdown corrections to gravitational waves. Phys Rev D 101:084050

    Article  MathSciNet  ADS  Google Scholar 

  28. Johannsen T, Psaltis D (2011) A metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys Rev D83:124015

    ADS  Google Scholar 

  29. Will CM (1998) Bounding the mass of the graviton using gravitational wave observations of inspiralling compact binaries. Phys Rev D57:2061–2068

    ADS  Google Scholar 

  30. Mirshekari S, Yunes N, Will CM (2012) Constraining generic Lorentz violation and the speed of the graviton with gravitational waves. Phys Rev D85:024041

    ADS  Google Scholar 

  31. Blas D, Ivanov MM, Sawicki I, Sibiryakov S (2016) On constraining the speed of gravitational waves following GW150914. JETP Lett 103(10):624–626. [(2016) Pisma Zh Eksp Teor Fiz 103(10):708]

    Google Scholar 

  32. Will CM (2018) Solar system versus gravitational-wave bounds on the graviton mass. Class Quantum Gravity 35(17):17LT01

    Google Scholar 

  33. Berti E, Buonanno A, Will CM (2005) Estimating spinning binary parameters and testing alternative theories of gravity with LISA. Phys Rev D71:084025

    ADS  Google Scholar 

  34. Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (2017) Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys Rev Lett 119(25):251301

    Article  ADS  Google Scholar 

  35. Boran S, Desai S, Kahya EO, Woodard RP (2018) GW170817 falsifies dark matter emulators. Phys Rev D97(4):041501

    ADS  Google Scholar 

  36. Nishizawa A (2018) Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation. Phys Rev D97(10):104037

    Google Scholar 

  37. Saltas ID, Sawicki I, Amendola L, Kunz M (2014) Anisotropic stress as a signature of nonstandard propagation of gravitational waves. Phys Rev Lett 113(19):191101

    Article  ADS  Google Scholar 

  38. Belgacem E, Dirian Y, Foffa S, Maggiore M (2018) Modified gravitational-wave propagation and standard sirens. Phys Rev D98(2):023510

    ADS  Google Scholar 

  39. Belgacem E et al (2019) Testing modified gravity at cosmological distances with LISA standard sirens. JCAP 1907:024

    Article  ADS  Google Scholar 

  40. Alexander S, Finn LS, Yunes N (2008) A gravitational-wave probe of effective quantum gravity. Phys Rev D78:066005

    MathSciNet  ADS  Google Scholar 

  41. Yagi K, Yang H (2018) Probing gravitational parity violation with gravitational waves from Stellar-mass black hole binaries. Phys Rev D97(10):104018

    MathSciNet  ADS  Google Scholar 

  42. Yunes N, O’Shaughnessy R, Owen BJ, Alexander S (2010) Testing gravitational parity violation with coincident gravitational waves and short gamma-ray bursts. Phys Rev D82:064017

    ADS  Google Scholar 

  43. Jimenez JB, Ezquiaga JM, Heisenberg L (2020) Probing cosmological fields with gravitational wave oscillations. JCAP 2004:027

    Google Scholar 

  44. Witek H, Gualtieri L, Pani P, Sotiriou TP (2019) Black holes and binary mergers in scalar Gauss-Bonnet gravity: scalar field dynamics. Phys Rev D99(6):064035

    MathSciNet  ADS  Google Scholar 

  45. Okounkova M, Stein LC, Scheel MA, Teukolsky SA (2019) Numerical binary black hole collisions in dynamical Chern-Simons gravity. Phys Rev D100(10):104026

    MathSciNet  ADS  Google Scholar 

  46. Jain B, Khoury J (2010) Cosmological tests of gravity. Ann Phys 325:1479–1516

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. de Rham C, Tolley AJ, Wesley DH (2013) Vainshtein mechanism in binary pulsars. Phys Rev D87(4):044025

    ADS  Google Scholar 

  48. Perkins S, Yunes N (2019) Probing screening and the graviton mass with gravitational waves. Class Quantum Gravity 36(5):055013

    Article  MathSciNet  ADS  Google Scholar 

  49. Barausse E, Cardoso V, Pani P (2014) Can environmental effects spoil precision gravitational-wave astrophysics? Phys Rev D89(10):104059

    ADS  Google Scholar 

  50. Kocsis B, Yunes N, Loeb A (2011) Observable signatures of EMRI black hole binaries embedded in thin accretion disks. Phys Rev D84:024032

    ADS  Google Scholar 

  51. Bonga B, Yang H, Hughes SA (2019) Tidal resonance in extreme mass-ratio inspirals. Phys Rev Lett 123(10):101103

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z.C. and K.Y. acknowledge support from the Owens Family Foundation. K.Y. also acknowledges support from NSF Award PHY-1806776, NASA Grant 80NSSC20K0523, and a Sloan Foundation Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent Yagi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Carson, Z., Yagi, K. (2021). Testing General Relativity with Gravitational Waves. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_41-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics