Skip to main content

Pulsar Timing Array Experiments

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

Pulsar timing is a technique that uses the highly stable spin periods of neutron stars to investigate a wide range of topics in physics and astrophysics. Pulsar timing arrays (PTAs) use sets of extremely well-timed pulsars as a galaxy-scale detector with arms extending between Earth and each pulsar in the array. These challenging experiments look for correlated deviations in the pulsars’ timing that are caused by low-frequency gravitational waves (GWs) traversing our galaxy. PTAs are particularly sensitive to GWs at nanohertz frequencies, which makes them complementary to other space- and ground-based detectors. In this chapter, we will describe the methodology behind pulsar timing; provide an overview of the potential uses of PTAs; and summarize where current PTA-based detection efforts stand. Most predictions expect PTAs to successfully detect a cosmological background of GWs emitted by supermassive black hole binaries and also potentially detect continuous-wave emission from binary supermassive black holes, within the next several years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal K, Arzoumanian Z, Baker PT, Brazier A, Brinson MR, Brook PR, Burke-Spolaor S, Chatterjee S, Cordes JM, Cornish NJ, Crawford F, Crowter K, Cromartie HT, DeCesar M, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Ferrara E, Fonseca E, Garver-Daniels N, Gentile P, Hazboun JS, Holgado AM, Huerta EA, Islo K, Jennings R, Jones G, Jones ML, Kaiser AR, Kaplan DL, Kelley LZ, Key JS, Lam MT, Lazio TJW, Levin L, Lorimer DR, Luo J, Lynch RS, Madison DR, McLaughlin MA, McWilliams ST, Mingarelli CMF, Ng C, Nice DJ, Pennucci TT, Pol NS, Ransom SM, Ray PS, Siemens X, Simon J, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Swiggum J, Taylor SR, Turner JE, Vallisneri M, van Haasteren R, Vigeland SJ, Witt CA, Zhu WW, NANOGrav Collaboration (2019) The NANOGrav 11 yr data set: limits on gravitational waves from individual supermassive black hole binaries. ApJ 880(2):116. https://doi.org/10.3847/1538-4357/ab2236, 1812.11585

  2. Aggarwal K, Arzoumanian Z, Baker PT, Brazier A, Brook PR, Burke-Spolaor S, Chatterjee S, Cordes JM, Cornish NJ, Crawford F, Cromartie HT, Crowter K, DeCesar M, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Ferrara EC, Fonseca E, Garver-Daniels N, Gentile P, Good D, Hazboun JS, Holgado AM, Huerta EA, Islo K, Jennings R, Jones G, Jones ML, Kaplan DL, Kelley LZ, Key JS, Lam MT, Lazio TJW, Levin L, Lorimer DR, Luo J, Lynch RS, Madison DR, McLaughlin MA, McWilliams ST, Mingarelli CMF, Ng C, Nice DJ, Pennucci TT, Pol NS, Ransom SM, Ray PS, Siemens X, Simon J, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Swiggum JK, Taylor SR, Vallisneri M, van Haasteren R, Vigeland SJ, Witt CA, Zhu WW (2020) The NANOGrav 11 yr data set: limits on gravitational wave memory. ApJ 889(1):38. https://doi.org/10.3847/1538-4357/ab6083, 1911.08488

  3. Alpar MA, Cheng AF, Ruderman MA, Shaham J (1982) A new class of radio pulsars. Nature 300:728–730

    Article  ADS  Google Scholar 

  4. Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser interferometer space antenna. ArXiv e-prints arXiv:1702.00786

    Google Scholar 

  5. Armstrong JW, Rickett BJ, Spangler SR (1995) Electron density power spectrum in the local interstellar medium. ApJ 443:209–221

    Article  ADS  Google Scholar 

  6. Arzoumanian Z, Brazier A, Burke-Spolaor S, Chamberlin SJ, Chatterjee S, Cordes JM, Demorest PB, Deng X, Dolch T, Ellis JA, Ferdman RD, Garver-Daniels N, Jenet F, Jones G, Kaspi VM, Koop M, Lam MT, Lazio TJW, Lommen AN, Lorimer DR, Luo J, Lynch RS, Madison DR, McLaughlin MA, McWilliams ST, Nice DJ, Palliyaguru N, Pennucci TT, Ransom SM, Sesana A, Siemens X, Stairs IH, Stinebring DR, Stovall K, Swiggum J, Vallisneri M, van Haasteren R, Wang Y, Zhu WW, NANOGrav Collaboration (2014) Gravitational waves from individual supermassive black hole binaries in circular orbits: limits from the north American Nanohertz observatory for gravitational waves. ApJ 794:141. https://doi.org/10.1088/0004-637X/794/2/141, 1404.1267

  7. Arzoumanian Z, Brazier A, Burke-Spolaor S, Chamberlin S, Chatterjee S, Christy B, Cordes JM, Cornish N, Crowter K, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Fonseca E, Garver-Daniels N, Gonzalez ME, Jenet FA, Jones G, Jones ML, Kaspi VM, Koop M, Lam MT, Lazio TJW, Levin L, Lommen AN, Lorimer DR, Luo J, Lynch RS, Madison D, McLaughlin MA, McWilliams ST, Nice DJ, Palliyaguru N, Pennucci TT, Ransom SM, Siemens X, Stairs IH, Stinebring DR, Stovall K, Swiggum JK, Vallisneri M, van Haasteren R, Wang Y, Zhu W (2015) The NANOGrav nine-year data set: observations, arrival time measurements, and analysis of 37 millisecond pulsars. ApJ 813:65. https://doi.org/10.1088/0004-637X/813/1/65, 1505.07540

  8. Arzoumanian Z, Brazier A, Burke-Spolaor S, Chamberlin S, Chatterjee S, Christy B, Cordes J, Cornish N, Demorest P, Deng X, Dolch T, Ellis J, Ferdman R, Fonseca E, Garver-Daniels N, Jenet F, Jones G, Kaspi V, Koop M, Lam M, Lazio J, Levin L, Lommen A, Lorimer D, Luo J, Lynch R, Madison D, McLaughlin M, McWilliams S, Mingarelli C, Nice D, Palliyaguru N, Pennucci T, Ransom S, Sampson L, Sanidas S, Sesana A, Siemens X, Simon J, Stairs I, Stinebring D, Stovall K, Swiggum J, Taylor S, Vallisneri M, van Haasteren R, Wang Y, Zhu W (2016) The NANOGrav nine-year data set: limits on the isotropic stochastic gravitational wave background. ApJ 821:13. https://doi.org/10.3847/0004-637X/821/1/13, 1508.03024

  9. Arzoumanian Z, Baker PT, Brazier A, Burke-Spolaor S, Chamberlin SJ, Chatterjee S, Christy B, Cordes JM, Cornish NJ, Crawford F, Thankful Cromartie H, Crowter K, DeCesar M, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Ferrara E, Folkner WM, Fonseca E, Garver-Daniels N, Gentile PA, Haas R, Hazboun JS, Huerta EA, Islo K, Jones G, Jones ML, Kaplan DL, Kaspi VM, Lam MT, Lazio TJW, Levin L, Lommen AN, Lorimer DR, Luo J, Lynch RS, Madison DR, McLaughlin MA, McWilliams ST, Mingarelli CMF, Ng C, Nice DJ, Park RS, Pennucci TT, Pol NS, Ransom SM, Ray PS, Rasskazov A, Siemens X, Simon J, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Swiggum J, Taylor SR, Vallisneri M, van Haasteren R, Vigeland S, Zhu WW, NANOGrav Collaboration (2018) The NANOGrav 11 year data set: pulsar-timing constraints on the stochastic gravitational-wave background. ApJ 859(1):47. https://doi.org/10.3847/1538-4357/aabd3b, 1801.02617

  10. Arzoumanian Z, Brazier A, Burke-Spolaor S, Chamberlin S, Chatterjee S, Christy B, Cordes JM, Cornish NJ, Crawford F, Thankful Cromartie H, Crowter K, DeCesar ME, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Ferrara EC, Fonseca E, Garver-Daniels N, Gentile PA, Halmrast D, Huerta EA, Jenet FA, Jessup C, Jones G, Jones ML, Kaplan DL, Lam MT, Lazio TJW, Levin L, Lommen A, Lorimer DR, Luo J, Lynch RS, Madison D, Matthews AM, McLaughlin MA, McWilliams ST, Mingarelli C, Ng C, Nice DJ, Pennucci TT, Ransom SM, Ray PS, Siemens X, Simon J, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Swiggum JK, Taylor SR, Vallisneri M, van Haasteren R, Vigeland SJ, Zhu W, NANOGrav Collaboration (2018) The NANOGrav 11-year data set: high-precision timing of 45 millisecond pulsars. ApJS 235(2):37. https://doi.org/10.3847/1538-4365/aab5b0, 1801.01837

  11. Arzoumanian Z, Baker PT, Brazier A, Brook PR, Burke-Spolaor S, Bécsy B, Charisi M, Chatterjee S, Cordes JM, Cornish NJ, Crawford F, Cromartie HT, Crowter K, Decesar ME, Demorest PB, Dolch T, Elliott RD, Ellis JA, Ferdman RD, Ferrara EC, Fonseca E, Garver-Daniels N, Gentile PA, Good DC, Hazboun JS, Islo K, Jennings RJ, Jones ML, Kaiser AR, Kaplan DL, Kelley LZ, Key JS, Lam MT, Lazio TJW, Levin L, Luo J, Lynch RS, Madison DR, McLaughlin MA, Mingarelli CMF, Ng C, Nice DJ, Pennucci TT, Pol NS, Ransom SM, Ray PS, Shapiro-Albert BJ, Siemens X, Simon J, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Swiggum JK, Taylor SR, Vallisneri M, Vigeland SJ, Witt CA, Zhu W, NANOGrav Collaboration (2020) Multimessenger gravitational-wave searches with pulsar timing arrays: application to 3C 66B using the NANOGrav 11-year data set. ApJ 900(2):102. https://doi.org/10.3847/1538-4357/ababa1, 2005.07123

  12. Baade W, Zwicky F (1934) Cosmic rays from super-novae. Proc Nat Acad Sci 20:259–263

    Article  ADS  Google Scholar 

  13. Babak S, Petiteau A, Sesana A, Brem P, Rosado PA, Taylor SR, Lassus A, Hessels JWT, Bassa CG, Burgay M, Caballero RN, Champion DJ, Cognard I, Desvignes G, Gair JR, Guillemot L, Janssen GH, Karuppusamy R, Kramer M, Lazarus P, Lee KJ, Lentati L, Liu K, Mingarelli CMF, Osłowski S, Perrodin D, Possenti A, Purver MB, Sanidas S, Smits R, Stappers B, Theureau G, Tiburzi C, van Haasteren R, Vecchio A, Verbiest JPW (2016) European pulsar timing array limits on continuous gravitational waves from individual supermassive black hole binaries. MNRAS 455:1665–1679. https://doi.org/10.1093/mnras/stv2092, 1509.02165

  14. Backer DC (1970) Peculiar pulse burst in PSR 1237+25. Nature 228:1297–1298

    Article  ADS  Google Scholar 

  15. Backer DC (1970) Pulsar nulling phenomena. Nature 228:42–43

    Article  ADS  Google Scholar 

  16. Bailes M, Barr E, Bhat NDR, Brink J, Buchner S, Burgay M, Camilo F, Champion D, Hessels J, Jameson A, Johnston S, Karastergiou A, Karuppusamy R, Kaspi V, Keith M, Kramer M, McLaughlin M, Moodley K, Oslowski S, Possenti A, Ransom S, Rasio F, Sievers J, Serylak M, Stappers B, Stairs I, Theureau G, van Straten W, Weltevrede P, Wex N (2016) MeerTime – the MeerKAT key science program on pulsar timing. In: MeerKAT science: on the pathway to the SKA, p 11

    Google Scholar 

  17. Baker PT, Brook PR, Fiore WC, Garver-Daniels N, Kaiser AR, Lam MT, Shapiro-Albert BJ, Witt CA (2019) Results for the international pulsar timing array second mock data challenge: new techniques and challenges for the detection of low-frequency gravitational-wave signals. arXiv e-prints arXiv:1912.12939, 1912.12939

    Google Scholar 

  18. Barr ED, Champion DJ, Kramer M, Eatough RP, Freire PCC, Karuppusamy R, Lee KJ, Verbiest JPW, Bassa CG, Lyne AG, Stappers B, Lorimer DR, Klein B (2013) The northern high time resolution universe pulsar survey – I. Setup and initial discoveries. MNRAS 435:2234–2245. https://doi.org/10.1093/mnras/stt1440, 1308.0378

  19. Bassa CG, Janssen GH, Karuppusamy R, Kramer M, Lee KJ, Liu K, McKee J, Perrodin D, Purver M, Sanidas S, Smits R, Stappers BW (2016) LEAP: the large European array for pulsars. MNRAS 456:2196–2209. https://doi.org/10.1093/mnras/stv2755, 1511.06597

  20. Bates SD, Lorimer DR, Verbiest JPW (2013) The pulsar spectral index distribution. MNRAS 431:1352–1358. https://doi.org/10.1093/mnras/stt257, 1302.2053

  21. Bhat NDR, Cordes JM, Camilo F, Nice DJ, Lorimer DR (2004) Multifrequency observations of radio pulse broadening and constraints on interstellar electron density microstructure. ApJ 605:759–783

    Article  ADS  Google Scholar 

  22. Bhattacharya D, van den Heuvel EPJ (1991) Formation and evolution of binary and millisecond radio pulsars. Phys Rep 203:1–124

    Article  ADS  Google Scholar 

  23. Bhattacharyya B, Cooper S, Malenta M, Roy J, Chengalur J, Keith M, Kudale S, McLaughlin M, Ransom SM, Ray PS, Stappers BW (2016) The GMRT high resolution southern sky survey for pulsars and transients. I. Survey description and initial discoveries. ApJ 817(2):130. https://doi.org/10.3847/0004-637X/817/2/130, 1509.07177

  24. Bignami GF, Caraveo PA, De Luca A, Mereghetti S (2003) Discovery of x-ray cyclotron absorption lines measures the magnetic field of an isolated neutron star. Nature 423: 725–727

    Article  ADS  Google Scholar 

  25. Bonetti M, Sesana A, Barausse E, Haardt F (2018) Post-Newtonian evolution of massive black hole triplets in galactic nuclei – III. A robust lower limit to the nHz stochastic background of gravitational waves. MNRAS 477(2):2599–2612. https://doi.org/10.1093/mnras/sty874, 1709.06095

  26. Book LG, Flanagan ÉÉ (2011) Astrometric effects of a stochastic gravitational wave background. Phys Rev D 83(2):024024. https://doi.org/10.1103/PhysRevD.83.024024, 1009.4192

  27. Boyle LA, Buonanno A (2008) Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the cmb: Implications for the early universe. Phys Rev D 78(4):043531–+, 0708.2279

    Google Scholar 

  28. Braginsky VB, Kardashev NS, Polnarev AG, Novikov ID (1990) Propagation of electromagnetic radiation in a random field of gravitational waves and space radio interferometry. Nuovo Cimento B Serie 105(10):1141–1158

    Article  ADS  Google Scholar 

  29. Burke-Spolaor S, Bailes M (2010) The millisecond radio sky: transients from a blind single-pulse search. MNRAS 402(2):855–866. https://doi.org/10.1111/j.1365-2966.2009.15965.x, 0911.1790

  30. Burke-Spolaor S, Taylor SR, Charisi M, Dolch T, Hazboun JS, Holgado AM, Kelley LZ, Lazio TJW, Madison DR, McMann N, Mingarelli CMF, Rasskazov A, Siemens X, Simon JJ, Smith TL (2019) The astrophysics of nanohertz gravitational waves 27(1):5. https://doi.org/10.1007/s00159-019-0115-7, 1811.08826

  31. Caballero RN, Guo YJ, Lee KJ, Lazarus P, Champion DJ, Desvignes G, Kramer M, Plant K, Arzoumanian Z, Bailes M, Bassa CG, Bhat NDR, Brazier A, Burgay M, Burke-Spolaor S, Chamberlin SJ, Chatterjee S, Cognard I, Cordes JM, Dai S, Demorest P, Dolch T, Ferdman RD, Fonseca E, Gair JR, Garver-Daniels N, Gentile P, Gonzalez ME, Graikou E, Guillemot L, Hobbs G, Janssen GH, Karuppusamy R, Keith MJ, Kerr M, Lam MT, Lasky PD, Lazio TJW, Levin L, Liu K, Lommen AN, Lorimer DR, Lynch RS, Madison DR, Manchester RN, McKee JW, McLaughlin MA, McWilliams ST, Mingarelli CMF, Nice DJ, Osłowski S, Palliyaguru NT, Pennucci TT, Perera BBP, Perrodin D, Possenti A, Ransom SM, Reardon DJ, Sanidas SA, Sesana A, Shaifullah G, Shannon RM, Siemens X, Simon J, Spiewak R, Stairs I, Stappers B, Stinebring DR, Stovall K, Swiggum JK, Taylor SR, Theureau G, Tiburzi C, Toomey L, van Haasteren R, van Straten W, Verbiest JPW, Wang JB, Zhu XJ, Zhu WW (2018) Studying the Solar system with the international pulsar timing array. MNRAS 481(4):5501–5516. https://doi.org/10.1093/mnras/sty2632, 1809.10744

  32. Champion DJ, Hobbs GB, Manchester RN, Edwards RT, Backer DC, Bailes M, Bhat NDR, Burke-Spolaor S, Coles W, Demorest PB, Ferdman RD, Folkner WM, Hotan AW, Kramer M, Lommen AN, Nice DJ, Purver MB, Sarkissian JM, Stairs IH, van Straten W, Verbiest JPW, Yardley DRB (2010) Measuring the mass of solar system planets using pulsar timing. ApJ 720:L201–L205. https://doi.org/10.1088/2041-8205/720/2/L201, 1008.3607

  33. Chatterjee S, Vlemmings WHT, Brisken WF, Lazio TJW, Cordes JM, Goss WM, Thorsett SE, Fomalont EB, Lyne AG, Kramer M (2005) Getting its kicks: a VLBA parallax for the hyperfast pulsar B1508+55. ApJ 630:L61–L64

    Article  ADS  Google Scholar 

  34. Chen S, Sesana A, Conselice CJ (2019) Constraining astrophysical observables of galaxy and supermassive black hole binary mergers using pulsar timing arrays. MNRAS 488(1):401–418. https://doi.org/10.1093/mnras/stz1722, 1810.04184

  35. Chen ZC, Yuan C, Huang QG (2020) Pulsar timing array constraints on primordial black holes with NANOGrav 11-Year dataset. Phys Rev Lett 124(25):251101. https://doi.org/10.1103/PhysRevLett.124.251101, 1910.12239

  36. Cordes JM (1978) Observational limits on the limits of pulsar emission regions. ApJ 222:1006–1011

    Article  ADS  Google Scholar 

  37. Cordes JM, Freire PCC, Lorimer DR, Camilo F, Champion DJ, Nice DJ, Ramachandran R, Hessels JWT, Vlemmings W, van Leeuwen J, Ransom SM, Bhat NDR, Arzoumanian Z, McLaughlin MA, Kaspi VM, Kasian L, Deneva JS, Reid B, Chatterjee S, Han JL, Backer DC, Stairs IH, Deshpande AA, Faucher-Giguère CA (2006) Arecibo pulsar survey using ALFA. I. Survey strategy and first discoveries. ApJ 637:446–455. https://doi.org/10.1086/498335, astro-ph/0509732

  38. Cordes JM, Shannon RM, Stinebring DR (2016) Frequency-dependent dispersion measures and implications for pulsar timing. ApJ 817:16. https://doi.org/10.3847/0004-637X/817/1/16, 1503.08491

  39. Dai S, Hobbs G, Manchester RN, Kerr M, Shannon RM, van Straten W, Mata A, Bailes M, Bhat NDR, Burke-Spolaor S, Coles WA, Johnston S, Keith MJ, Levin Y, Osłowski S, Reardon D, Ravi V, Sarkissian JM, Tiburzi C, Toomey L, Wang HG, Wang JB, Wen L, Xu RX, Yan WM, Zhu XJ (2015) A study of multifrequency polarization pulse profiles of millisecond pulsars. MNRAS 449(3):3223–3262. https://doi.org/10.1093/mnras/stv508, 1503.01841

  40. Damour T, Vilenkin A (2001) Gravitational wave bursts from cusps and kinks on cosmic strings. Phys Rev D 64(6):064008–+. https://doi.org/10.1103/PhysRevD.64.064008, arXiv:gr-qc/0104026

  41. Demorest PB, Ferdman RD, Gonzalez ME, Nice D, Ransom S, Stairs IH, Arzoumanian Z, Brazier A, Burke-Spolaor S, Chamberlin SJ, Cordes JM, Ellis J, Finn LS, Freire P, Giampanis S, Jenet F, Kaspi VM, Lazio J, Lommen AN, McLaughlin M, Palliyaguru N, Perrodin D, Shannon RM, Siemens X, Stinebring D, Swiggum J, Zhu WW (2013) Limits on the stochastic gravitational wave background from the north American Nanohertz observatory for gravitational waves. ApJ 762:94. https://doi.org/10.1088/0004-637X/762/2/94, 1201.6641

  42. Deneva JS, Stovall K, McLaughlin MA, Bates SD, Freire PCC, Martinez JG, Jenet F, Bagchi M (2013) Goals, strategies and first discoveries of AO327, the Arecibo All-sky 327 MHz drift pulsar survey. ApJ 775:51. https://doi.org/10.1088/0004-637X/775/1/51, 1307.8142

  43. Desvignes G, Caballero RN, Lentati L, Verbiest JPW, Champion DJ, Stappers BW, Janssen GH, Lazarus P, Osłowski S, Babak S, Bassa CG, Brem P, Burgay M, Cognard I, Gair JR, Graikou E, Guillemot L, Hessels JWT, Jessner A, Jordan C, Karuppusamy R, Kramer M, Lassus A, Lazaridis K, Lee KJ, Liu K, Lyne AG, McKee J, Mingarelli CMF, Perrodin D, Petiteau A, Possenti A, Purver MB, Rosado PA, Sanidas S, Sesana A, Shaifullah G, Smits R, Taylor SR, Theureau G, Tiburzi C, van Haasteren R, Vecchio A (2016) High-precision timing of 42 millisecond pulsars with the European pulsar timing array. MNRAS 458(3):3341–3380. https://doi.org/10.1093/mnras/stw483, 1602.08511

  44. Detweiler S (1979) Pulsar timing measurements and the search for gravitational waves. ApJ 234:1100

    Article  ADS  Google Scholar 

  45. Donner JY, Verbiest JPW, Tiburzi C, Osłowski S, Michilli D, Serylak M, Anderson JM, Horneffer A, Kramer M, Grießmeier JM, Künsemöller J, Hessels JWT, Hoeft M, Miskolczi A (2019) First detection of frequency-dependent, time-variable dispersion measures. A&A 624:A22. https://doi.org/10.1051/0004-6361/201834059, 1902.03814

  46. Drake FD, Craft HD (1968) Second periodic pulsations in pulsars. Nature 220:231–235

    Article  ADS  Google Scholar 

  47. Edwards RT, Hobbs GB, Manchester RN (2006) TEMPO2, a new pulsar timing package – II. the timing model and precision estimates. MNRAS 372:1549–1574

    Article  ADS  Google Scholar 

  48. Ellis JA, Vallisneri M, Taylor SR, Baker PT (2019) ENTERPRISE: enhanced numerical toolbox enabling a robust pulsar inference suite. 1912.015

    Google Scholar 

  49. Favata M (2009) Nonlinear gravitational-wave memory from binary black hole mergers. ApJ 696:L159–L162. https://doi.org/10.1088/0004-637X/696/2/L159, 0902.3660

  50. Foster RS, Backer DC (1990) Constructing a pulsar timing array. ApJ 361:300

    Article  ADS  Google Scholar 

  51. Geyer M, Karastergiou A, Kondratiev VI, Zagkouris K, Kramer M, Stappers BW, Grießmeier JM, Hessels JWT, Michilli D, Pilia M, Sobey C (2017) Scattering analysis of LOFAR pulsar observations. MNRAS 470(3):2659–2679. https://doi.org/10.1093/mnras/stx1151, 1706.04205

  52. Gold T (1968) Rotating neutron stars as the origin of the pulsating radio sources. Nature 218:731–732

    Article  ADS  Google Scholar 

  53. Guo YJ, Li GY, Lee KJ, Caballero RN (2019) Studying the solar system dynamics using pulsar timing arrays and the LINIMOSS dynamical model. MNRAS 489(4):5573–5581. https://doi.org/10.1093/mnras/stz2515, 1909.04507

  54. Hazboun JS, Mingarelli CMF, Lee K (2018) The second international pulsar timing array mock data challenge. arXiv e-prints arXiv:1810.10527, 1810.10527

    Google Scholar 

  55. Hazboun JS, Simon J, Taylor SR, Lam MT, Vigeland SJ, Islo K, Key JS, Arzoumanian Z, Baker PT, Brazier A, Brook PR, Burke-Spolaor S, Chatterjee S, Cordes JM, Cornish NJ, Crawford F, Crowter K, Cromartie HT, DeCesar M, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Ferrara E, Fonseca E, Garver-Daniels N, Gentile P, Good D, Holgado AM, Huerta EA, Jennings R, Jones G, Jones ML, Kaiser AR, Kaplan DL, Kelley LZ, Lazio TJW, Levin L, Lommen AN, Lorimer DR, Luo J, Lynch RS, Madison DR, McLaughlin MA, McWilliams ST, Mingarelli CMF, Ng C, Nice DJ, Pennucci TT, Pol NS, Ransom SM, Ray PS, Siemens X, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Swiggum J, Turner JE, Vallisneri M, van Haasteren R, Witt CA, Zhu WW (2020) The NANOGrav 11 yr data set: evolution of gravitational-wave background statistics. ApJ 890(2):108. https://doi.org/10.3847/1538-4357/ab68db, 1909.08644

  56. Helfand DJ, Manchester RN, Taylor JH (1975) Observations of pulsar radio emission. III. Stability of integrated profiles. ApJ 198:661–670

    Google Scholar 

  57. Hellings RW, Downs GS (1983) Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. ApJ 265:L39

    Article  ADS  Google Scholar 

  58. Hemberger DA, Stinebring DR (2008) Time variability of interstellar scattering and improvements to pulsar timing. ApJ 674:L37–L40

    Article  ADS  Google Scholar 

  59. Hobbs G, Lyne AG, Kramer M (2010) An analysis of the timing irregularities for 366 pulsars. MNRAS 402:1027–1048. https://doi.org/10.1111/j.1365-2966.2009.15938.x, 0912.4537

  60. Hobbs G, Guo L, Caballero RN, Coles W, Lee KJ, Manchester RN, Reardon DJ, Matsakis D, Tong ML, Arzoumanian Z, Bailes M, Bassa CG, Bhat NDR, Brazier A, Burke-Spolaor S, Champion DJ, Chatterjee S, Cognard I, Dai S, Desvignes G, Dolch T, Ferdman RD, Graikou E, Guillemot L, Janssen GH, Keith MJ, Kerr M, Kramer M, Lam MT, Liu K, Lyne A, Lazio TJW, Lynch R, McKee JW, McLaughlin MA, Mingarelli CMF, Nice DJ, Osłowski S, Pennucci TT, Perera BBP, Perrodin D, Possenti A, Russell CJ, Sanidas S, Sesana A, Shaifullah G, Shannon RM, Simon J, Spiewak R, Stairs IH, Stappers BW, Swiggum JK, Taylor SR, Theureau G, Toomey L, van Haasteren R, Wang JB, Wang Y, Zhu XJ (2020) A pulsar-based time-scale from the international pulsar timing array. MNRAS 491(4):5951–5965. https://doi.org/10.1093/mnras/stz3071, 1910.13628

  61. Hobbs G, Manchester RN, Dunning A, Jameson A, Roberts P, George D, Green JA, Tuthill J, Toomey L, Kaczmarek JF, Mader S, Marquarding M, Ahmed A, Amy SW, Bailes M, Beresford R, Bhat NDR, Bock DCJ, Bourne M, Bowen M, Brothers M, Cameron AD, Carretti E, Carter N, Castillo S, Chekkala R, Cheng W, Chung Y, Craig DA, Dai S, Dawson J, Dempsey J, Doherty P, Dong B, Edwards P, Ergesh T, Gao X, Han J, Hayman D, Indermuehle B, Jeganathan K, Johnston S, Kanoniuk H, Kesteven M, Kramer M, Leach M, Mcintyre V, Moss V, Osłowski S, Phillips C, Pope N, Preisig B, Price D, Reeves K, Reilly L, Reynolds J, Robishaw T, Roush P, Ruckley T, Sadler E, Sarkissian J, Severs S, Shannon R, Smart K, Smith M, Smith S, Sobey C, Staveley-Smith L, Tzioumis A, van Straten W, Wang N, Wen L, Whiting M (2020) An ultra-wide bandwidth (704 to 4 032 MHz) receiver for the Parkes radio telescope. PASA 37:e012. https://doi.org/10.1017/pasa.2020.2, 1911.00656

  62. Hobbs GB, Edwards RT, Manchester RN (2006) TEMPO2, a new pulsar-timing package – I. an overview. MNRAS 369:655–672

    Article  ADS  Google Scholar 

  63. Hotan AW, van Straten W, Manchester RN (2004) PSRCHIVE and PSRFITS: an open approach to radio pulsar data storage and analysis. PASA 21:302–309

    Article  ADS  Google Scholar 

  64. Hotan AW, Bailes M, Ord SM (2005) PSR J0737-3039A: baseband timing and polarimetry. MNRAS 362:1267–1272

    Article  ADS  Google Scholar 

  65. Jankowski F, van Straten W, Keane EF, Bailes M, Barr ED, Johnston S, Kerr M (2018) Spectral properties of 441 radio pulsars. MNRAS 473(4):4436–4458. https://doi.org/10.1093/mnras/stx2476, 1709.08864

  66. Janssen G, Hobbs G, McLaughlin M, Bassa C, Deller A, Kramer M, Lee K, Mingarelli C, Rosado P, Sanidas S, Sesana A, Shao L, Stairs I, Stappers B, Verbiest JPW (2015) Gravitational wave astronomy with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 37, 1501.00127

    Google Scholar 

  67. Jenet FA, Hobbs GB, Lee KJ, Manchester RN (2005) Detecting the stochastic gravitational wave background using pulsar timing. ApJ 625:L123–L126

    Article  ADS  Google Scholar 

  68. Jenet FA, Hobbs GB, van Straten W, Manchester RN, Bailes M, Verbiest JPW, Edwards RT, Hotan AW, Sarkissian JM (2006) Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: current limits and future prospects. ApJ 653:1571–1576. astro-ph/0609013

    Google Scholar 

  69. Jonas J, MeerKAT Team (2016) The MeerKAT radio telescope. In: MeerKAT science: on the pathway to the SKA, p 1

    Google Scholar 

  70. Jones ML, McLaughlin MA, Lam MT, Cordes JM, Levin L, Chatterjee S, Arzoumanian Z, Crowter K, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Fonseca E, Gonzalez ME, Jones G, Lazio TJW, Nice DJ, Pennucci TT, Ransom SM, Stinebring DR, Stairs IH, Stovall K, Swiggum JK, Zhu WW (2017) The NANOGrav nine-year data set: measurement and analysis of variations in dispersion measures. ApJ 841:125. https://doi.org/10.3847/1538-4357/aa73df, 1612.03187

  71. Joshi BC, Arumugasamy P, Bagchi M, Bandyopadhyay D, Basu A, Dhand a Batra N, Bethapudi S, Choudhary A, De K, Dey L, Gopakumar A, Gupta Y, Krishnakumar MA, Maan Y, Manoharan PK, Naidu A, Nandi R, Pathak D, Surnis M, Susobhanan A (2018) Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics. J Astrophys Astron 39(4):51. https://doi.org/10.1007/s12036-018-9549-y

  72. Keane EF, Barr ED, Jameson A, Morello V, Caleb M, Bhandari S, Petroff E, Possenti A, Burgay M, Tiburzi C, Bailes M, Bhat NDR, Burke-Spolaor S, Eatough RP, Flynn C, Jankowski F, Johnston S, Kramer M, Levin L, Ng C, van Straten W, Krishnan VV (2018) The survey for pulsars and extragalactic radio bursts – I. Survey description and overview. MNRAS 473(1):116–135. https://doi.org/10.1093/mnras/stx2126, 1706.04459

  73. Keith MJ, Jameson A, van Straten W, Bailes M, Johnston S, Kramer M, Possenti A, Bates SD, Bhat NDR, Burgay M, Burke-Spolaor S, D’Amico N, Levin L, McMahon PL, Milia S, Stappers BW (2010) The high time resolution universe pulsar survey – I. System configuration and initial discoveries. MNRAS 409:619–627. https://doi.org/10.1111/j.1365-2966.2010.17325.x, 1006.5744

  74. Keith MJ, Coles W, Shannon RM, Hobbs GB, Manchester RN, Bailes M, Bhat NDR, Burke-Spolaor S, Champion DJ, Chaudhary A, Hotan AW, Khoo J, Kocz J, Osłowski S, Ravi V, Reynolds JE, Sarkissian J, van Straten W, Yardley DRB (2013) Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing. MNRAS 429:2161–2174. https://doi.org/10.1093/mnras/sts486, 1211.5887

  75. Kelley LZ, Blecha L, Hernquist L, Sesana A, Taylor SR (2017) The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays. MNRAS 471(4):4508–4526. https://doi.org/10.1093/mnras/stx1638, 1702.02180

  76. Kerr M, Reardon DJ, Hobbs G, Shannon RM, Manchester RN, Dai S, Russell CJ, Zhang S, van Straten W, Osłowski S, Parthasarathy A, Spiewak R, Bailes M, Bhat NDR, Cameron AD, Coles WA, Dempsey J, Deng X, Goncharov B, Kaczmarek JF, Keith MJ, Lasky PD, Lower ME, Preisig B, Sarkissian JM, Toomey L, Wang H, Wang J, Zhang L, Zhu X (2020) The parkes pulsar timing array project: second data release. PASA 37:e020. https://doi.org/10.1017/pasa.2020.11, 2003.09780

  77. Kondratiev VI, Verbiest JPW, Hessels JWT, Bilous AV, Stappers BW, Kramer M, Keane EF, Noutsos A, Osłowski S, Breton RP, Hassall TE, Alexov A, Cooper S, Falcke H, Grießmeier JM, Karastergiou A, Kuniyoshi M, Pilia M, Sobey C, ter Veen S, van Leeuwen J, Weltevrede P, Bell ME, Broderick JW, Corbel S, Eislöffel J, Markoff S, Rowlinson A, Swinbank JD, Wijers RAMJ, Wijnands R, Zarka P (2016) A LOFAR census of millisecond pulsars. A&A 585:A128. https://doi.org/10.1051/0004-6361/201527178, 1508.02948

  78. Kopeikin SM (1997) Millisecond and binary pulsars as nature’s frequency standards – I. A generalized statistical model of low-frequency timing noise. MNRAS 288(1):129–137. https://doi.org/10.1093/mnras/288.1.129

    Article  ADS  Google Scholar 

  79. Kramer M, Xilouris KM, Lorimer DR, Doroshenko O, Jessner A, Wielebinski R, Wolszczan A, Camilo F (1998) The characteristics of millisecond pulsar emission: I. Spectra, pulse shapes and the beaming fraction. ApJ 501:270–285

    Article  ADS  Google Scholar 

  80. Kulkarni SR (2020) Dispersion measure: confusion, Constants & Clarity. arXiv e-prints arXiv:2007.02886, 2007.02886

    Google Scholar 

  81. Lam MT, Cordes JM, Chatterjee S, Arzoumanian Z, Crowter K, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Fonseca EF, Gonzalez ME, Jones G, Jones ML, Levin L, Madison DR, McLaughlin MA, Nice DJ, Pennucci TT, Ransom SM, Siemens X, Stairs IH, Stovall K, Swiggum JK, Zhu WW (2016) The NANOGrav nine-year data set: noise budget for pulsar arrival times on intraday timescales. ApJ 819:155. https://doi.org/10.3847/0004-637X/819/2/155, 1512.08326

  82. Lam MT, McLaughlin MA, Arzoumanian Z, Blumer H, Brook PR, Cromartie HT, Demorest PB, DeCesar ME, Dolch T, Ellis JA, Ferdman RD, Ferrara EC, Fonseca E, Garver-Daniels N, Gentile PA, Jones ML, Lorimer DR, Lynch RS, Ng C, Nice DJ, Pennucci TT, Ransom SM, Spiewak R, Stairs IH, Stovall K, Swiggum JK, Vigeland SJ, Zhu WW (2019) The NANOGrav 12.5 yr data set: the frequency dependence of pulse jitter in precision millisecond pulsars. ApJ 872(2):193. https://doi.org/10.3847/1538-4357/ab01cd, 1809.03058

  83. Lazarus P, Karuppusamy R, Graikou E, Caballero RN, Champion DJ, Lee KJ, Verbiest JPW, Kramer M (2016) Prospects for high-precision pulsar timing with the new Effelsberg PSRIX backend. MNRAS 458:868–880. https://doi.org/10.1093/mnras/stw189, 1601.06194

  84. Lee K, Jenet FA, Price RH, Wex N, Kramer M (2010) Detecting massive gravitons using pulsar timing arrays. ApJ 722:1589–1597. https://doi.org/10.1088/0004-637X/722/2/1589, 1008.2561

  85. Lee KJ (2016) Prospects of gravitational wave detection using pulsar timing array for Chinese future telescopes. In: Qain L, Li D (eds) Frontiers in radio astronomy and FAST early sciences symposium 2015, Astronomical society of the Pacific conference series, vol 502, p 19

    Google Scholar 

  86. Lee KJ, Jenet FA, Price RH (2008) Pulsar timing as a probe of non-Einsteinian polarizations of gravitational waves. ApJ 685:1304–1319

    Article  ADS  Google Scholar 

  87. Lee KJ, Wex N, Kramer M, Stappers BW, Bassa CG, Janssen GH, Karuppusamy R, Smits R (2011) Gravitational wave astronomy of single sources with a pulsar timing array. MNRAS 414:3251–3264. https://doi.org/10.1111/j.1365-2966.2011.18622.x, 1103.0115

  88. Lee KJ, Bassa CG, Janssen GH, Karuppusamy R, Kramer M, Liu K, Perrodin D, Smits R, Stappers BW, van Haasteren R, Lentati L (2014) Model-based asymptotically optimal dispersion measure correction for pulsar timing. MNRAS 441:2831–2844. https://doi.org/10.1093/mnras/stu664, 1404.2084

  89. Lentati L, Alexander P, Hobson MP, Feroz F, van Haasteren R, Lee KJ, Shannon RM (2014) TEMPONEST: a Bayesian approach to pulsar timing analysis. MNRAS 437:3004–3023. https://doi.org/10.1093/mnras/stt2122, 1310.2120

  90. Lentati L, Taylor SR, Mingarelli CMF, Sesana A, Sanidas SA, Vecchio A, Caballero RN, Lee KJ, van Haasteren R, Babak S, Bassa CG, Brem P, Burgay M, Champion DJ, Cognard I, Desvignes G, Gair JR, Guillemot L, Hessels JWT, Janssen GH, Karuppusamy R, Kramer M, Lassus A, Lazarus P, Liu K, Osłowski S, Perrodin D, Petiteau A, Possenti A, Purver MB, Rosado PA, Smits R, Stappers B, Theureau G, Tiburzi C, Verbiest JPW (2015) European pulsar timing array limits on an isotropic stochastic gravitational-wave background. MNRAS 453:2576–2598. https://doi.org/10.1093/mnras/stv1538, 1504.03692

  91. Lentati L, Shannon RM, Coles WA, Verbiest JPW, van Haasteren R, Ellis JA, Caballero RN, Manchester RN, Arzoumanian Z, Babak S, Bassa CG, Bhat NDR, Brem P, Burgay M, Burke-Spolaor S, Champion D, Chatterjee S, Cognard I, Cordes JM, Dai S, Demorest P, Desvignes G, Dolch T, Ferdman RD, Fonseca E, Gair JR, Gonzalez ME, Graikou E, Guillemot L, Hessels JWT, Hobbs G, Janssen GH, Jones G, Karuppusamy R, Keith M, Kerr M, Kramer M, Lam MT, Lasky PD, Lassus A, Lazarus P, Lazio TJW, Lee KJ, Levin L, Liu K, Lynch RS, Madison DR, McKee J, McLaughlin M, McWilliams ST, Mingarelli CMF, Nice DJ, Osłowski S, Pennucci TT, Perera BBP, Perrodin D, Petiteau A, Possenti A, Ransom SM, Reardon D, Rosado PA, Sanidas SA, Sesana A, Shaifullah G, Siemens X, Smits R, Stairs I, Stappers B, Stinebring DR, Stovall K, Swiggum J, Taylor SR, Theureau G, Tiburzi C, Toomey L, Vallisneri M, van Straten W, Vecchio A, Wang JB, Wang Y, You XP, Zhu WW, Zhu XJ (2016) From spin noise to systematics: stochastic processes in the first International Pulsar Timing Array data release. MNRAS 458:2161–2187. https://doi.org/10.1093/mnras/stw395, 1602.05570

  92. Lentati L, Kerr M, Dai S, Shannon RM, Hobbs G, Osłowski S (2017) Robust estimation of scattering in pulsar timing analysis. MNRAS 468(2):1474–1485. https://doi.org/10.1093/mnras/stx580, 1703.02108

  93. Levin L, McLaughlin MA, Jones G, Cordes JM, Stinebring DR, Chatterjee S, Dolch T, Lam MT, Lazio TJW, Palliyaguru N, Arzoumanian Z, Crowter K, Demorest PB, Ellis JA, Ferdman RD, Fonseca E, Gonzalez ME, Jones ML, Nice DJ, Pennucci TT, Ransom SM, Stairs IH, Stovall K, Swiggum JK, Zhu W (2016) The NANOGrav nine-year data set: monitoring interstellar scattering delays. ApJ 818:166. https://doi.org/10.3847/0004-637X/818/2/166, 1601.04490

  94. Liu K, Keane EF, Lee KJ, Kramer M, Cordes JM, Purver MB (2012) Profile-shape stability and phase-jitter analyses of millisecond pulsars. MNRAS 420:361–368. https://doi.org/10.1111/j.1365-2966.2011.20041.x, 1110.4759

  95. Liu K, Desvignes G, Cognard I, Stappers BW, Verbiest JPW, Lee KJ, Champion DJ, Kramer M, Freire PCC, Karuppusamy R (2014) Measuring pulse times of arrival from broad-band pulsar observations. MNRAS 443:3752–3760. https://doi.org/10.1093/mnras/stu1420, 1407.3827

  96. Lorimer DR, Kramer M (2005) Handbook of pulsar astronomy. Cambridge University Press

    Google Scholar 

  97. Lundmark K (1921) Suspected new stars recorded in old chronicles and among recent meridian observations. PASP 33:225–238

    Article  ADS  Google Scholar 

  98. Luo J, Ransom S, Demorest P, van Haasteren R, Ray P, Stovall K, Bachetti M, Archibald A, Kerr M, Colen J, Jenet F (2019) PINT: High-precision pulsar timing analysis package. 1902.007

    Google Scholar 

  99. Lyne A, Hobbs G, Kramer M, Stairs I, Stappers B (2010) Switched Magnetospheric Regulation of Pulsar Spin-Down. Science 329:408–. https://doi.org/10.1126/science.1186683, 1006.5184

  100. Madison DR, Zhu XJ, Hobbs G, Coles W, Shannon RM, Wang JB, Tiburzi C, Manchester RN, Bailes M, Bhat NDR, Burke-Spolaor S, Dai S, Dempsey J, Keith M, Kerr M, Lasky P, Levin Y, Osłowski S, Ravi V, Reardon D, Rosado P, Spiewak R, van Straten W, Toomey L, Wen L, You X (2016) Versatile directional searches for gravitational waves with pulsar timing arrays. MNRAS 455:3662–3673. https://doi.org/10.1093/mnras/stv2534, 1510.08068

  101. Mahajan N, van Kerkwijk MH, Main R, Pen UL (2018) Mode changing and giant pulses in the millisecond pulsar PSR B1957+20. ApJ 867(1):L2. https://doi.org/10.3847/2041-8213/aae713, 1807.01713

  102. Manchester RN, IPTA (2013) The international pulsar timing array. Class Quant Grav 30(22):224010. https://doi.org/10.1088/0264-9381/30/22/224010, 1309.7392

  103. Manchester RN, Lyne AG, D’Amico N, Bailes M, Johnston S, Lorimer DR, Harrison PA, Nicastro L, Bell JF (1996) The Parkes Southern Pulsar Survey I. Observing and data analysis systems and initial results. MNRAS 279:1235–1250

    Google Scholar 

  104. Manchester RN, Lyne AG, Camilo F, Bell JF, Kaspi VM, D’Amico N, McKay NPF, Crawford F, Stairs IH, Possenti A, Morris DJ, Sheppard DC (2001) The Parkes multi-beam pulsar survey – I. observing and data analysis systems, discovery and timing of 100 pulsars. MNRAS 328:17–35

    Article  ADS  Google Scholar 

  105. Manchester RN, Hobbs GB, Teoh A, Hobbs M (2005) The Australia telescope national facility pulsar catalogue. AJ 129:1993–2006

    Article  ADS  Google Scholar 

  106. Manchester RN, Hobbs G, Bailes M, Coles WA, van Straten W, Keith MJ, Shannon RM, Bhat NDR, Brown A, Burke-Spolaor SG, Champion DJ, Chaudhary A, Edwards RT, Hampson G, Hotan AW, Jameson A, Jenet FA, Kesteven MJ, Khoo J, Kocz J, Maciesiak K, Oslowski S, Ravi V, Reynolds JR, Sarkissian JM, Verbiest JPW, Wen ZL, Wilson WE, Yardley D, Yan WM, You XP (2013) The parkes pulsar timing array project. PASA 30:e017. https://doi.org/10.1017/pasa.2012.017, 1210.6130

  107. Martynov DV, Hall ED, Abbott BP, Abbott R, Abbott TD, Adams C, Adhikari RX, Anderson RA, Anderson SB, Arai K, Arain MA, Aston SM, Austin L, Ballmer SW, Barbet M, Barker D, Barr B, Barsotti L, Bartlett J, Barton MA, Bartos I, Batch JC, Bell AS, Belopolski I, Bergman J, Betzwieser J, Billingsley G, Birch J, Biscans S, Biwer C, Black E, Blair CD, Bogan C, Bork R, Bridges DO, Brooks AF, Celerier C, Ciani G, Clara F, Cook D, Countryman ST, Cowart MJ, Coyne DC, Cumming A, Cunningham L, Damjanic M, Dannenberg R, Danzmann K, Costa CFDS, Daw EJ, DeBra D, DeRosa RT, DeSalvo R, Dooley KL, Doravari S, Driggers JC, Dwyer SE, Effler A, Etzel T, Evans M, Evans TM, Factourovich M, Fair H, Feldbaum D, Fisher RP, Foley S, Frede M, Fritschel P, Frolov VV, Fulda P, Fyffe M, Galdi V, Giaime JA, Giardina KD, Gleason JR, Goetz R, Gras S, Gray C, Greenhalgh RJS, Grote H, Guido CJ, Gushwa KE, Gustafson EK, Gustafson R, Hammond G, Hanks J, Hanson J, Hardwick T, Harry GM, Heefner J, Heintze MC, Heptonstall AW, Hoak D, Hough J, Ivanov A, Izumi K, Jacobson M, James E, Jones R, Kandhasamy S, Karki S, Kasprzack M, Kaufer S, Kawabe K, Kells W, Kijbunchoo N, King EJ, King PJ, Kinzel DL, Kissel JS, Kokeyama K, Korth WZ, Kuehn G, Kwee P, Landry M, Lantz B, Le Roux A, Levine BM, Lewis JB, Lhuillier V, Lockerbie NA, Lormand M, Lubinski MJ, Lundgren AP, MacDonald T, MacInnis M, Macleod DM, Mageswaran M, Mailand K, Márka S, Márka Z, Markosyan AS, Maros E, Martin IW, Martin RM, Marx JN, Mason K, Massinger TJ, Matichard F, Mavalvala N, McCarthy R, McClelland DE, McCormick S, McIntyre G, McIver J, Merilh EL, Meyer MS, Meyers PM, Miller J, Mittleman R, Moreno G, Mueller CL, Mueller G, Mullavey A, Munch J, Nuttall LK, Oberling J, O’Dell J, Oppermann P, Oram RJ, O’Reilly B, Osthelder C, Ottaway DJ, Overmier H, Palamos JR, Paris HR, Parker W, Patrick Z, Pele A, Penn S, Phelps M, Pickenpack M, Pierro V, Pinto I, Poeld J, Principe M, Prokhorov L, Puncken O, Quetschke V, Quintero EA, Raab FJ, Radkins H, Raffai P, Ramet CR, Reed CM, Reid S, Reitze DH, Robertson NA, Rollins JG, Roma VJ, Romie JH, Rowan S, Ryan K, Sadecki T, Sanchez EJ, Sandberg V, Sannibale V, Savage RL, Schofield RMS, Schultz B, Schwinberg P, Sellers D, Sevigny A, Shaddock DA, Shao Z, Shapiro B, Shawhan P, Shoemaker DH, Sigg D, Slagmolen BJJ, Smith JR, Smith MR, Smith-Lefebvre ND, Sorazu B, Staley A, Stein AJ, Stochino A, Strain KA, Taylor R, Thomas M, Thomas P, Thorne KA, Thrane E, Torrie CI, Traylor G, Vajente G, Valdes G, van Veggel AA, Vargas M, Vecchio A, Veitch PJ, Venkateswara K, Vo T, Vorvick C, Waldman SJ, Walker M, Ward RL, Warner J, Weaver B, Weiss R, Welborn T, Weßels P, Wilkinson C, Willems PA, Williams L, Willke B, Winkelmann L, Wipf CC, Worden J, Wu G, Yamamoto H, Yancey CC, Yu H, Zhang L, Zucker ME, Zweizig J (2016) Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys Rev D 93(11):112004. https://doi.org/10.1103/PhysRevD.93.112004, 1604.00439

  108. McLaughlin MA, Lyne AG, Lorimer DR, Kramer M, Faulkner AJ, Manchester RN, Cordes JM, Camilo F, Possenti A, Stairs IH, Hobbs G, D’Amico N, Burgay M, O’Brien JT (2006) Transient radio bursts from rotating neutron stars. Nature 439:817–820

    Article  ADS  Google Scholar 

  109. Michel FC, Li H (1999) Electrodynamics of neutron stars. Phys Rep 318:227–297

    Article  ADS  Google Scholar 

  110. Mingarelli CMF, Lazio TJW, Sesana A, Greene JE, Ellis JA, Ma CP, Croft S, Burke-Spolaor S, Taylor SR (2017) The local nanohertz gravitational-wave landscape from supermassive black hole binaries. Nat Astron 1:886–892. https://doi.org/10.1038/s41550-017-0299-6, 1708.03491

  111. Nice D, Demorest P, Stairs I, Manchester R, Taylor J, Peters W, Weisberg J, Irwin A, Wex N, Huang Y (2015) Tempo: pulsar timing data analysis. 1509.002

    Google Scholar 

  112. Osłowski S, van Straten W, Hobbs GB, Bailes M, Demorest P (2011) High signal-to-noise ratio observations and the ultimate limits of precision pulsar timing. MNRAS 418:1258–1271. https://doi.org/10.1111/j.1365-2966.2011.19578.x, 1108.0812

  113. Osłowski S, van Straten W, Demorest P, Bailes M (2013) Improving the precision of pulsar timing through polarization statistics. MNRAS 430:416–424. https://doi.org/10.1093/mnras/sts662, 1301.2374

  114. Pacini F (1968) Rotating neutron stars, pulsars, and supernova remnants. Nature 219:145–146

    Article  ADS  Google Scholar 

  115. Pennucci TT, Demorest PB, Ransom SM (2014) Elementary wideband timing of radio pulsars. ApJ 790:93. https://doi.org/10.1088/0004-637X/790/2/93, 1402.1672

  116. Perera BBP, Stappers BW, Babak S, Keith MJ, Antoniadis J, Bassa CG, Caballero RN, Champion DJ, Cognard I, Desvignes G, Graikou E, Guillemot L, Janssen GH, Karuppusamy R, Kramer M, Lazarus P, Lentati L, Liu K, Lyne AG, McKee JW, Osłowski S, Perrodin D, Sanidas SA, Sesana A, Shaifullah G, Theureau G, Verbiest JPW, Taylor SR (2018) Improving timing sensitivity in the microhertz frequency regime: limits from PSR J1713+0747 on gravitational waves produced by supermassive black hole binaries. MNRAS 478(1):218–227. https://doi.org/10.1093/mnras/sty1116, 1804.10571

  117. Perera BBP, DeCesar ME, Demorest PB, Kerr M, Lentati L, Nice DJ, Osłowski S, Ransom SM, Keith MJ, Arzoumanian Z, Bailes M, Baker PT, Bassa CG, Bhat NDR, Brazier A, Burgay M, Burke-Spolaor S, Caballero RN, Champion DJ, Chatterjee S, Chen S, Cognard I, Cordes JM, Crowter K, Dai S, Desvignes G, Dolch T, Ferdman RD, Ferrara EC, Fonseca E, Goldstein JM, Graikou E, Guillemot L, Hazboun JS, Hobbs G, Hu H, Islo K, Janssen GH, Karuppusamy R, Kramer M, Lam MT, Lee KJ, Liu K, Luo J, Lyne AG, Manchester RN, McKee JW, McLaughlin MA, Mingarelli CMF, Parthasarathy AP, Pennucci TT, Perrodin D, Possenti A, Reardon DJ, Russell CJ, Sanidas SA, Sesana A, Shaifullah G, Shannon RM, Siemens X, Simon J, Spiewak R, Stairs IH, Stappers BW, Swiggum JK, Taylor SR, Theureau G, Tiburzi C, Vallisneri M, Vecchio A, Wang JB, Zhang SB, Zhang L, Zhu WW, Zhu XJ (2019) The international pulsar timing array: second data release. MNRAS 490(4):4666–4687. https://doi.org/10.1093/mnras/stz2857, 1909.04534

  118. Porayko NK, Zhu X, Levin Y, Hui L, Hobbs G, Grudskaya A, Postnov K, Bailes M, Bhat NDR, Coles W, Dai S, Dempsey J, Keith MJ, Kerr M, Kramer M, Lasky PD, Manchester RN, Osłowski S, Parthasarathy A, Ravi V, Reardon DJ, Rosado PA, Russell CJ, Shannon RM, Spiewak R, van Straten W, Toomey L, Wang J, Wen L, You X, PPTA Collaboration (2018) Parkes pulsar timing array constraints on ultralight scalar-field dark matter. Phys Rev D 98(10):102002. https://doi.org/10.1103/PhysRevD.98.102002, 1810.03227

  119. Prandoni I, Murgia M, Tarchi A, Burgay M, Castangia P, Egron E, Govoni F, Pellizzoni A, Ricci R, Righini S, Bartolini M, Casu S, Corongiu A, Iacolina MN, Melis A, Nasir FT, Orlati A, Perrodin D, Poppi S, Trois A, Vacca V, Zanichelli A, Bachetti M, Buttu M, Comoretto G, Concu R, Fara A, Gaudiomonte F, Loi F, Migoni C, Orfei A, Pilia M, Bolli P, Carretti E, D’Amico N, Guidetti D, Loru S, Massi F, Pisanu T, Porceddu I, Ridolfi A, Serra G, Stanghellini C, Tiburzi C, Tingay S, Valente G (2017) The Sardinia Radio Telescope . From a technological project to a radio observatory. A&A 608:A40. https://doi.org/10.1051/0004-6361/201630243, 1703.09673

  120. Qian L, Pan Z, Li D, Hobbs G, Zhu W, Wang P, Liu Z, Yue Y, Zhu Y, Liu H, Yu D, Sun J, Jiang P, Pan G, Li H, Gan H, Yao R, Xie X, Camilo F, Cameron A, Zhang L, Wang S (2019) The first pulsar discovered by FAST. Sci China Phys Mech Astron 62(5):959508. https://doi.org/10.1007/s11433-018-9354-y, 1903.06318

  121. Reardon DJ, Coles WA, Bailes M, Bhat NDR, Dai S, Hobbs GB, Kerr M, Manchester RN, Oslowski S, Parthasarathy A, Russell CJ, Shannon RM, Spiewak R, Toomey L, Tuntsov AV, van Straten W, Walker MA, Wang J, Zhang L, Zhu XJ (2020) Precision orbital dynamics from interstellar scintillation arcs for PSR J0437-4715. arXiv e-prints arXiv:2009.12757, 2009.12757

    Google Scholar 

  122. Rodin AE (2008) Optimal filters for the construction of the ensemble pulsar time. MNRAS 387:1583–1588. https://doi.org/10.1111/j.1365-2966.2008.13270.x, 0807.1255

  123. Romani RW (1989) Timing a millisecond pulsar array. In: Ögelman H, van den Heuvel EPJ (eds) Timing neutron stars. Kluwer, Dordrecht, p 113

    Chapter  Google Scholar 

  124. Rosado PA, Sesana A, Gair J (2015) Expected properties of the first gravitational wave signal detected with pulsar timing arrays. MNRAS 451:2417–2433. https://doi.org/10.1093/mnras/stv1098, 1503.04803

  125. Rudak B, Ritter H (1994) The line of death, the line of birth. MNRAS 267:513–517

    Article  ADS  Google Scholar 

  126. Sanidas S, Cooper S, Bassa CG, Hessels JWT, Kondratiev VI, Michilli D, Stappers BW, Tan CM, van Leeuwen J, Cerrigone L, Fallows RA, Iacobelli M, Orrú E, Pizzo RF, Shulevski A, Toribio MC, ter Veen S, Zucca P, Bondonneau L, Grießmeier JM, Karastergiou A, Kramer M, Sobey C (2019) The LOFAR tied-array all-sky survey (LOTAAS): survey overview and initial pulsar discoveries. A&A 626:A104. https://doi.org/10.1051/0004-6361/201935609, 1905.04977

  127. Sanidas SA, Battye RA, Stappers BW (2012) Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European pulsar timing array. Phys Rev D 85(12):122003. https://doi.org/10.1103/PhysRevD.85.122003, 1201.2419

  128. Schwaller P (2015) Gravitational waves from a dark phase transition. Phys Rev Lett 115(18):181101. https://doi.org/10.1103/PhysRevLett.115.181101, 1504.07263

  129. Sesana A, Vecchio A (2010) Gravitational waves and pulsar timing: stochastic background, individual sources and parameter estimation. Class Quantum Gravity 27(8):084016. https://doi.org/10.1088/0264-9381/27/8/084016, 1001.3161

  130. Sesana A, Vecchio A (2010) Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves. Phys Rev D 81(10):104008. https://doi.org/10.1103/PhysRevD.81.104008, 1003.0677

  131. Shannon RM, Ravi V, Lentati LT, Lasky PD, Hobbs G, Kerr M, Manchester RN, Coles WA, Levin Y, Bailes M, Bhat NDR, Burke-Spolaor S, Dai S, Keith MJ, Osłowski S, Reardon DJ, van Straten W, Toomey L, Wang JB, Wen L, Wyithe JSB, Zhu XJ (2015) Gravitational waves from binary supermassive black holes missing in pulsar observations. Science 349(6255):1522–1525. https://doi.org/10.1126/science.aab1910, 1509.07320

  132. Shapiro SL, Teukolsky SA (1983) Black holes, white dwarfs and neutron stars. The physics of compact objects. Wiley–Interscience, New York

    Book  Google Scholar 

  133. Siemens X, Ellis J, Jenet F, Romano JD (2013) The stochastic background: scaling laws and time to detection for pulsar timing arrays. Class Quant Grav 30(22):224015. https://doi.org/10.1088/0264-9381/30/22/224015, 1305.3196

  134. Simon J, Burke-Spolaor S (2016) Constraints on black hole/host galaxy co-evolution and binary stalling using pulsar timing arrays. ApJ 826(1):11. https://doi.org/10.3847/0004-637X/826/1/11, 1603.06577

  135. Song X, Weltevrede P, Keith MJ, Johnston S, Karastergiou A, Bailes M, Barr ED, Buchner S, Geyer M, Hugo BV, Jameson A, Parthasarathy A, Reardon DJ, Serylak M, Shannon RM, Spiewak R, van Straten W, Venkatraman Krishnan V (2020) The thousand-pulsar-array programme on MeerKAT II: observing strategy for pulsar monitoring with subarrays. MNRAS Accepted

    Google Scholar 

  136. Staelin DH, Reifenstein EC III (1968) Pulsating radio sources near the Crab Nebula. Science 162:1481–1483

    Article  ADS  Google Scholar 

  137. Stappers B, Kramer M (2016) An Update on TRAPUM. In: MeerKAT science: on the pathway to the SKA, p 9

    Google Scholar 

  138. Stinebring D (2013) Effects of the interstellar medium on detection of low-frequency gravitational waves. Class Quant Grav 30(22):224006. https://doi.org/10.1088/0264-9381/30/22/224006, 1310.8316

  139. Stinebring DR, McLaughlin MA, Cordes JM, Becker KM, Goodman JEE, Kramer MA, Sheckard JL, Smith CT (2001) Faint scattering around pulsars: probing the interstellar medium on solar system size scales. ApJ 549:L97–L100

    Article  ADS  Google Scholar 

  140. Stovall K, Lynch RS, Ransom SM, Archibald AM, Banaszak S, Biwer CM, Boyles J, Dartez LP, Day D, Ford AJ, Flanigan J, Garcia A, Hessels JWT, Hinojosa J, Jenet FA, Kaplan DL, Karako-Argaman C, Kaspi VM, Kondratiev VI, Leake S, Lorimer DR, Lunsford G, Martinez JG, Mata A, McLaughlin MA, Roberts MSE, Rohr MD, Siemens X, Stairs IH, van Leeuwen J, Walker AN, Wells BL (2014) The Green Bank Northern celestial cap pulsar survey. I. Survey description, data analysis, and initial results. ApJ 791:67. https://doi.org/10.1088/0004-637X/791/1/67, 1406.5214

  141. van Straten W, Bailes M, Britton M, Kulkarni SR, Anderson SB, Manchester RN, Sarkissian J (2001) A test of general relativity from the three-dimensional orbital geometry of a binary pulsar. Nature 412:158–160

    Article  ADS  Google Scholar 

  142. Sudou H, Iguchi S, Murata Y, Taniguchi Y (2003) Orbital motion in the radio galaxy 3C 66B: evidence for a supermassive black hole binary. Science 300:1263–1265. https://doi.org/10.1126/science.1082817

    Article  ADS  Google Scholar 

  143. Taylor JH (1992) Pulsar timing and relativistic gravity. Philos Trans R Soc Lond A 341:117–134

    Article  ADS  Google Scholar 

  144. Taylor SR, Mingarelli CMF, Gair JR, Sesana A, Theureau G, Babak S, Bassa CG, Brem P, Burgay M, Caballero RN, Champion DJ, Cognard I, Desvignes G, Guillemot L, Hessels JWT, Janssen GH, Karuppusamy R, Kramer M, Lassus A, Lazarus P, Lentati L, Liu K, Osłowski S, Perrodin D, Petiteau A, Possenti A, Purver MB, Rosado PA, Sanidas SA, Smits R, Stappers B, Tiburzi C, van Haasteren R, Vecchio A, Verbiest JPW, EPTA Collaboration (2015) Limits on anisotropy in the nanohertz stochastic gravitational wave background. Phys Rev Lett 115(4):041101. https://doi.org/10.1103/PhysRevLett.115.041101, 1506.08817

  145. Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2016) A study of spatial correlations in pulsar timing array data. MNRAS 455:4339–4350. https://doi.org/10.1093/mnras/stv2143, 1510.02363

  146. Tiburzi C, Verbiest JPW, Shaifullah GM, Janssen GH, Anderson JM, Horneffer A, Künsemöller J, Osłowski S, Donner JY, Kramer M, Kumari A, Porayko NK, Zucca P, Ciardi B, Dettmar RJ, Grießmeier JM, Hoeft M, Serylak M (2019) On the usefulness of existing solar wind models for pulsar timing corrections. MNRAS 487(1):394–408. https://doi.org/10.1093/mnras/stz1278, 1905.02989

  147. Vallisneri M, Taylor SR, Simon J, Folkner WM, Park RS, Cutler C, Ellis JA, Lazio TJW, Vigeland SJ, Aggarwal K, Arzoumanian Z, Baker PT, Brazier A, Brook PR, Burke-Spolaor S, Chatterjee S, Cordes JM, Cornish NJ, Crawford F, Cromartie HT, Crowter K, DeCesar M, Demorest PB, Dolch T, Ferdman RD, Ferrara EC, Fonseca E, Garver-Daniels N, Gentile P, Good D, Hazboun JS, Holgado AM, Huerta EA, Islo K, Jennings R, Jones G, Jones ML, Kaplan DL, Kelley LZ, Key JS, Lam MT, Levin L, Lorimer DR, Luo J, Lynch RS, Madison DR, McLaughlin MA, McWilliams ST, Mingarelli CMF, Ng C, Nice DJ, Pennucci TT, Pol NS, Ransom SM, Ray PS, Siemens X, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Swiggum JK, van Haasteren R, Witt CA, Zhu WW (2020) Modeling the uncertainties of solar system ephemerides for robust gravitational-wave searches with pulsar-timing arrays. ApJ 893(2):112. https://doi.org/10.3847/1538-4357/ab7b67, 2001.00595

  148. van Haarlem MP, Wise MW, Gunst AW, Heald G, McKean JP, Hessels JWT, de Bruyn AG, Nijboer R, Swinbank J, Fallows R, Brentjens M, Nelles A, Beck R, Falcke H, Fender R, Hörandel J, Koopmans LVE, Mann G, Miley G, Röttgering H, Stappers BW, Wijers RAMJ, Zaroubi S, van den Akker M, Alexov A, Anderson J, Anderson K, van Ardenne A, Arts M, Asgekar A, Avruch IM, Batejat F, Bähren L, Bell ME, Bell MR, van Bemmel I, Bennema P, Bentum MJ, Bernardi G, Best P, Bîrzan L, Bonafede A, Boonstra AJ, Braun R, Bregman J, Breitling F, van de Brink RH, Broderick J, Broekema PC, Brouw WN, Brüggen M, Butcher HR, van Cappellen W, Ciardi B, Coenen T, Conway J, Coolen A, Corstanje A, Damstra S, Davies O, Deller AT, Dettmar RJ, van Diepen G, Dijkstra K, Donker P, Doorduin A, Dromer J, Drost M, van Duin A, Eislöffel J, van Enst J, Ferrari C, Frieswijk W, Gankema H, Garrett MA, de Gasperin F, Gerbers M, de Geus E, Grießmeier JM, Grit T, Gruppen P, Hamaker JP, Hassall T, Hoeft M, Holties HA, Horneffer A, van der Horst A, van Houwelingen A, Huijgen A, Iacobelli M, Intema H, Jackson N, Jelic V, de Jong A, Juette E, Kant D, Karastergiou A, Koers A, Kollen H, Kondratiev VI, Kooistra E, Koopman Y, Koster A, Kuniyoshi M, Kramer M, Kuper G, Lambropoulos P, Law C, van Leeuwen J, Lemaitre J, Loose M, Maat P, Macario G, Markoff S, Masters J, McFadden RA, McKay-Bukowski D, Meijering H, Meulman H, Mevius M, Middelberg E, Millenaar R, Miller-Jones JCA, Mohan RN, Mol JD, Morawietz J, Morganti R, Mulcahy DD, Mulder E, Munk H, Nieuwenhuis L, van Nieuwpoort R, Noordam JE, Norden M, Noutsos A, Offringa AR, Olofsson H, Omar A, Orrú E, Overeem R, Paas H, Pandey-Pommier M, Pandey VN, Pizzo R, Polatidis A, Rafferty D, Rawlings S, Reich W, de Reijer JP, Reitsma J, Renting GA, Riemers P, Rol E, Romein JW, Roosjen J, Ruiter M, Scaife A, van der Schaaf K, Scheers B, Schellart P, Schoenmakers A, Schoonderbeek G, Serylak M, Shulevski A, Sluman J, Smirnov O, Sobey C, Spreeuw H, Steinmetz M, Sterks CGM, Stiepel HJ, Stuurwold K, Tagger M, Tang Y, Tasse C, Thomas I, Thoudam S, Toribio MC, van der Tol B, Usov O, van Veelen M, van der Veen AJ, ter Veen S, Verbiest JPW, Vermeulen R, Vermaas N, Vocks C, Vogt C, de Vos M, van der Wal E, van Weeren R, Weggemans H, Weltevrede P, White S, Wijnholds SJ, Wilhelmsson T, Wucknitz O, Yatawatta S, Zarka P, Zensus A, van Zwieten J (2013) LOFAR: the low-frequency array. A&A 556:A2. https://doi.org/10.1051/0004-6361/201220873, 1305.3550

  149. van Haasteren R (2016) Piccard: pulsar timing data analysis package. 1610.001

    Google Scholar 

  150. van Straten W, Demorest P, Oslowski S (2012) Pulsar data analysis with PSRCHIVE. Astron Res Technol 9:237–256, 1205.6276

    ADS  Google Scholar 

  151. Verbiest JPW, Shaifullah G (2018) Measurement uncertainty in pulsar timing array experiments. Class Quantum Gravity 35(11):133001

    Article  ADS  Google Scholar 

  152. Verbiest JPW, Bailes M, Coles WA, Hobbs GB, van Straten W, Champion DJ, Jenet FA, Manchester RN, Bhat NDR, Sarkissian JM, Yardley D, Burke-Spolaor S, Hotan AW, You XP (2009) Timing stability of millisecond pulsars and prospects for gravitational-wave detection. MNRAS 400:951–968. 0908.0244

    Google Scholar 

  153. Verbiest JPW, Lentati L, Hobbs G, van Haasteren R, Demorest PB, Janssen GH, Wang JB, Desvignes G, Caballero RN, Keith MJ, Champion DJ, Arzoumanian Z, Babak S, Bassa CG, Bhat NDR, Brazier A, Brem P, Burgay M, Burke-Spolaor S, Chamberlin SJ, Chatterjee S, Christy B, Cognard I, Cordes JM, Dai S, Dolch T, Ellis JA, Ferdman RD, Fonseca E, Gair JR, Garver-Daniels NE, Gentile P, Gonzalez ME, Graikou E, Guillemot L, Hessels JWT, Jones G, Karuppusamy R, Kerr M, Kramer M, Lam MT, Lasky PD, Lassus A, Lazarus P, Lazio TJW, Lee KJ, Levin L, Liu K, Lynch RS, Lyne AG, Mckee J, McLaughlin MA, McWilliams ST, Madison DR, Manchester RN, Mingarelli CMF, Nice DJ, Osłowski S, Palliyaguru NT, Pennucci TT, Perera BBP, Perrodin D, Possenti A, Petiteau A, Ransom SM, Reardon D, Rosado PA, Sanidas SA, Sesana A, Shaifullah G, Shannon RM, Siemens X, Simon J, Smits R, Spiewak R, Stairs IH, Stappers BW, Stinebring DR, Stovall K, Swiggum JK, Taylor SR, Theureau G, Tiburzi C, Toomey L, Vallisneri M, van Straten W, Vecchio A, Wang Y, Wen L, You XP, Zhu WW, Zhu XJ (2016) The international pulsar timing array: first data release. MNRAS 458:1267–1288. https://doi.org/10.1093/mnras/stw347, 1602.03640

  154. Wang JB, Hobbs G, Coles W, Shannon RM, Zhu XJ, Madison DR, Kerr M, Ravi V, Keith MJ, Manchester RN, Levin Y, Bailes M, Bhat NDR, Burke-Spolaor S, Dai S, Osłowski S, van Straten W, Toomey L, Wang N, Wen L (2015) Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array. MNRAS 446:1657–1671. https://doi.org/10.1093/mnras/stu2137, 1410.3323

  155. Webster AS (1974) The spectrum of the galactic non-thermal background radiational Observations at 408, 610 and 1407 MHz. MNRAS 166:355–372. https://doi.org/10.1093/mnras/166.2.355

    Article  ADS  Google Scholar 

  156. Yonemaru N, Kuroyanagi S, Hobbs G, Takahashi K, Zhu XJ, Coles WA, Dai S, Howard E, Manchester R, Reardon D, Russell C, M Shannon R, Thyagarajan N, Spiewak R, Wang JB (2021) Searching for gravitational-wave bursts from cosmic string cusps with the Parkes Pulsar Timing Array. MNRAS 501(1):701–712. https://doi.org/10.1093/mnras/staa3721, 2011.13490

  157. You XP, Hobbs GB, Coles WA, Manchester RN, Han JL (2007) An improved solar wind electron density model for pulsar timing. ApJ 671:907–911, 0709.0135

    ADS  Google Scholar 

  158. Yue Y, Li D, Nan R (2013) FAST low frequency pulsar survey. In: van Leeuwen J (ed) IAU Symposium, IAU Symposium, vol 291, pp 577–579. https://doi.org/10.1017/S174392131300001X, 1211.0748

  159. Zhu XJ, Hobbs G, Wen L, Coles WA, Wang JB, Shannon RM, Manchester RN, Bailes M, Bhat NDR, Burke-Spolaor S, Dai S, Keith MJ, Kerr M, Levin Y, Madison DR, Osłowski S, Ravi V, Toomey L, van Straten W (2014) An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set. MNRAS 444:3709–3720. https://doi.org/10.1093/mnras/stu1717, 1408.5129

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. W. Verbiest .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Verbiest, J.P.W., Osłowski, S., Burke-Spolaor, S. (2021). Pulsar Timing Array Experiments. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_4-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics