Skip to main content

Black Hole Perturbation Theory and Gravitational Self-Force

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

Much of the success of gravitational-wave astronomy rests on perturbation theory. Historically, perturbative analysis of gravitational-wave sources has largely focused on post-Newtonian theory. However, strong-field perturbation theory is essential in many cases such as the quasinormal ringdown following the merger of a binary system, tidally perturbed compact objects, and extreme-mass-ratio inspirals. In this review, motivated primarily by small-mass-ratio binaries but not limited to them, we provide an overview of essential methods in (i) black hole perturbation theory, (ii) orbital mechanics in Kerr spacetime, and (iii) gravitational self-force theory. Our treatment of black hole perturbation theory covers most common methods, including the Teukolsky and Regge-Wheeler-Zerilli equations, methods of metric reconstruction, and Lorenz-gauge formulations, presenting them in a new consistent and self-contained form. Our treatment of orbital mechanics covers quasi-Keplerian and action-angle descriptions of bound geodesics and accelerated orbits, osculating geodesics, near-identity averaging transformations, multiscale expansions, and orbital resonances. Our summary of self-force theory’s foundations is brief, covering the main ideas and results of matched asymptotic expansions, local expansion methods, puncture schemes, and point particle descriptions. We conclude by combining the above methods in a multiscale expansion of the perturbative Einstein equations, leading to adiabatic and post-adiabatic evolution schemes. Our presentation is intended primarily as a reference for practitioners but includes a variety of new results. In particular, we present the first complete post-adiabatic waveform-generation framework for generic (nonresonant) orbits in Kerr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Regge T, Wheeler JA (1957) Stability of a Schwarzschild singularity. Phys Rev 108:1063–1069

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Zerilli FJ (1970) Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys Rev Lett 24:737–738

    Article  ADS  Google Scholar 

  3. Zerilli F (1970) Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics. Phys Rev D 2:2141–2160

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Vishveshwara C (1970) Scattering of gravitational radiation by a Schwarzschild black-hole. Nature 227:936–938

    Article  ADS  Google Scholar 

  5. Press WH (1971) Long wave trains of gravitational waves from a vibrating black hole. Astrophys J Lett 170:L105–L108

    Article  ADS  Google Scholar 

  6. Chandrasekhar S, Detweiler SL (1975) The quasi-normal modes of the Schwarzschild black hole. Proc R Soc Lond A 344:441–452

    Article  ADS  Google Scholar 

  7. Teukolsky S (1972) Rotating black holes – separable wave equations for gravitational and electromagnetic perturbations. Phys Rev Lett 29:1114–1118

    Article  ADS  Google Scholar 

  8. Teukolsky SA (1973) Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys J 185:635–647

    Article  ADS  Google Scholar 

  9. Dirac PA (1938) Classical theory of radiating electrons. Proc R Soc Lond A 167:148–169

    Article  ADS  MATH  Google Scholar 

  10. DeWitt BS, Brehme RW (1960) Radiation damping in a gravitational field. Ann Phys 9:220–259

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Mino Y, Sasaki M, Tanaka T (1997) Gravitational radiation reaction to a particle motion. Phys Rev D55:3457–3476

    ADS  Google Scholar 

  12. Quinn TC, Wald RM (1997) An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved space-time. Phys Rev D56:3381–3394

    ADS  Google Scholar 

  13. Gralla SE, Wald RM (2008) A rigorous derivation of gravitational self-force. Class Quant Grav 25:205009. [Erratum: Class Quant Grav 28:159501 (2011)]

    Google Scholar 

  14. Pound A (2010) Self-consistent gravitational self-force. Phys Rev D 81:024023

    Article  ADS  Google Scholar 

  15. Pound A (2010) Motion of small bodies in general relativity: foundations and implementations of the self-force, other thesis, 6

    Google Scholar 

  16. Rosenthal E (2006) Second-order gravitational self-force. Phys Rev D 74:084018

    Article  ADS  Google Scholar 

  17. Detweiler S (2012) Gravitational radiation reaction and second order perturbation theory. Phys Rev D 85:044048

    Article  ADS  Google Scholar 

  18. Pound A (2012) Second-order gravitational self-force. Phys Rev Lett 109:051101

    Article  ADS  Google Scholar 

  19. Gralla SE (2012) Second order gravitational self force. Phys Rev D85:124011

    ADS  Google Scholar 

  20. Hinderer T, Flanagan EE (2008) Two timescale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion. Phys Rev D78:064028

    ADS  Google Scholar 

  21. Isoyama S, Fujita R, Sago N, Tagoshi H, Tanaka T (2013) Impact of the second-order self-forces on the dephasing of the gravitational waves from quasicircular extreme mass-ratio inspirals. Phys Rev D 87(2):024010

    Article  ADS  Google Scholar 

  22. Burko LM, Khanna G (2013) Self-force gravitational waveforms for extreme and intermediate mass ratio inspirals. II: Importance of the second-order dissipative effect. Phys Rev D 88(2):024002

    Google Scholar 

  23. van de Meent M, Pfeiffer HP (2020) Intermediate mass-ratio black hole binaries: applicability of small mass-ratio perturbation theory. Phys Rev Lett 125(18):181101

    Article  ADS  MathSciNet  Google Scholar 

  24. Chandrasekhar S (1983) The mathematical theory of black holes. Oxford University Press, Oxford

    MATH  Google Scholar 

  25. Sasaki M, Tagoshi H (2003) Analytic black hole perturbation approach to gravitational radiation. Living Rev Rel 6:6

    Article  MathSciNet  MATH  Google Scholar 

  26. Berti E, Cardoso V, Starinets AO (2009) Quasinormal modes of black holes and black branes. Class Quant Grav 26:163001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Barack L, Pound A (2019) Self-force and radiation reaction in general relativity. Rept Prog Phys 82(1):016904

    Article  ADS  Google Scholar 

  28. Poisson E, Pound A, Vega I (2011) The motion of point particles in curved spacetime. Living Rev Rel 14:7

    Article  MATH  Google Scholar 

  29. Pound A (2015) Motion of small objects in curved spacetimes: an introduction to gravitational self-force. Fund Theor Phys 179:399–486

    MathSciNet  MATH  Google Scholar 

  30. Harte AI (2015) Motion in classical field theories and the foundations of the self-force problem. Fund Theor Phys 179:327–398

    ADS  MathSciNet  MATH  Google Scholar 

  31. Barack L (2009) Gravitational self force in extreme mass-ratio inspirals. Class Quant Grav 26:213001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wardell B (2015) Self-force: computational strategies. Fund Theor Phys 179:487–522

    MathSciNet  MATH  Google Scholar 

  33. Black Hole Perturbation Toolkit. (bhptoolkit.org)

  34. Wald RM (1984) General relativity Chicago University Press, Chicago

    Google Scholar 

  35. Carter B, Hartle JB (1987) Gravitation in astrophysics. NATO Sci Ser B 156:1–399

    ADS  Google Scholar 

  36. Kinnersley W (1969) Type D vacuum metrics. J Math Phys 10:1195–1203

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Campanelli M, Lousto CO (1999) Second order gauge invariant gravitational perturbations of a Kerr black hole. Phys Rev D 59:124022

    Article  ADS  MathSciNet  Google Scholar 

  38. Brizuela D, Martin-Garcia JM, Tiglio M (2009) A complete gauge-invariant formalism for arbitrary second-order perturbations of a Schwarzschild black hole. Phys Rev D 80:024021

    Article  ADS  MathSciNet  Google Scholar 

  39. Chrzanowski PL (1975) Vector potential and metric perturbations of a rotating black hole. Phys Rev D11:2042–2062

    ADS  Google Scholar 

  40. Kegeles LS, Cohen JM (1979) Constructive procedure for perturbations of space-times. Phys Rev D19:1641–1664

    ADS  Google Scholar 

  41. Wald RM (1978) Construction of solutions of gravitational, electromagnetic, or other perturbation equations from solutions of decoupled equations. Phys Rev Lett 41:203–206

    Article  ADS  MathSciNet  Google Scholar 

  42. Whiting BF, Price LR (2005) Metric reconstruction from Weyl scalars. Class Quant Grav 22:S589–S604

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Pound A, Merlin C, Barack L (2014) Gravitational self-force from radiation-gauge metric perturbations. Phys Rev D89(2):024009

    ADS  Google Scholar 

  44. Stewart JM (1979) Hertz-Bromwich-Debye-Whittaker-Penrose potentials in general relativity. Proc R Soc Lond A367:527–538

    ADS  MathSciNet  Google Scholar 

  45. Green SR, Hollands S, Zimmerman P (2020) Teukolsky formalism for nonlinear Kerr perturbations. Class Quant Grav 37:075001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Hollands S, Toomani V (2020) On the radiation gauge for spin-1 perturbations in Kerr-Newman spacetime. Class Quant Grav 38:025013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Geroch RP, Held A, Penrose R (1973) A space-time calculus based on pairs of null directions. J Math Phys 14:874–881

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Newman E, Penrose R (1962) An Approach to gravitational radiation by a method of spin coefficients. J Math Phys 3:566–578

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Price L (2007) PhD thesis, University of Florida

    Google Scholar 

  50. Aksteiner S (2014) PhD thesis, Leibniz U., Hannover

    Google Scholar 

  51. Penrose R, Rindler W (2011) Spinors and space-time. Cambridge monographs on mathematical physics, vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  52. Lousto CO, Whiting BF (2002) Reconstruction of black hole metric perturbations from Weyl curvature. Phys Rev D66:024026

    ADS  MathSciNet  Google Scholar 

  53. van de Meent M, Shah AG (2015) Metric perturbations produced by eccentric equatorial orbits around a Kerr black hole. Phys Rev D 92(6):064025

    Article  ADS  MathSciNet  Google Scholar 

  54. Barack L, Giudice P (2017) Time-domain metric reconstruction for self-force applications. Phys Rev D95(10):104033

    ADS  MathSciNet  Google Scholar 

  55. Merlin C, Ori A, Barack L, Pound A, van de Meent M (2016) Completion of metric reconstruction for a particle orbiting a Kerr black hole. Phys Rev D94(10):104066

    ADS  MathSciNet  Google Scholar 

  56. van De Meent M (2017) The mass and angular momentum of reconstructed metric perturbations. Class Quant Grav 34(12):124003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Newman ET, Unti TWJ (1962) Behavior of asymptotically flat empty spaces. J Math Phys 3(5):891

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Szekeres P (1965) The gravitational compass. J Math Phys 6:1387–1391

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Walker M, Will C (1979) Relativistic Kepler problem. 2. Asymptotic behavior of the field in the infinite past. Phys Rev D 19:3495. [Erratum: Phys Rev D 20:3437 (1979)]

    Google Scholar 

  60. Reisswig C, Pollney D (2011) Notes on the integration of numerical relativity waveforms. Class Quant Grav 28:195015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Lehner L, Moreschi OM (2007) Dealing with delicate issues in waveforms calculations. Phys Rev D 76:124040

    Article  ADS  Google Scholar 

  62. Teukolsky S, Press W (1974) Perturbations of a rotating black hole. III – interaction of the hole with gravitational and electromagnet IC radiation. Astrophys J 193: 443–461

    Article  ADS  Google Scholar 

  63. Hughes SA (2000) The Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational wave emission. Phys Rev D61(8):084004. [Erratum: Phys Rev D90(10):109904 (2014)]

    Google Scholar 

  64. Ori A (2003) Reconstruction of inhomogeneous metric perturbations and electromagnetic four potential in Kerr space-time. Phys Rev D67:124010

    ADS  MathSciNet  Google Scholar 

  65. Hopper S, Evans CR (2010) Gravitational perturbations and metric reconstruction: method of extended homogeneous solutions applied to eccentric orbits on a Schwarzschild black hole. Phys Rev D82:084010

    ADS  Google Scholar 

  66. Hopper S, Evans CR (2013) Metric perturbations from eccentric orbits on a Schwarzschild black hole: I. Odd-parity Regge-Wheeler to Lorenz gauge transformation and two new methods to circumvent the Gibbs phenomenon. Phys Rev D 87(6):064008

    Google Scholar 

  67. Hughes SA (2000) Computing radiation from Kerr black holes: generalization of the Sasaki-Nakamura equation. Phys Rev D 62:044029. [Erratum: Phys Rev D 67:089902 (2003)]

    Google Scholar 

  68. Martel K, Poisson E (2005) Gravitational perturbations of the Schwarzschild spacetime: a practical covariant and gauge-invariant formalism. Phys Rev D 71:104003

    Article  ADS  MathSciNet  Google Scholar 

  69. Barack L, Lousto CO (2005) Perturbations of Schwarzschild black holes in the Lorenz gauge: formulation and numerical implementation. Phys Rev D72:104026

    ADS  MathSciNet  Google Scholar 

  70. Barack L, Sago N (2007) Gravitational self force on a particle in circular orbit around a Schwarzschild black hole. Phys Rev D75:064021

    ADS  MathSciNet  Google Scholar 

  71. Wardell B, Warburton N (2015) Applying the effective-source approach to frequency-domain self-force calculations: Lorenz-gauge gravitational perturbations. Phys Rev D92(8):084019

    ADS  MathSciNet  Google Scholar 

  72. Thompson JE, Whiting BF, Chen H (2017) Gauge invariant perturbations of the Schwarzschild spacetime. Class Quant Grav 34(17):174001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Thompson JE, Wardell B, Whiting BF (2019) Gravitational self-force regularization in the regge-wheeler and easy gauges. Phys Rev D 99(12):124046

    Article  ADS  MathSciNet  Google Scholar 

  74. Berndtson MV (2007) Harmonic gauge perturbations of the Schwarzschild metric. PhD thesis

    Google Scholar 

  75. Akcay S, Warburton N, Barack L (2013) Frequency-domain algorithm for the Lorenz-gauge gravitational self-force. Phys Rev D88(10):104009

    ADS  Google Scholar 

  76. Osburn T, Forseth E, Evans CR, Hopper S (2014) Lorenz gauge gravitational self-force calculations of eccentric binaries using a frequency domain procedure. Phys Rev D90(10):104031

    ADS  Google Scholar 

  77. Galley CR, Hu B (2009) Self-force on extreme mass ratio inspirals via curved spacetime effective field theory. Phys Rev D 79:064002

    Article  ADS  Google Scholar 

  78. Porto RA (2016) The effective field theorist’s approach to gravitational dynamics. Phys Rep 633:1–104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Eckhaus W (1979) Asymptotic analysis of singular perturbations. Elsevier/North-Holland, New York

    MATH  Google Scholar 

  80. Kevorkian J, Cole JD (1996) Multiple scale and singular perturbation methods. Springer, New York

    Book  MATH  Google Scholar 

  81. Damour T (1983) Gravitational radiation and the motion of compact bodies. In: Deruelle N, Piran T (eds) Gravitational radiation. North-Holland, Amsterdam

    MATH  Google Scholar 

  82. Futamase T, Itoh Y (2007) The post-Newtonian approximation for relativistic compact binaries. Living Rev Rel 10:2

    Article  MATH  Google Scholar 

  83. Poisson E (2020) Compact body in a tidal environment: new types of relativistic Love numbers, and a post-Newtonian operational definition for tidally induced multipole moments, Phys Rev D (103) 064023 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  84. D’Eath PD (1975) Dynamics of a small black hole in a background universe. Phys Rev D 11:1387–1403

    Article  ADS  Google Scholar 

  85. Kates RE (1980) Motion of a small body through an external field in general relativity calculated by matched asymptotic expansions. Phys Rev D 22:1853–1870

    Article  ADS  MathSciNet  Google Scholar 

  86. Thorne KS, Hartle JB (1984) Laws of motion and precession for black holes and other bodies. Phys Rev D 31:1815–1837

    Article  ADS  MathSciNet  Google Scholar 

  87. Mino Y, Sasaki M, Tanaka T (1997) Gravitational radiation reaction to a particle motion. 2: spinning particle. eprint:arXiv:gr-qc/9705073

    Google Scholar 

  88. Detweiler SL (2001) Radiation reaction and the selfforce for a point mass in general relativity. Phys Rev Lett 86:1931–1934

    Article  ADS  Google Scholar 

  89. Poisson E (2004) Retarded coordinates based at a world line, and the motion of a small black hole in an external universe. Phys Rev D 69:084007

    Article  ADS  MathSciNet  Google Scholar 

  90. Detweiler SL (2005) Perspective on gravitational self-force analyses. Class Quant Grav 22:S681–S716

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Pound A (2017) Nonlinear gravitational self-force: second-order equation of motion. Phys Rev D95(10):104056

    ADS  MathSciNet  Google Scholar 

  92. Damour T, Nagar A (2009) Relativistic tidal properties of neutron stars. Phys Rev D 80:084035

    Article  ADS  Google Scholar 

  93. Binnington T, Poisson E (2009) Relativistic theory of tidal Love numbers. Phys Rev D 80:084018

    Article  ADS  Google Scholar 

  94. Landry P, Poisson E (2014) Relativistic theory of surficial Love numbers. Phys Rev D 89(12):124011

    Article  ADS  Google Scholar 

  95. Poisson E (2015) Tidal deformation of a slowly rotating black hole. Phys Rev D 91(4):044004

    Article  ADS  MathSciNet  Google Scholar 

  96. Pani P, Gualtieri L, Maselli A, Ferrari V (2015) Tidal deformations of a spinning compact object. Phys Rev D 92(2):024010

    Article  ADS  MathSciNet  Google Scholar 

  97. Pani P, Gualtieri L, Ferrari V (2015) Tidal Love numbers of a slowly spinning neutron star. Phys Rev D 92(12):124003

    Article  ADS  Google Scholar 

  98. Landry P, Poisson E (2015) Tidal deformation of a slowly rotating material body. External metric. Phys Rev D 91:104018

    Article  ADS  MathSciNet  Google Scholar 

  99. Poisson E, Corrigan E (2018) Nonrotating black hole in a post-Newtonian tidal environment II. Phys Rev D 97(12):124048

    Article  ADS  MathSciNet  Google Scholar 

  100. Le Tiec A, Casals M, Franzin E (2020) Tidal Love numbers of Kerr black holes. Phys Rev D 103:084021 (2021)

    Article  ADS  Google Scholar 

  101. Poisson E (2020) Gravitomagnetic Love tensor of a slowly rotating body: post-Newtonian theory. Phys Rev D 102(6):064059

    Article  ADS  MathSciNet  Google Scholar 

  102. Flanagan EE, Hinderer T (2008) Constraining neutron star tidal Love numbers with gravitational wave detectors. Phys Rev D 77:021502

    Article  ADS  Google Scholar 

  103. Yagi K, Yunes N (2013) I-Love-Q relations in Neutron stars and their applications to astrophysics, gravitational waves and fundamental physics. Phys Rev D 88(2):023009

    Article  ADS  Google Scholar 

  104. Pound A (2012) Nonlinear gravitational self-force. I. Field outside a small body. Phys Rev D86:084019

    Google Scholar 

  105. Pound A, Miller J (2014) Practical, covariant puncture for second-order self-force calculations. Phys Rev D89(10):104020

    ADS  Google Scholar 

  106. Poisson E, Vlasov I (2010) Geometry and dynamics of a tidally deformed black hole. Phys Rev D 81:024029

    Article  ADS  Google Scholar 

  107. Blanchet L, Damour T (1986) Radiative gravitational fields in general relativity I. General structure of the field outside the source. Phil Trans R Soc Lond A 320:379–430

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. Detweiler SL, Whiting BF (2003) Selfforce via a Green’s function decomposition. Phys Rev D 67:024025

    Article  ADS  Google Scholar 

  109. Rosenthal E (2006) Construction of the second-order gravitational perturbations produced by a compact object. Phys Rev D 73:044034

    Article  ADS  Google Scholar 

  110. Harte AI (2012) Mechanics of extended masses in general relativity. Class Quant Grav 29:055012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Heffernan A, Ottewill A, Wardell B (2012) High-order expansions of the Detweiler-Whiting singular field in Schwarzschild spacetime. Phys Rev D 86:104023

    Article  ADS  Google Scholar 

  112. Mathews J, Wardell B (2020) Gravitational perturbations by a spinning secondary in the RW gauge. Talk given at the 23rd Capra meeting on radiation reaction in general relativity, University of Texas at Austin. Slides available at https://zippy.ph.utexas.edu/relativity/capra23/

  113. Mathews J, Pound A, Wardell B (2021) Self-force calculations with a spinning secondary, eprint:arXiv:2112.13069

    Google Scholar 

  114. Miller J, Pound A (2020) Two-timescale evolution of extreme-mass-ratio inspirals: waveform generation scheme for quasicircular orbits in Schwarzschild spacetime, Phys. Rev. D 103, 064048 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  115. Pound A (2010) Singular perturbation techniques in the gravitational self-force problem. Phys Rev D 81:124009

    Article  ADS  Google Scholar 

  116. Pound A (2015) Gauge and motion in perturbation theory. Phys Rev D 92(4):044021

    Article  ADS  MathSciNet  Google Scholar 

  117. Mathisson M (1937) Neue mechanik materieller systemes. Acta Phys Polon 6:163–2900

    MATH  Google Scholar 

  118. Papapetrou A (1951) Spinning test particles in general relativity. 1. Proc R Soc Lond A209:248–258

    ADS  MathSciNet  MATH  Google Scholar 

  119. Akcay S, Dolan SR, Kavanagh C, Moxon J, Warburton N, Wardell B (2020) Dissipation in extreme-mass ratio binaries with a spinning secondary. Phys Rev D 102(6):064013

    Article  ADS  MathSciNet  Google Scholar 

  120. Gralla SE (2011) Gauge and averaging in gravitational self-force. Phys Rev D 84:084050

    Article  ADS  Google Scholar 

  121. Upton SD, Pound A (In preparation) Second-order self-force in a highly regular gauge. Phys Rev D 103:124016 (2021)

    Article  ADS  Google Scholar 

  122. Barack L, Mino Y, Nakano H, Ori A, Sasaki M (2002) Calculating the gravitational selfforce in Schwarzschild space-time. Phys Rev Lett 88:091101

    Article  ADS  Google Scholar 

  123. Barack L, Ori A (2003) Gravitational selfforce on a particle orbiting a Kerr black hole. Phys Rev Lett 90:111101

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. Dixon WG (2015) The new mechanics of Myron Mathisson and its subsequent development. Fund Theor Phys 179:1–66

    MathSciNet  MATH  Google Scholar 

  125. Dixon WG (1970) Dynamics of extended bodies in general relativity. I. Momentum and angular momentum. Proc R Soc Lond A314:499–527

    ADS  MathSciNet  Google Scholar 

  126. Dixon WG (1970) Dynamics of extended bodies in general relativity. II. Moments of the charge-current vector. Proc R Soc Lond A319:509–547

    ADS  MathSciNet  Google Scholar 

  127. Dixon WG (1974) Dynamics of extended bodies in general relativity. III. Equations of motion. Philos Trans R Soc Lond A 277:59

    Google Scholar 

  128. Barack L, Golbourn DA, Sago N (2007) m-mode regularization scheme for the self force in Kerr spacetime. Phys Rev D 76:124036

    Google Scholar 

  129. Vega I, Detweiler SL (2008) Regularization of fields for self-force problems in curved spacetime: foundations and a time-domain application. Phys Rev D 77:084008

    Article  ADS  MathSciNet  Google Scholar 

  130. Fujita R, Hikida W (2009) Analytical solutions of bound timelike geodesic orbits in Kerr spacetime. Class Quant Grav 26:135002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  131. Drasco S, Hughes SA (2004) Rotating black hole orbit functionals in the frequency domain. Phys Rev D 69:044015

    Article  ADS  MathSciNet  Google Scholar 

  132. Mino Y (2003) Perturbative approach to an orbital evolution around a supermassive black hole. Phys Rev D67:084027

    ADS  Google Scholar 

  133. Schmidt W (2002) Celestial mechanics in Kerr space-time. Class Quant Grav 19:2743

    Article  ADS  MATH  Google Scholar 

  134. Drasco S, Hughes SA, Gravitational wave snapshots of generic extreme mass ratio inspirals. Phys Rev D73(2):024027 (2006). [Erratum: Phys Rev D90(10):109905 (2014)]

    Google Scholar 

  135. Warburton N, Barack L, Sago N (2013) Isofrequency pairing of geodesic orbits in Kerr geometry. Phys Rev D 87(8):084012

    Article  ADS  Google Scholar 

  136. Stein LC, Warburton N (2020) Location of the last stable orbit in Kerr spacetime. Phys Rev D 101(6):064007

    Article  ADS  MathSciNet  Google Scholar 

  137. Hughes SA, Blandford RD (2003) Black hole mass and spin coevolution by mergers. Astrophys J Lett 585:L101–L104

    Article  ADS  Google Scholar 

  138. Carter B (1968) Global structure of the Kerr family of gravitational fields. Phys Rev 174:1559–1571

    Article  ADS  MATH  Google Scholar 

  139. Pound A, Poisson E (2008) Multi-scale analysis of the electromagnetic self-force in a weak gravitational field. Phys Rev D 77:044012

    Article  ADS  Google Scholar 

  140. Flanagan EE, Hinderer T (2012) Transient resonances in the inspirals of point particles into black holes. Phys Rev Lett 109:071102

    Article  ADS  Google Scholar 

  141. Brink J, Geyer M, Hinderer T (2015) Astrophysics of resonant orbits in the Kerr metric. Phys Rev D 91(8):083001

    Article  ADS  MathSciNet  Google Scholar 

  142. Grossman R, Levin J, Perez-Giz G (2013) Faster computation of adiabatic extreme mass-ratio inspirals using resonances. Phys Rev D 88(2):023002

    Article  ADS  Google Scholar 

  143. Flanagan EE, Hughes SA, Ruangsri U (2014) Resonantly enhanced and diminished strong-field gravitational-wave fluxes. Phys Rev D 89(8):084028

    Article  ADS  Google Scholar 

  144. van de Meent M (2014) Conditions for sustained orbital resonances in extreme mass ratio inspirals. Phys Rev D 89(8):084033

    Article  ADS  Google Scholar 

  145. Brink J, Geyer M, Hinderer T (2015) Orbital resonances around Black holes. Phys Rev Lett 114(8):081102

    Article  ADS  Google Scholar 

  146. Pound A, Poisson E (2008) Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals. Phys Rev D 77:044013

    Article  ADS  Google Scholar 

  147. Gair JR, Flanagan EE, Drasco S, Hinderer T, Babak S (2011) Forced motion near black holes. Phys Rev D83:044037

    ADS  Google Scholar 

  148. Warburton N, Osburn T, Evans CR (2017) Evolution of small-mass-ratio binaries with a spinning secondary. Phys Rev D96(8):084057

    ADS  MathSciNet  Google Scholar 

  149. Warburton N, Akcay S, Barack L, Gair JR, Sago N (2012) Evolution of inspiral orbits around a Schwarzschild black hole. Phys Rev D 85:061501

    Article  ADS  Google Scholar 

  150. Osburn T, Warburton N, Evans CR (2016) Highly eccentric inspirals into a black hole. Phys Rev D 93(6):064024

    Article  ADS  MathSciNet  Google Scholar 

  151. Van De Meent M, Warburton N (2018) Fast self-forced inspirals. Class Quant Grav 35(14):144003

    Article  ADS  MathSciNet  Google Scholar 

  152. Ruangsri U, Vigeland SJ, Hughes SA (2016) Gyroscopes orbiting black holes: a frequency-domain approach to precession and spin-curvature coupling for spinning bodies on generic Kerr orbits. Phys Rev D 94(4):044008

    Article  ADS  MathSciNet  Google Scholar 

  153. Witzany V (2019) Hamilton-Jacobi equation for spinning particles near black holes. Phys Rev D 100(10):104030

    Article  ADS  MathSciNet  Google Scholar 

  154. Chua AJ, Katz ML, Warburton N, Hughes SA (2020) Rapid generation of fully relativistic extreme-mass-ratio-inspiral waveform templates for LISA data analysis. Phys Rev Lett 126, 051102

    Article  ADS  Google Scholar 

  155. Ori A, Thorne KS (2000) The transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole. Phys Rev D 62:124022

    Article  ADS  Google Scholar 

  156. Fujita R, Isoyama S, Le Tiec A, Nakano H, Sago N, Tanaka T (2017) Hamiltonian formulation of the conservative self-force dynamics in the Kerr geometry. Class Quant Grav 34(13):134001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  157. Isoyama S, Fujita R, Nakano H, Sago N, Tanaka T (2019) Flux-balance formulae for extreme mass-ratio inspirals. PTEP 2019(1):013E01

    Google Scholar 

  158. Mino Y, Price R (2008) Two-timescale adiabatic expansion of a scalar field model. Phys Rev D 77:064001

    Article  ADS  Google Scholar 

  159. Pound A (2015) Second-order perturbation theory: problems on large scales. Phys Rev D92(10):104047

    ADS  MathSciNet  Google Scholar 

  160. Hughes SA (2017) Adiabatic and post-adiabatic approaches to extreme mass ratio inspiral. In: 14th Marcel Grossmann meeting on recent developments in theoretical and experimental general relativity, astrophysics, and relativistic field theories, vol 2, pp 1953–1959

    Google Scholar 

  161. Bonga B, Yang H, Hughes SA (2019) Tidal resonance in extreme mass-ratio inspirals. Phys Rev Lett 123(10):101103

    Article  ADS  Google Scholar 

  162. Berry CPL, Cole RH, Cañizares P, Gair JR (2016) Importance of transient resonances in extreme-mass-ratio inspirals. Phys Rev D 94(12):124042

    Article  ADS  Google Scholar 

  163. Gair J, Yunes N, Bender CM (2012) Resonances in extreme mass-ratio inspirals: asymptotic and hyperasymptotic analysis. J Math Phys 53:032503

    Article  ADS  MathSciNet  MATH  Google Scholar 

  164. Ruangsri U, Hughes SA (2014) Census of transient orbital resonances encountered during binary inspiral. Phys Rev D 89(8):084036

    Article  ADS  Google Scholar 

  165. Isoyama S, Fujita R, Nakano H, Sago N, Tanaka T (2013) Evolution of the Carter constant for resonant inspirals into a Kerr black hole: I. The scalar case. PTEP 2013(6):063E01

    Google Scholar 

  166. Mihaylov DP, Gair JR (2017) Transition of EMRIs through resonance: corrections to higher order in the on-resonance flux modification. J Math Phys 58(11):112501

    Article  ADS  MathSciNet  MATH  Google Scholar 

  167. Hirata CM (2011) Resonant recoil in extreme mass ratio binary black hole mergers. Phys Rev D 83:104024

    Article  ADS  Google Scholar 

  168. van de Meent M (2014) Resonantly enhanced kicks from equatorial small mass-ratio inspirals. Phys Rev D 90(4):044027

    Article  ADS  Google Scholar 

  169. Zelenka O, Lukes-Gerakopoulos G, Witzany V, Kopáček O (2020) Growth of resonances and chaos for a spinning test particle in the Schwarzschild background. Phys Rev D 101(2):024037

    Article  ADS  MathSciNet  Google Scholar 

  170. Yang H, Bonga B, Peng Z, Li G (2019) Relativistic mean motion resonance. Phys Rev D 100(12):124056

    Article  ADS  MathSciNet  Google Scholar 

  171. Detweiler SL (1978) Black holes and gravitational waves. I. Circular orbits about a rotating hole. Astrophys J 225:687–693

    Article  ADS  Google Scholar 

  172. Hughes SA, Drasco S, Flanagan EE, Franklin J (2005) Gravitational radiation reaction and inspiral waveforms in the adiabatic limit. Phys Rev Lett 94:221101

    Article  ADS  Google Scholar 

  173. Detweiler SL (2008) A consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry. Phys Rev D 77:124026

    Article  ADS  MathSciNet  Google Scholar 

  174. Fujita R, Hikida W, Tagoshi H (2009) An efficient numerical method for computing gravitational waves induced by a particle moving on eccentric inclined orbits around a Kerr black hole. Prog Theor Phys 121:843–874

    Article  ADS  MATH  Google Scholar 

  175. Akcay S (2011) A fast frequency-domain algorithm for gravitational self-force: I. Circular orbits in Schwarzschild spacetime. Phys Rev D83:124026

    Google Scholar 

  176. Keidl TS, Shah AG, Friedman JL, Kim D-H, Price LR (2010) Gravitational self-force in a radiation gauge. Phys Rev D82(12):124012. [Erratum: Phys Rev D90(10):109902 (2014)]

    Google Scholar 

  177. Shah AG, Keidl TS, Friedman JL, Kim D-H, Price LR (2011) Conservative, gravitational self-force for a particle in circular orbit around a Schwarzschild black hole in a radiation gauge. Phys Rev D 83:064018

    Article  ADS  Google Scholar 

  178. Hopper S, Forseth E, Osburn T, Evans CR (2015) Fast spectral source integration in black hole perturbation calculations. Phys Rev D 92:044048

    Article  ADS  Google Scholar 

  179. van de Meent M (2018) Gravitational self-force on generic bound geodesics in Kerr spacetime. Phys Rev D97(10):104033

    ADS  MathSciNet  Google Scholar 

  180. Sundararajan PA, Khanna G, Hughes SA, Drasco S (2008) Towards adiabatic waveforms for inspiral into Kerr black holes: II. Dynamical sources and generic orbits. Phys Rev D 78:024022

    Google Scholar 

  181. Barack L, Sago N (2010) Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole. Phys Rev D81:084021

    ADS  MathSciNet  Google Scholar 

  182. Dolan SR, Barack L (2013) Self-force via m-mode regularization and 2+1D evolution: III. Gravitational field on Schwarzschild spacetime. Phys Rev Dl87:084066

    Google Scholar 

  183. Harms E, Bernuzzi S, Nagar A, Zenginoglu A (2014) A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime. Class Quant Grav 31(24):245004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  184. Flanagan E, Hinderer T, Moxon J, Pound A (In preparation) The two-body problem in general relativity in the extreme-mass-ratio limit via multiscale expansions: foundations

    Google Scholar 

  185. Wald RM (1973) On perturbations of a kerr black hole. J Math Phys 14(10):1453–1461

    Article  ADS  Google Scholar 

  186. Barack L, Ori A, Sago N (2008) Frequency-domain calculation of the self force: the high-frequency problem and its resolution. Phys Rev D78:084021

    ADS  Google Scholar 

  187. Shah AG, Pound A (2015) Linear-in-mass-ratio contribution to spin precession and tidal invariants in Schwarzschild spacetime at very high post-Newtonian order. Phys Rev D 91(12):124022

    Article  ADS  MathSciNet  Google Scholar 

  188. Bini D, Geralico A (2019) Gauge-fixing for the completion problem of reconstructed metric perturbations of a Kerr spacetime eprint:arXiv:1908.03191

    Google Scholar 

  189. Pound A, Wardell B, Warburton N, Miller J (2020) Second-order self-force calculation of gravitational binding energy in compact binaries. Phys Rev Lett 124(2):021101

    Article  ADS  MathSciNet  Google Scholar 

  190. Gal’tsov DV (1982) Radiation reaction in the Kerr gravitational field. J Phys A15:3737–3749

    ADS  MathSciNet  Google Scholar 

  191. Sago N, Tanaka T, Hikida W, Nakano H (2005) Adiabatic radiation reaction to the orbits in Kerr spacetime. Prog Theor Phys 114:509–514

    Article  ADS  MATH  Google Scholar 

  192. Sago N, Tanaka T, Hikida W, Ganz K, Nakano H (2006) The adiabatic evolution of orbital parameters in the Kerr spacetime. Prog Theor Phys 115:873–907

    Article  ADS  MathSciNet  MATH  Google Scholar 

  193. Drasco S, Flanagan EE, Hughes SA (2005) Computing inspirals in Kerr in the adiabatic regime. I. The scalar case. Class Quant Grav 22:S801–846

    Article  ADS  MathSciNet  MATH  Google Scholar 

  194. Ganz K, Hikida W, Nakano H, Sago N, Tanaka T Adiabatic evolution of three ‘constants’ of motion for greatly inclined orbits in Kerr spacetime. Prog Theor Phys 117:1041–1066 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  195. Fujita R, Shibata M (2020) Extreme mass ratio inspirals on the equatorial plane in the adiabatic order. Phys Rev D 102(6):064005

    Article  ADS  MathSciNet  Google Scholar 

  196. Miller J, Wardell B, Pound A (2016) Second-order perturbation theory: the problem of infinite mode coupling. Phys Rev D94(10):104018

    ADS  MathSciNet  Google Scholar 

  197. Boyle M (2016) How should spin-weighted spherical functions be defined? J Math Phys 57(9):092504

    Article  ADS  MathSciNet  MATH  Google Scholar 

  198. Heffernan A, Ottewill AC, Warburton N, Wardell B, Diener P (2018) Accelerated motion and the self-force in Schwarzschild spacetime. Class Quant Grav 35(19):194001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  199. Rifat NE, Field SE, Khanna G, Varma V (2020) Surrogate model for gravitational wave signals from comparable and large-mass-ratio black hole binaries. Phys Rev D 101(8):081502

    Article  ADS  MathSciNet  Google Scholar 

  200. Le Tiec A (2014) The overlap of numerical relativity, perturbation theory and post-Newtonian theory in the binary black hole problem. Int J Mod Phys D 23(10):1430022

    Article  MATH  Google Scholar 

  201. Glampedakis K, Hughes SA, Kennefick D (2002) Approximating the inspiral of test bodies into Kerr black holes. Phys Rev D 66:064005

    Article  ADS  MathSciNet  Google Scholar 

  202. Barack L, Cutler C (2004) LISA capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys Rev D 69:082005

    Article  ADS  Google Scholar 

  203. Gair JR, Glampedakis K (2006) Improved approximate inspirals of test-bodies into Kerr black holes. Phys Rev D 73:064037

    Article  ADS  MathSciNet  Google Scholar 

  204. Babak S, Fang H, Gair JR, Glampedakis K, Hughes SA (2007) ’Kludge’ gravitational waveforms for a test-body orbiting a Kerr black hole. Phys Rev D 75:024005. [Erratum: Phys Rev D 77:04990 (2008)]

    Google Scholar 

  205. Sopuerta CF, Yunes N (2011) New kludge scheme for the construction of approximate waveforms for extreme-mass-ratio inspirals. Phys Rev D 84:124060

    Article  ADS  Google Scholar 

  206. Chua AJ, Moore CJ, Gair JR (2017) Augmented kludge waveforms for detecting extreme-mass-ratio inspirals. Phys Rev D 96(4):044005

    Article  ADS  MathSciNet  Google Scholar 

  207. Sago N, Fujita R (2015) Calculation of radiation reaction effect on orbital parameters in Kerr spacetime. PTEP 2015(7):073E03

    Google Scholar 

  208. Taracchini A, Buonanno A, Khanna G, Hughes SA (2014) Small mass plunging into a Kerr black hole: anatomy of the inspiral-merger-ringdown waveforms. Phys Rev D 90(8):084025

    Article  ADS  Google Scholar 

  209. Bini D, Damour T, Geralico A (2019) Novel approach to binary dynamics: application to the fifth post-Newtonian level. Phys Rev Lett 123(23):231104

    Article  ADS  Google Scholar 

  210. Damour T (2020) Classical and quantum scattering in post-Minkowskian gravity. Phys Rev D 102(2):024060

    Article  ADS  MathSciNet  Google Scholar 

  211. Bini D, Damour T, Geralico A (2020) Binary dynamics at the fifth and fifth-and-a-half post-Newtonian orders. Phys Rev D 102(2):024062

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The acknowledgement of a Royal Society University Research Fellowship was a funding acknowledgement. Please reinstate it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Pound .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pound, A., Wardell, B. (2021). Black Hole Perturbation Theory and Gravitational Self-Force. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_38-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics