Skip to main content

LISA and the Galactic Population of Compact Binaries

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy
  • 152 Accesses

Abstract

Within the Galaxy, there are tens of millions of close white dwarf binaries that are emitting gravitational waves within the low-frequency band accessible to the space-based gravitational wave detector LISA. A few tens of thousands of these systems will be individually resolvable in frequency space, while the remainder will contribute to a confusion-limited foreground at frequencies below about 1 mHz. In addition to the close white dwarf binaries, a much smaller population of binaries containing neutron stars and black holes is also expected to lie within the LISA sensitivity band. Here, we will describe the basic design of the LISA mission with a focus on those features that allow for the detection and parameter estimation for compact binaries in the Galaxy. We will describe the standard population synthesis methods and computational techniques for dealing with dynamical formation of binaries. Following this, we will then briefly discuss the types of binaries that will comprise the Galactic population. The chapter will conclude with a discussion of data analysis, the generation of catalogs of Galactic binaries, and the expected science that can be done with these detections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Amaro-Seaone P, Audley H, Babak S et al (2017) Laser Interferometer Space Antenna. arXiv:1702.00786

    Google Scholar 

  2. Moore CJ, Cole RH, Berry CPL (2015) Gravitational-wave sensitivity curves. CQG 32:015014

    Article  ADS  Google Scholar 

  3. Toonen S, Claeys JSW, Mennekens N, Ruiter AJ (2014) PopCORN: hunting down the differences between binary population synthesis codes. A&A 562:A14

    Article  ADS  Google Scholar 

  4. Hurley JR, Tout CA, Pols OR (2002) Evolution of binary stars and the effect of tides on binary populations. MNRAS 329:897–928

    Article  ADS  Google Scholar 

  5. De Donder E, Vanbeveren D (2004) The influence of binaries on galactic chemical evolution. New Astron Rev 48:861–975

    Article  ADS  Google Scholar 

  6. Portegies Zwart S, Verbunt F (1996) Population synthesis of high mass binaries. A&A 309:179–196

    ADS  Google Scholar 

  7. Portegies Zwart S, McMillan S, Harfst S et al (2009) A multiphysics and multiscale software environment for modeling astrophysical systems. New Astron 14:369–378

    Article  ADS  Google Scholar 

  8. Belczynski K, Kalogera V, Bulik T (2002) A comprehensive study of binary compact objects as gravitational wave sources: evolutionary channels, rates, and physical properties. ApJ 572:407–431

    Article  ADS  Google Scholar 

  9. Paczynski B (1976) Common envelope binaries. In: Eggleton P, Mitton S, Whelan J (eds) Structure and evolution of close binary systems, IAU Symposium Series

    Google Scholar 

  10. Webbink RF (1984) Double white dwarfs as progenitors of R coronae borealis stars and type I supernovae. ApJ 277:355-360

    Article  ADS  Google Scholar 

  11. Ivanova N, Justham S, Chen X et al (2013) Common envelope evolution: where we stand and how we can move forward. A&ARv 21:59

    Article  ADS  Google Scholar 

  12. Nissanke S, Vallisneri M, Nelemans G, Prince TA (2012) Gravitational-wave emission from compact Galactic binaries. ApJ 758:131

    Article  ADS  Google Scholar 

  13. Marsh TR, Nelemans G, Steeghs D (2004) Mass transfer between double white dwarfs. MNRAS 350:113–128

    Article  ADS  Google Scholar 

  14. Benacquista MJ, Downing JMB (2013) Relativistic binaries in globular clusters. Living Rev Relativ 16:4

    Article  ADS  MATH  Google Scholar 

  15. Aarseth S (2010) Gravitational N-body simulations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. Wang L, Spurzem R, Aarseth S et al (2016) The DRAGON simulations: globular cluster evolution with a million stars. MNRAS 458:1450–1465

    Article  ADS  Google Scholar 

  17. Wang L, Spurzem R, Aarseth S et al (2015) NBODY6++GPU: ready for the gravitational million-body problem. MNRAS 450:4070–4080

    Article  ADS  Google Scholar 

  18. Wang L, Iwasawa M, Nitadori K, Makino J (2020) PeTar: a high-performance N-body code for modeling massive collisional stellar systems. MNRAS 497:536–555

    Article  ADS  Google Scholar 

  19. Giersz M, Heggie DC, Hurley JR, Hypki A (2013) MOCCA code for star cluster simulations – II. Comparison with N-body simulations. MNRAS 431:2184–2199

    Google Scholar 

  20. Rodriguez CL, Morscher M, Wang L et al (2016) Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body. MNRAS 463:2109–2118

    Article  ADS  Google Scholar 

  21. Hils D, Bender PL, Webbink RF (1990) Gravitational radiation from the galaxy. ApJ 360:75–94

    Article  ADS  Google Scholar 

  22. Nelemans G, Yungelson LR, Portegies-Zwart SF (2001) The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. A&A 375:890–898

    Article  ADS  Google Scholar 

  23. Ruiter AJ, Belczynski K, Benacquista M, Holley-Bockelmann K (2009) The contribution of halo white dwarf binaries to the laser interferometer space antenna signal. ApJ 693:383–387

    Article  ADS  Google Scholar 

  24. Ruiter AJ, Belczynski K, Benacquista M, Larson SL, Williams G (2010) The LISA gravitational wave foreground: a study of double white dwarfs. ApJ 717:1006-1021

    Article  ADS  Google Scholar 

  25. Belczynski K, Benacquista M, Bulik T (2010) Double compact objects as low-frequency gravitational wave sources. ApJ 725:816–823

    Article  ADS  Google Scholar 

  26. Piro AL (2011) Tidal interactions in merging white dwarf binaries. ApJL 740:L53

    Article  ADS  Google Scholar 

  27. Benacquista MJ (2011) Tidal perturbations to the gravitational inspiral of J0651+2844. ApJL 740:L54

    Article  ADS  Google Scholar 

  28. Peters PC, Mathews J (1963) Gravitational radiation from point masses in a Keplerian orbit. Phys Rev 131:435–440

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Brown WR, Kilic M, Allende Prieto C, Kenyon SJ (2010) The ELM survey. I. A complete sample of extremely low-mass white dwarfs

    Google Scholar 

  30. Brown WR, Kilic M, Kosakowski A, Andrews JJ et al (2020) The ELM survey. VIII. Ninety-eight double white dwarf binaries. ApJ 889:49

    Google Scholar 

  31. Kupfer T, Korol V, Shah S et al (2018) LISA verification binaries with updated distances from Gaia Data Release 2. MNRAS 480:302–309

    Article  ADS  Google Scholar 

  32. Benacquista M (2103) An introduction to the evolution of single and binary stars. Springer, New York

    Google Scholar 

  33. Peters PC (1964) Gravitational radiation and the motion of two point masses. Phys Rev 136:1224–1232

    Article  ADS  Google Scholar 

  34. Nelemans G, Jonker PG (2010) Ultra-compact (X-ray) binaries. New Astron Rev 54:87–92

    Article  ADS  Google Scholar 

  35. Andrews JJ, Mandel I (2019) Double neutron star populations and formation channels. ApJL 880:L8

    Article  ADS  Google Scholar 

  36. Andrews JJ (2020) Mass ratios of merging double neutron stars as implied by the milky way population. ApJL 900:L41

    Article  ADS  Google Scholar 

  37. Macias P, Ramirez-Ruiz E (2018) A stringent limit on the mass production rate of r-process elements in the Milky Way. ApJ 860:89

    Article  ADS  Google Scholar 

  38. Tauris TM, Kramer M, Freire PCC et al (2017) Formation of double neutron star systems. ApJ 846:170

    Article  ADS  Google Scholar 

  39. Clausen D, Sigurdsson S, Chernoff D (2014) Dynamically formed black hole+millisecond pulsar binaries in globular clusters. MNRAS 442:207–219

    Article  ADS  Google Scholar 

  40. Abbott R, Abbott TD, Abraham S et al (2020) GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. ApJL 896:L44

    Google Scholar 

  41. Abbott BP, Abbott R, Abbott TD et al (2019) GWTC-1: a gravitational wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. PRX 9:031040

    Google Scholar 

  42. Abbott R, Abbott TD, Abraham S et al (2020) GW190521: a binary black hole merger with a total mass of 150 M⊙. PRL 125:101102

    Article  ADS  Google Scholar 

  43. Littenberg TB, Cornish NJ, Lackeos K, Robson T (2020) Global analysis of the gravitational wave signal from Galactic binaries. PRD 101:123021

    Article  ADS  MathSciNet  Google Scholar 

  44. Downing JMB, Benacquista MJ, Giersz M, Spurzem R (2010) Compact binaries in star clusters – I. Black hole binaries inside globular clusters. MNRAS 407:1946–1962

    Google Scholar 

  45. Downing JMB, Bencquista MJ, Giersz M, Spurzem R (2011) Compact binaries in star clusters – II. Escapers and detection rates. MNRAS 416:133–147

    Google Scholar 

  46. Webbink RF (2010) Watch this space: observing merging white dwarfs. In: Kalogera V, van der Sluys M (eds) International conference on binaries: In celebration of Ron Webbink’s 65th birthday, AIP conference proceedings, 1314:217–222

    Google Scholar 

  47. Benacquista M, DeGoes J, Lunder D (2004) A simulation of the laser interferometer space antenna data stream from galactic white dwarf binaries. CQG 21:S509–S514

    Article  ADS  Google Scholar 

  48. Seto N (2004) Annual modulation of the galactic binary confusion noise background and LISA data analysis. PRD 69:123005

    Article  ADS  Google Scholar 

  49. Benacquista M, Holley-Bockelmann K (2006) Consequences of disk scale height on LISA confusion noise from close white dwarf binaries. ApJ 645:589–596

    Article  ADS  Google Scholar 

  50. Breivik K, Mingarelli CMF, Larson SL (2020) Constraining galactic structure with the LISA white dwarf foreground. ApJ 901:4

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Benacquista .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Benacquista, M. (2021). LISA and the Galactic Population of Compact Binaries. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_19-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics