Skip to main content

Differentiator-Based Universal TAM Filter Topology Using Operational Floating Current Conveyors

  • Conference paper
  • First Online:
Innovations in Electrical and Electronic Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 661))

  • 1310 Accesses

Abstract

This work puts forward a universal transadmittance mode (TAM) filter topology based on a differentiator approach using an analog building block known as operational floating current conveyor (OFCC). The proposed topology uses three OFCC blocks, two grounded capacitances, and three grounded resistances. This circuit has a number of advantages which make it highly suitable for a number of applications. All the passive elements of the circuit are grounded which make it highly favorable from fabrication point of view. The circuit has high input as well as high output impedance. The proper impedances of the circuit make it suitable for interfacing between voltage mode and current mode circuits. The pole frequency of the circuit is electronically tunable using MOS transistor-based implementation of grounded resistances. SPICE simulations using 0.5 µm technology parameters from MOSIS (AGILENT) are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Toker A, ÇiÇekoglu O, Özcan S, Kuntman H (2001) High-output-impedance transadmittance type continuous-time multifunction filter with minimum active elements. Int J Electron 88(10):1085–1091

    Article  Google Scholar 

  2. Liao WB, Gu JC (2011) SIMO type universal mixed-mode biquadratic filter

    Google Scholar 

  3. Pandey N, Nand D, Khan Z (2014) Operational floating current conveyor-based single-input multiple-output transadmittance mode filter. Ara J Sci Eng 39(11):7991–8000

    Article  Google Scholar 

  4. Yeşil A, Kaçar F (2013) Electronically tunable resistorless mixed mode biquad filters. Radioengineering 22(4):1016–1025

    Google Scholar 

  5. Chen HP, Yang WS (2017) Electronically tunable current controlled current conveyor transconductance amplifier-based mixed-mode biquadratic filter with resistorless and grounded capacitors. Appl Sci 7(3):244

    Article  Google Scholar 

  6. Paul SK, Pandey N, Bhattacharyya A (2009) Current controlled conveyor based transadmittance mode universal filter. In: 2009 IEEE symposium on industrial electronics & applications, vol. 2. IEEE, pp 764–767

    Google Scholar 

  7. Singh SV (2019) High input impedance trans-admittance mode biquad universal filter employing DVCCTAs and grounded passive elements. Indian J Pure Appl Phys (IJPAP) 57(1):52–62

    Google Scholar 

  8. Shah NA, Quadri M, Iqbal SZ (2007) CDTA based universal transadmittance filter. Analog Integr Circ Sig Process 52(1–2):65–69

    Article  Google Scholar 

  9. Pandey N, Paul SK (2010) SIMO transadmittance mode Active-C universal filter. Circ Syst 1(02):54

    Article  Google Scholar 

  10. Tomar R (2015) A new trans-admittance-mode biquad filter suitable for low voltage operation. Int J Eng 28(12):1738–1745

    Google Scholar 

  11. Beg P, Maheshwari S, Siddiqi MA (2013) Digitally controlled fully differential voltage-and transadmittance-mode biquadratic filter. IET Circ Dev Syst 7(4):193–203

    Article  Google Scholar 

  12. Prasad D, Srivastava M, Bhaskar DR (2014) Transadmittance type universal current-mode biquad filter using VDTAs. Int Sch Res No

    Google Scholar 

  13. Shankar C, Singh SV (2016) Single VDTA based multifunction transadmittance mode biquad filter. Int J Eng Technol (IJET) 7(6):2180–2188

    Google Scholar 

  14. Singh SV, Maheshwari S, Mohan J, Chauhan DS (2009) An electronically tunable SIMO biquad filter using CCCCTA. In: International conference on contemporary computing. Springer, Berlin, pp 544–555

    Google Scholar 

  15. Shankar CHANDRA, Singh SV (2015) A new trans-admittance mode biquad filter using MO-VDTA. WSEAS Trans Circ Syst 14:8–18

    Google Scholar 

  16. Shah NA, Iqbal SZ, Parveen B (2004) SITO high output impedance transadmittance filter using FTFNs. Analog Integr Circ Sig Process 40(1):87–89

    Article  Google Scholar 

  17. Gupta G, Singh SV, Bhooshan SV (2015) VDTA based electronically tunable voltage-mode and trans-admittance biquad filter. Circ Syst 6(03):93

    Article  Google Scholar 

  18. Ibrahim MA, Kuntman H (2003) A novel transadmittance-type KHN-biquad employing DO-OTA with only two grounded capacitors. WSEAS Trans Circ Syst 2:400–403

    Google Scholar 

  19. Senani R (2005) New OTA-C universal current-mode/trans-admittance biquads. IEICE Electron Express 2(1):8–13

    Article  Google Scholar 

  20. Çam U (2005) A new transadmittance type first-order all pass filter employing single third generation current conveyor. Analog Integr Circ Sig Process 43(1):97–99

    Article  Google Scholar 

  21. Shankar C, Singh SV (2015) A low voltage operable VDTA based biquad filter realizing band pass and high pass filtering functions in trans-admittance-mode. In: International conference on computing, communication & automation. IEEE, pp 1288–1293

    Google Scholar 

  22. Shah NA, Iqbal SZ, Parveen B (2005) Lowpass and bandpass transadmittance filter using operational amplifier pole. AEU-Int J Electron Commun 59(7):410–412

    Article  Google Scholar 

  23. Northrop RB (2003) Analysis and application of analog electronic circuits to biomedical instrumentation. CRC press

    Google Scholar 

  24. d’Azzo JJ, Houpis CD (1995) Linear control system analysis and design: conventional and modern. McGraw-Hill Higher Education

    Google Scholar 

  25. Toumazou C, Payne A (1991) Operational floating conveyor. Electron Lett 27(8):651–652

    Article  Google Scholar 

  26. Khan AA, Al-Turaigi MA, El-Ela MA (1994) Operational floating current conveyor: characteristics, modelling and applications. In: Conference proceedings. 10th anniversary. IMTC/94. Advanced technologies in I & M. 1994 IEEE instrumentation and measurement technology conference (Cat. No. 94CH3424-9). IEEE, pp 788–791

    Google Scholar 

  27. Ghallab YH, El-Ela MA, Elsaid MH (1999) Operational floating current conveyor: characteristics, modelling and experimental results. In: ICM’99. Proceedings. Eleventh international conference on microelectronics (IEEE Cat. No. 99EX388). IEEE, pp 59–62

    Google Scholar 

  28. Wang Z (1990) 2-MOSFET transresistor with extremely low distortion for output reaching supply voltages. Electron Lett 26(13):951–952

    Article  Google Scholar 

  29. Hassan HM, Soliman AM (2005) Novel CMOS realizations of the operational floating conveyor and applications. J Circ Syst Comput 14(06):1113–1143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashmin Gangal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gangal, A., Bhanoo, V., Pandey, N. (2021). Differentiator-Based Universal TAM Filter Topology Using Operational Floating Current Conveyors. In: Favorskaya, M.N., Mekhilef, S., Pandey, R.K., Singh, N. (eds) Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, vol 661. Springer, Singapore. https://doi.org/10.1007/978-981-15-4692-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4692-1_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4691-4

  • Online ISBN: 978-981-15-4692-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics