Skip to main content

Motion Estimation of Autonomous Vehicle in Noisy Surroundings Using Kalman Filter

  • Conference paper
  • First Online:
Advances in Control Instrumentation Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 660))

Abstract

Self-driving vehicles, autonomous driving, cyber-physical systems are not now unrealistic. Extensive research is being funded by the government and industry popularised this area of research. It has a massive potential to change the way of transportation and mobility. In this paper, we did the real-time state estimation of autonomous car’s position and velocity in an environment interference and noisy sensors. These states are needed to maintain the inter-vehicle gap and cruise system. Avoidance of noise and environment conditions in the controller design can cause a catastrophic condition. Kalman filter algorithms are used here for online computation and updates for real-time position measurements coming from GPS and states over the network. Longitudinal and lateral motion is captured with linear dynamics in 1D and 2D. Verification of the algorithm is done using the simulation for both the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besselink B, turri V, Van De Hoef SH, Liang K-Y, Alam J, Johansson KH, (2016) Cyber-physical control of road freight transport. Proc IEEE 104(5):1128–1141

    Google Scholar 

  2. Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffmann G et al (2006) Stanley: the robot that won the DARPA Grand Challenge. J Field Robot 23(9):661–692

    Article  Google Scholar 

  3. Nemeth B, Csikos A, Varga I, Gaspar P (2012) Road inclinations and emissions in platoon control via multi-criteria optimization. In: 2012 20th Mediterranean conference on control and automation, MED 2012—conference proceedings, pp 1524–1529

    Google Scholar 

  4. Jain A, Roy BK (2018) Tradeoff between quality of control (QoC) and quality of service (QoS) for networked vehicles cruise control. In: Proceedings of 3rd international conference on internet of things and connected technologies (ICIoTCT)

    Google Scholar 

  5. Jain A, Roy BK (2019) Online control of a nonlinear autonomous vehicle in the presence of network delay. J Adv Res Dyn Control Syst (JARDCS)

    Google Scholar 

  6. Buehler M, Iagnemma K, Singh S (2007) The 2005 DARPA grand challenge: the great robot race, vol 36. Springer, Cham

    Book  Google Scholar 

  7. Buehler M, Iagnemma K, Singh S (2009) The DARPA urban challenge: autonomous vehicles in city traffic, vol 56. Springer, Cham

    Book  Google Scholar 

  8. Cerri P, Soprani G, Zani P, Choi J, Lee J, Kim D, Yi K, Broggi A (2011) Computer vision at the Hyundai autonomous challenge. In: 2011 14th international IEEE conference on intelligent transportation systems (ITSC). IEEE, pp 777–783

    Google Scholar 

  9. Broggi A, Cerri P, Felisa M, Laghi MC, Mazzei L, Porta PP (2012) The vislab intercontinental autonomous challenge: an extensive test for a platoon of intelligent vehicles. Int J Veh Auton Syst 10(3):147–164

    Article  Google Scholar 

  10. Broggi A, Cerri P, Debattisti S, Laghi MC, Medici P, Molinari D, Panciroli M, Prioletti A (2015) Proud public road urban driverless-car test. IEEE Trans Intell Transp Syst 16(6):3508–3519

    Article  Google Scholar 

  11. Ziegler J, Bender P, Schreiber M, Lategahn H, Strauss T, Stiller C, Dang T, Franke U, Appenrodt N, Keller CG et al (2014) Making bertha drive: an autonomous journey on a historic route. IEEE Intell Transp Syst Mag 6(2):8–20

    Article  Google Scholar 

  12. Rajamani R (2011) Vehicle dynamics and control. Springer, Boston

    MATH  Google Scholar 

  13. Gerdes JC, Rossetter EJ (2001) A unified approach to driver assistance systems based on artificial potential fields. J Dyn Syst Meas Contr 123(3):431–438

    Article  Google Scholar 

  14. SAE On-Road Automated Vehicle Standards Committee et al (2014) Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. SAE International

    Google Scholar 

  15. González D, Pérez J, Milanés V, Nashashibi F (2016) A review of motion planning techniques for automated vehicles. IEEE Trans Intell Transp Syst 17(4):1135–1145

    Article  Google Scholar 

  16. Jain A, Roy BK (2019) Effects of communication on the performance of cooperative adaptive cruise control. Int J Innov Technol Expl Eng (IJITEE)

    Google Scholar 

  17. Jain A, Roy BK (2019) Control aspects of cooperative adaptive cruise control in the perspective of the cyber-physical system. Int J Innov Technol Expl Eng (IJITEE)

    Google Scholar 

  18. Ulsoy AG, Peng H, Çakmakci M (2012) Automotive control systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Francis BA, Maggiore M (2016) Flocking and rendezvous in distributed robotics. Springer, London

    Book  Google Scholar 

  20. Li SE, Gao F, Cao D, Li K (2016) Multiple-model switching control of vehicle longitudinal dynamics for platoon-level automation. IEEE Trans Veh Technol 65(6):4480–4492

    Article  Google Scholar 

  21. Jiang J, Astolfi A (2018) Lateral control of an autonomous vehicle. IEEE Trans Intell Veh 3(2):228–237

    Article  Google Scholar 

  22. Attia R, Orjuela R, Basset M (2014) Combined longitudinal and lateral control for automated vehicle guidance. Veh Syst Dyn 52(2):261–279

    Article  Google Scholar 

  23. Pham H, Hedrick K, Tomizuka M (1994) Combined lateral and longitudinal control of vehicles for IVHS. In: Proceedings of 1994 American control conference—ACC ’94, vol 2, no 6. IEEE, pp 1205–1206 (online). Available at: http://ieeexplore.ieee.org/document/752247/

  24. Han G, Fu W, Wang W, Wu Z (2017) The lateral tracking control for the intelligent vehicle based on adaptive pid neural network. Sensors 17(6):1244

    Article  Google Scholar 

  25. Huang X, Zhang H, Zhang G, Wang J (2014) Robust weighted gain-scheduling \(h_{\infty }\) vehicle lateral motion control with considerations of steering system backlash-type hysteresis. IEEE Trans Control Syst Technol 22(5):1740–1753

    Article  Google Scholar 

  26. Latrach C, Kchaou M, El Hajjaji A, Rabhi A (2013) Robust \(H_{\infty }\) fuzzy networked control for vehicle lateral dynamics. In: 16th international IEEE conference on intelligent transportation systems (ITSC 2013). IEEE, pp 905–910

    Google Scholar 

  27. Rui W, Yi-Ming S, Mei-Tong L, Hao Z (2015) Research on bus roll stability control based on LQR. In: 2015 international conference on intelligent transportation, big data and smart city. IEEE, pp 622–625

    Google Scholar 

  28. Kim SG, Tomizuka M, Cheng K-H (2009) Mode switching and smooth motion generation for adaptive cruise control systems by a virtual lead vehicle. IFAC Proc Vol 42(15):490–496

    Article  Google Scholar 

  29. Yang J, Zheng N (2007) An expert fuzzy controller for vehicle lateral control. In: IECON 2007—33rd annual conference of the IEEE Industrial Electronics Society. IEEE, pp 880–885

    Google Scholar 

  30. Zhang H, Wang J (2015) Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach. IEEE Trans Veh Technol 65(1):489–494

    Article  Google Scholar 

  31. Jain A, Roy BK (2019) Gain-scheduling controller design for cooperative adaptive cruise control: towards automated driving. J Adv Res Dyn Control Syst (JARDCS)

    Google Scholar 

  32. Swaroop D, Hedrick JK, Choi SB (2001) Direct adaptive longitudinal control of vehicle platoons. IEEE Trans Veh Technol 50(1):150–161

    Article  Google Scholar 

  33. Liu K, Gong J, Kurt A, Chen H, Ozguner U (2017) A model predictive-based approach for longitudinal control in autonomous driving with lateral interruptions. In: 2017 IEEE intelligent vehicles symposium (IV). IEEE, pp 359–364

    Google Scholar 

  34. Xu L, Wang Y, Sun H, Xin J, Zheng N (2016) Integrated longitudinal and lateral control for Kuafu-II autonomous vehicle. IEEE Trans Intell Transp Syst 17(7):2032–2041

    Article  Google Scholar 

  35. Simon D (2006) Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support is given by TEQIP-III, NIT Silchar, Silchar 788010, Assam, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Jain .

Editor information

Editors and Affiliations

Appendix

Appendix

For these models, both the predicted and the posterior densities are Gaussian. The mean and covariance of these are given by the Kalman filter equations.

$$\begin{aligned} x_{k}&=p(x_{k|k-1}) =A_{k-1}x_{k-1}+q_{k-1}\sim \mathcal {N}(x_{k};A_{k\text {-}1}x_{k\text {-}1},Q_{k-1}),\\&\qquad q_{k-1}\sim \mathcal {N}(\overline{q}_{k-1}=0,Q_{k-1})\\ y_{k}&=p(y_{k}|x_{k}) =C_{k}x_{k}+r_{k}\sim \mathcal {N}(y_{k};C_{k}x_{k},R_{k}),\\&\qquad r_{k}\sim \mathcal {N}(\overline{r}_{k}=0,R_{k}),x_{0}\sim \mathcal {N}(\overline{x}_{0},P_{0|0}) \end{aligned}$$

The Kalman filter recursively computes,

$$\begin{aligned} p(x_{k}|y_{1:k\text {-}1})&=\mathcal {N}(x_{k};\hat{x}_{k|k\text {-}1},P_{k|k\text {-}1})\quad \text {Prediction step}\\ p(x_{k}|y_{1:k})&=\mathcal {N}(x_{k};\hat{x}_{k|k},P_{k|k})\quad \text {update step} \end{aligned}$$
  • Prediction step

    $$\begin{aligned} \hat{x}_{k|k-1}&=A\hat{x}_{k-1|k-1}\\ P_{k|k-1}&=AP_{k-1|k-1}A^{T}+Q_{k-1} \end{aligned}$$
  • Update step

  • Innovation: \(v_{k}=z_{k}^{T}-C\hat{x}_{k|k-1}\)

  • Innovation covariance: \(S_{k}=CP_{k|k-1}C^{T}+R_{k}\)

  • Kalman gain: \(K_{k}=P_{k|k-1}C^{T}S_{k}^{-1}\)

  • posterior mean: \(\hat{x}_{k|k}=\hat{x}_{k|k-1}+K_{k}v_{k}\)

  • posterior covariance: \(P_{k|k}=(I-K_{k}C)P_{k|k-1}=P_{k|k-1}-K_{k}S_{k}K_{k}^{T}\)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, A., Roy, B.K. (2020). Motion Estimation of Autonomous Vehicle in Noisy Surroundings Using Kalman Filter. In: George, V., Roy, B. (eds) Advances in Control Instrumentation Systems. Lecture Notes in Electrical Engineering, vol 660. Springer, Singapore. https://doi.org/10.1007/978-981-15-4676-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4676-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4675-4

  • Online ISBN: 978-981-15-4676-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics