Skip to main content

Effect of Re-normalizing and Re-tempering on Inter-critical Heat Affected Zone(S) of P91B Steel

  • Conference paper
  • First Online:
Manufacturing Engineering

Abstract

The novel perspective of this paper was to restore the grain boundary (GB) hardening effect in inter-critical heat affected zone (ICHAZ) of boron modified P91 steel (P91B). To achieve this, samples of the base metal (BM) of P91B steel were thermally simulated by Gleeble followed by post-weld heat treatment (PWHT) and were further re-normalized and re-tempered. With such heat treatment, four different ICHAZ(s) were reproduced. These ICHAZ(s) were subjected to impression creep testing. As impression creep testing brings local deformation, the suitable characterization technique was electron back scatter diffraction (EBSD) for in-depth investigations of microstructural deformation. High creep deformation was observed for simulated ICHAZ followed by PWHT-ICHAZ due to GB softening. Whereas, the least deformation was observed for re-normalized and re-tempered ICHAZ(s) restoring GB hardening. In this respect, type IV cracking was avoided by re-normalizing and re-tempering in P91B steel. This phenomenon was further correlated with the impression creep curves of each ICHAZ with BM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EBSD:

Electron back scatter diffraction

GB:

Grain boundary

ICHAZ:

Inter-critical heat affected zone

HAGB:

High angle grain boundary

HAZ:

Heat affected zone

LAGB:

Low angle grain boundary

MCR:

Minimum creep-damage rate

PWHT:

Post-weld heat treatment

References

  1. Fujio, A., Kern, T.U., Viswanathan, R.: Creep-Resistant Steels. Elsevier (2008)

    Google Scholar 

  2. Khajuria, A., Kumar, R., Bedi, R.: Effect of boron addition on creep strain during impression creep of P91 steel. J. Mater. Eng. Perform. 28(7), 4128–4142 (2019)

    Article  Google Scholar 

  3. Laha, K., Chandravathi, K.S., Parameswaran, P., Rao, K.B.S., Mannan, S.L.: Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type IV cracking. Metall. Mater. Trans. A 38(1), 58–68 (2007)

    Article  Google Scholar 

  4. Francis, J.A., Mazur, W., Bhadeshia, H.K.D.H.: Review type IV cracking in ferritic power plant steels. Mater. Sci. Technol. 22(12), 1387–1395 (2006)

    Article  Google Scholar 

  5. Abson, D.J., Rothwell, J.S.: Review of type IV cracking of weldments in 9–12% Cr creep strength enhanced ferritic steels. Int. Mater. Rev. 58(8), 437–473 (2013)

    Article  Google Scholar 

  6. Khajuria, A., Kumar, R., Bedi, R.: Characterizing creep behaviour of modified 9Cr1Mo steel by using small punch impression technique for thermal powerplants. J. mechan. Mechan. Engg. 4(3), 47–61 (2018)

    Google Scholar 

  7. Akhtar, M., Khajuria, A., Kumar, V.S., Gupta, R.K., Albert, S.K.: Evolution of microstructure during welding simulation of boron modified P91 Steel. Phys. Met. Metallogr. 120(7), 672–685 (2019)

    Article  Google Scholar 

  8. Akhtar, M.: Metallurgical Characterisation of Simulated Heat Affected Zone in Boron Modified P91 Steel. National Institute of Technology, Warangal (2017)

    Google Scholar 

  9. Akhtar, M., Khajuria, A., Pandey, M.K., Ahmed, I.: Effects of boron modifications on phase nucleation and dissolution temperatures and mechanical properties in 9% Cr steels: sensitivity and stability. Mater. Res. Express 6(12), 1265k1 (2019)

    Article  Google Scholar 

  10. Akhtar, M., Khajuria, A., Kumar, R., Bedi, R.: Metallurgical investigations on dual heat cycled boron alloyed P91 ferritic/martensitic steel. In: Proceedings of Young Professionals Conference, International Institute of Welding, Chennai, India (2017). https://doi.org/10.13140/rg.2.2.18467.30241/2

  11. Akhtar, M., Khajuria, A.: Probing true microstructure-hardening relationship in simulated heat affected zone of P91B steels. Metallogr. Microstruct. Anal. 8(5), 656–677 (2019)

    Google Scholar 

  12. Akhtar, M., Khajuria, A.: Effects of prior austenite grain size on impression creep and microstructure in simulated heat affected zones of boron modified P91 steels. Mater. Chem. Phys. 249, 122847 (2020)

    Google Scholar 

  13. Koisstinen, D.: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 7, 59–60 (1959)

    Article  Google Scholar 

  14. Akhtar, M., Khajuria, A., Pandey, M.K., Ahmed, I., Bedi, R.: Effects of boron modifications on phase nucleation and dissolution temperatures and mechanical properties in 9% Cr steels: alloy design. Mater. Res. Express 6(12), 1265k3 (2019)

    Google Scholar 

  15. Maruyama, K., Kota, S., Jun-ichi, K.: Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int. 41(6), 641–653 (2001)

    Article  Google Scholar 

  16. Yan, W., Wang, W., Shan, Y., Yang, K., Sha, W.: 9–12Cr heat-resistant steels. Springer (2015)

    Google Scholar 

  17. Durand-Charre, M.: La microstructure des aciers et des fontes. SIRPE, Paris (2003)

    Google Scholar 

  18. Shi, P., Engström, A., Höglund, L., Sundman, B., Ågren, J.: Thermo-Calc and DICTRA enhance materials design and processing. Mater. Sci. Forum 475, 3339–3346 (2005)

    Google Scholar 

  19. Goswami, P.: P(T) 91 steel—a review of current code and fabrication practices. In: Proceedings of the Sixth International Conference on Advances in Materials Technology for Fossil Power Plants, La Fonda, USA (2010)

    Google Scholar 

  20. Paul, V.T., Saroja, S., Vijayalakshmi, M.: Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures. J. Nucl. Mater. 378(3), 273–281 (2008)

    Article  Google Scholar 

  21. Akhtar, M., Khajuria, A.: Probing true creep-hardening interaction in weld simulated heat affected zone of P91 steels. J. Manuf. Processes 46, 345–356 (2019)

    Article  Google Scholar 

  22. Abe, F., Tabuchi, M., Tsukamoto, S.: Alloy Design of Martensitic 9Cr-boron steel for A-USC boiler at 650°C-Beyond grades 91, 92 and 122. Energy Mater 2014, 129–136 (2014)

    Google Scholar 

  23. Abe, F., Tabuchi, M., Kondo, M., Tsukamoto, S.: Suppression of Type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition. Int. J. Press. Vessels Pip. 84(1–2), 44–52 (2007)

    Article  Google Scholar 

  24. Akhtar, M., Khajuria, A., Sahu, J.K., Swaminathan, J., Kumar, R., Bedi, R., Albert, S.K.: Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl. Nanosci. 8(7), 1669–1685 (2018)

    Article  Google Scholar 

  25. Khajuria, A., Bedi, R., Kumar, R.: Investigation of impression creep deformation behaviour of boron modified P91 steel by high end characterization techniques. In: Manufacturing Engineering, pp. 137–150. Springer, Singapore (2019)

    Google Scholar 

  26. Akhtar, M., Khajuria, A., Kumar, V.S., Gupta, R.K., Albert, S.K.: Evolution of microstructure during welding simulation of boron modified P91 steel. Phys. Met. Met. Sci 120(7), 731–745 (2019). https://doi.org/10.1134/S0015323019070052

    Article  Google Scholar 

  27. Vaibhav, A., Khajuria, A., Akhtar, M., Singh, M.P., Kumar, A.: Effects of heat treatments on grain size and hardness of P91 and boron added P91 steels, Behind The Teacher’s Desk (BTTD-2017), CSIR-NML, Jamshedpur. India (2017). https://doi.org/10.13140/RG.2.2.20792.03841

    Article  Google Scholar 

  28. Pal, S., Khajuria, A., Akhtar, M.: Influence of aging on hardness and tool wear of artificially aged aluminium alloy 6061. IAETSD J. Adv. Res. Appl. Sci. 5(2), 477–481 (2018). http://iaetsdjaras.org/gallery/7-february-488.pdf

  29. Huysmans, S., Vekeman, J., Hautfenne, C.: Dissimilar metal welds between 9Cr creep strength enhanced ferritic steel and advanced stainless steels—creep rupture test results and microstructural investigations. Weld. World. 61(2), 341–350 (2017)

    Article  Google Scholar 

  30. Hyde, T.H., Yehia, K.A., Becker, A.A.: Application of the reference stress method for interpreting impression creep test data. Mater. High Temp. 13, 133–138 (1995). https://doi.org/10.1080/09603409.1995.11689511

    Article  Google Scholar 

  31. Chu, S.N.G., Li, J.C.M.: Impression creep; a new creep test. J. Mater. Sci. 12, 2200–2208 (1977). https://doi.org/10.1007/BF00552241

    Article  Google Scholar 

  32. Khajuria, A., Akhtar, M., Kumar, R., Swaminanthan, J., Bedi, R., Shukla, D.K.: Effect of boron modified microstructure on impression creep behaviour of simulated multi-pass heat affected zone of P91 steel. In: Dutta, S., Chakraborty, S.S. (eds.) In: National Conference on Advanced Materials, Manufacturing and Metrology, pp. 150–157. CSIR-CMERI, Durgapur (2018). https://doi.org/10.13140/rg.2.2.34633.24164/2

  33. Yu, H.-Y., Li, J.C.M.: Computer simulation of impression creep by the finite element method. J. Mater. Sci. 12, 2214–2222 (1977). https://doi.org/10.1007/BF00552243

    Article  Google Scholar 

  34. Chu, S.N.G., Li, J.C.M: Impression creep of β-tin single crystals. Mater. Sci. Eng. 39, 1–10 (1979). https://doi.org/10.1016/0025-5416(79)90164-2

  35. Talari, M.K., Kishore, B. N., Kallip, K., Leparoux, M., Koller, R.E., Alogab, K.A., Maedar, X.: Microstructure, mechanical, and impression creep properties of AlMg5–0.5 vol% Al2O3 nanocomposites. Adv. Eng. Mater. 18, 1958–1966 (2016). https://doi.org/10.1002/adem.201600301

  36. Dorner, D., Röller, K., Skrotzki, B., Stöckhert, B., Eggeler, G.: Creep of a TiAl alloy: a comparison of indentation and tensile testing. Mater. Sci. Eng., A 357, 346–354 (2003). https://doi.org/10.1016/S0921-5093(03)00205-3

    Article  Google Scholar 

  37. Wright, S.I., Nowell, M.M., Field, D.P.: A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 17(3), 316–329 (2011)

    Article  Google Scholar 

  38. Saraf, L.: Kernel average misorientation confidence index correlation from FIB sliced Ni-Fe-Cr alloy surface. Microsc. Microanal. 17(S2), 424–425 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modassir Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akhtar, M., Khajuria, A., Bedi, R. (2020). Effect of Re-normalizing and Re-tempering on Inter-critical Heat Affected Zone(S) of P91B Steel. In: Sharma, V., Dixit, U., Sørby, K., Bhardwaj, A., Trehan, R. (eds) Manufacturing Engineering . Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4619-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4619-8_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4618-1

  • Online ISBN: 978-981-15-4619-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics