Skip to main content

Mechanism of Gallic Acid Anticancer Activity Through Copper Mediated Cell Death

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects
  • 47 Accesses

Abstract

Plant-based polyphenolic compounds are present in various dietary sources and considered to possess antioxidant activity. Gallic acid (GA) is one particularly important polyphenol. Studies have reported that GA is cytotoxic to cancer cells while normal cells remain unaffected by such action. We suggested a mechanism that suggests the preferential killing of GA against cancer cell. Using Comet assay (single cell gel electrophoresis) and Fox assay (ferrous oxidation xylenol), it has been shown that GA behaves as prooxidant and causes DNA damage in human lymphocytes. Moreover, such DNA damage is stopped in the presence of copper chelator in cell validating the role of copper in the prooxidant DNA breakage by GA. Also, human breast cancer cell line (MDA-MB-231) growth is interrupted by GA resulting killing of cell in prooxidant manner. It is an established fact; copper levels are well elevated in different types of cancers. Consequently, cancer cells are subjected to transfer of electron between GA to produce ROS. Thus, we explain the cytotoxicity of GA towards malignant cells is because of elevated copper levels. In addition, our studies identify that nuclear copper can be responsible as a completely new target for cytotoxic behavior of GA as well as other polyphenolic compounds, which have strong potential against cancer as therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adlercreutz CH, Goldin BR, Gorbach SL, Hockerstedt KA, Watanabe S, Hamalainen EK, Markkanen MH, Makela TH, Wahala KT, Adlercreutz T (1995) Soybean phytoestrogen intake and cancer risk. J Nutr 125:757S–770S

    CAS  PubMed  Google Scholar 

  • Agarwal C, Tyagi A, Agarwal R (2006) Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation; leading to cell cycle arrest; and induces apoptosis in human prostate carcinoma DU145 cells. Mol Cancer Ther 5:3294–3302

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Farhan A, Singh S, Hadi SM (2000) DNA breakage by resveratrol and Cu(II): reaction mechanism and bacteriophage inactivation. Cancer Lett 154:29–37

    Article  CAS  PubMed  Google Scholar 

  • Ahsan H, Hadi SM (1998) Strand scission in DNA induced by curcumin in the presence of Cu(II). Cancer Lett 124:23–30

    Article  CAS  PubMed  Google Scholar 

  • Alyssa GS, Jeffrey HW, Hannah E, Esther FR, Ayelet RB, Jordana RW, Tova L, Harriet LZ, Harvey B (2013) Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells. Oxidants and Antioxidants Med Sci 2:265–274

    Article  Google Scholar 

  • Apelgot S, Coppey J, Fromentin A, Guille E, Poupon MF, Roussel A (1986) Altered distribution of copper (64 Cu) in tumor-bearing mice and rats. Anticancer Res 6:159–164

    CAS  PubMed  Google Scholar 

  • Arif H, Rehmani N, Farhan M, Ahmad A, Hadi SM (2015) Mobilization of copper ions by flavonoids in human peripheral lymphocytes leads to oxidative DNA breakage: a structure activity study. Int J Mol Sci 16:26754–26769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes S, Peterson G, Grubbs C, Setchell K (1994) Potential role of dietary isoflavones in the prevention of cancer. Adv Exp Med Biol 354:135–147

    Article  CAS  PubMed  Google Scholar 

  • Bhadani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial application. RSC Adv 35:1–18

    Google Scholar 

  • Burkitt MJ, Milne L, Nicotera P, Orrenius S (1996) 1;10-Phenanthroline stimulates internucleosomal DNA fragmentation in isolated rat-liver nuclei by promoting the redox activity of endogenous copper ions. Biochem J 313:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpentieri U, Myers J, Thorpe L, Daeschner CW, Haggard ME (1986) Copper; zinc; and iron in normal and leukemic lymphocytes from children. Cancer Res 46:981–984

    CAS  PubMed  Google Scholar 

  • Crowe A, Jackaman C, Beddoes KM, Ricciardo B, Nelson DJ (2013) Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth; normalizes vessels and promotes T cell infiltration. PLoS One 8:e73684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebadi M, Swanson S (1988) The status of zinc; copper; and metallothionein in cancer patients. Prog Clin Biol Res 259:161–175

    CAS  PubMed  Google Scholar 

  • Ebara M, Fukuda H, Hatano R, Saisho H, Nagato Y, Suzuki K, Nakajima K, Yukawa M, Kondo F, Nakayama A, Sakurai H (2000) Relationship between copper; zinc and metallothionein in hepatocellular carcinoma and its surrounding liver parenchyma. J Hepatol 33:415–422

    Article  CAS  PubMed  Google Scholar 

  • Farhan M, Khan HY, Oves M, Al-Harrasi A, Rehmani N, Arif H, Hadi SM, Ahmad A (2016a) Cancer therapy by catechins involves redox cycling of copper ions and generation of reactive oxygen species. Toxins 8:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farhan M, Oves M, Chibber S, Hadi SM, Ahmad A (2016b) Mobilization of nuclear copper by green tea polyphenol epicatechin-3-gallate and subsequent prooxidant breakage of cellular DNA: implications for cancer chemotherapy. Int J Mol Sci 18:34

    Article  PubMed Central  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1972) Angiogenesis in psoriasis: therapeutic implications. J Invest Dermatol 59:40–43

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Naing A, Fu C, Kuo MT, Kurzrock R (2012) Overcoming platinum resistance through the use of a copper-lowering agent. Molecula Cancer Therapy 11:1221–1225

    Article  CAS  Google Scholar 

  • Fu S, Hou MM, Wheler J, Hong D, Naing A, Tsimberidou A, Janku F, Zinner R, Piha PS, Falchook G, Kuo MT, Kurzrock R (2014) Exploratory study of carboplatin plus the copper-lowering agent trientine in patients with advanced malignancies. Investig New Drugs 32:465–472

    Article  CAS  Google Scholar 

  • Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35:32–46

    Article  CAS  PubMed  Google Scholar 

  • Hadi SM, Asad SF, Singh S, Ahmad A (2000) Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 50:167–171

    Article  CAS  PubMed  Google Scholar 

  • Held KD, Sylvester FC, Hopcia KL, Biaglow JE (1996) Role of Fenton chemistry in thiol-induced toxicity and apoptosis. Radiat Res 145:542–553

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Suzuki R, Koide T, Sakaguchi N, Ogihara Y, Yabu Y (1994) Antioxidant; gallic acid; induces apoptosis in HL-60RG cells. Biochem Biophys Res Commun 204:898–904

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Cohen J, Ward MM, Kornhauser N, Chuang E, Cigler T, Moore A, Donovan D, Lam C, Cobham MV, Schneider S, Hurtado SM, Benkert S, Mathijsen GC, Zelkowitz R, Warren JD, Lane ME, Mittal V, Rafii S, Vahdat LT (2013) Tetrathiomolybdate-associated copper depletion decreases circulating endothelial progenitor cells in women with breast cancer at high risk of relapse. Ann Oncol 24:1491–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji BC, Hsu WH, Yang JS, Hsia TC, Lu CC, Chiang JH, Yang JL, Lin CH, Lin JJ, Suen LJ, Gibson W, Chung JG (2009) Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agric Food Chem 57:7596–7604

    Article  CAS  PubMed  Google Scholar 

  • Kagawa TF, Geierstanger BH, Wang AH, Ho PS (1991) Covalent modification of guanine bases in double-stranded DNA. The 1.2-A Z-DNA structure of d(CGCGCG) in the presence of CuCl2. J Biol Chem 266:20175–20184

    Article  CAS  PubMed  Google Scholar 

  • Kaliora AC, Kanellos PT, Kalogeropoulos N (2013) Gallic acid bioavailability in humans. In: Thompson M, Collins PB (eds) Handbook on gallic acid: natural occurrences; antioxidant properties and health implications. Nova Science Publishers, New York, pp 301–313

    Google Scholar 

  • Khan NS, Hadi SM (1998) Structural features of tannic acid important for DNA degradation in the presence of Cu(II). Mutagenesis 13:271–274

    Article  CAS  PubMed  Google Scholar 

  • Khan HY, Zubair H, Faisal M, Ullah MF, Farhan M, Sarkar FH, Ahmad A, Hadi SM (2014) Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action. Mol Nutr Food Res 58:437–446

    Article  CAS  PubMed  Google Scholar 

  • Kuo HW, Chen SF, Wu CC, Chen DR, Lee JH (2002) Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res 89:1–11

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Trush MA (1994) Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism. Cancer Res 54:1895s–1898s

    CAS  PubMed  Google Scholar 

  • Liang CZ, Zhang JK, Shi Z, Liu B, Shen CQ, Tao HM (2012) Matrine induces caspase-dependent apoptosis in human osteosarcoma cells in vitro and in vivo through the upregulation of Bax and Fas/FasL and downregulation of Bcl-2. Cancer Chemother Pharmacol 69:317–331

    Article  CAS  PubMed  Google Scholar 

  • Long LH, Clement MV, Halliwell B (2000) Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin; (−)-epigallocatechin gallate; (+)-catechin; and quercetin to commonly used cell culture media. Biochem Biophys Res Commun 273:50–53

    Article  CAS  PubMed  Google Scholar 

  • Madlener S, Illmer C, Horvath Z, Saiko P, Losert A, Herbacek I, Grusch M, Elford HL, Krupitza G, Bernhaus A, Fritzer SM, Szekeres T (2007) Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett 245:156–162

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    Article  CAS  PubMed  Google Scholar 

  • Margalioth EJ, Udassin R, Cohen C, Maor J, Anteby SO, Schenker JG (1987) Serum copper level in gynecologic malignancies. Am J Obstet Gynecol 157:93–96

    Article  CAS  PubMed  Google Scholar 

  • Park OJ, Surh YJ (2004) Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol Lett 150:43–56

    Article  CAS  PubMed  Google Scholar 

  • Pool-Zobel BL, Guigas C, Klein R, Neudecker C, Renner HW, Schmezer P (1993) Assessment of genotoxic effects by lindane. Food Chem Toxicol 31:271–283

    Article  CAS  PubMed  Google Scholar 

  • Pryor WA (1988) Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity; high thermochemical reactivity; and a mode of production that can occur near DNA. Free Radic Biol Med 4:219–223

    Article  CAS  PubMed  Google Scholar 

  • Pushie MJ, Nienaber KH, Summers KL, Cotelesage JJ, Ponomarenko O, Nichol HK, Pickering IJ, George GN (2014) The solution structure of the copper clioquinol complex. J Inorg Biochem 133:50–56

    Article  CAS  PubMed  Google Scholar 

  • Quinlan GJ, Gutteridge JM (1987) Oxygen radical damage to DNA by rifamycin SV and copper ions. Biochem Pharmacol 36:3629–3633

    Article  CAS  PubMed  Google Scholar 

  • Said M, Fazal F, Rahman A, Hadi SM, Parish JH (1992) Activities of flavonoids for the cleavage of DNA in the presence of Cu(II): correlation with generation of active oxygen species. Carcinogenesis 13:605–608

    Article  Google Scholar 

  • Schimmer AD (2011) Clioquinol - a novel copper-dependent and independent proteasome inhibitor. Curr Cancer Drug Targets 11:325s–331s

    Article  Google Scholar 

  • Semczuk B, Pomykalski M (1973) Serum copper level in patients with laryngeal carcinoma. Otolar Polska = Otolaryngol Pol 27:17–23

    CAS  PubMed  Google Scholar 

  • Shahrzad S, Aoyagi K, Winter A, Koyama A, Bitsch I (2001) Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J Nutr 131:1207–1210

    Article  CAS  PubMed  Google Scholar 

  • Shamim U, Hanif S, Albanyan A, Beck FW, Bao B, Wang Z, Banerjee S, Sarkar FH, Mohammad RM, Hadi SM, Azmi AS (2012) Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer. J Cell Physiol 227:1493–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BP, Dwivedi S, Dhakad U, Murthy RC, Choubey VK, Goel A, Sankhwar SN (2016) Status and Interrelationship of Zinc; Copper; Iron; Calcium and Selenium in Prostate Cancer. Indian J Clin Biochem 31:50–56

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Halliwell B, Aruoma OI (1992) Protection by albumin against the pro-oxidant actions of phenolic dietary components. Food Chem Toxicol 30:483–489

    Article  CAS  PubMed  Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  CAS  PubMed  Google Scholar 

  • Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation; signaling; and disease. J Biol Chem 284:717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urso E, Maffia M (2015) Behind the link between copper and angiogenesis: Established mechanisms and an overview on the role of vascular copper transport systems. J Vasc Res 52:172–196

    Article  CAS  PubMed  Google Scholar 

  • Wachsmann J, Peng F (2016) Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma. World J Gastroenterol 22:221–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Zhu X, Zhang K, Zhu L, Zhou F (2014) Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J Biochem Mol Toxicol 28:387–393

    Article  CAS  PubMed  Google Scholar 

  • Wolfe JT, Ross D, Cohen GM (1994) A role for metals and free radicals in the induction of apoptosis in thymocytes. FEBS Lett 352:58–62

    Article  CAS  PubMed  Google Scholar 

  • Yoshida D, Ikeda Y, Nakazawa S (1993) Quantitative analysis of copper; zinc and copper/zinc ratio in selected human brain tumors. J Neuro-Oncol 16:109–115

    Article  CAS  Google Scholar 

  • Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 101:4098–4104

    Article  CAS  PubMed  Google Scholar 

  • Zuo XL, Chen JM, Zhou X, Li XZ, Mei GY (2006) Levels of selenium; zinc; copper; and antioxidant enzyme activity in patients with leukemia. Biol Trace Elem Res 114:41–53

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Farhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Farhan, M., Aatif, M., Hadi, S.M., Ahmad, A. (2021). Mechanism of Gallic Acid Anticancer Activity Through Copper Mediated Cell Death. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_179-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_179-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics