Skip to main content

Experimental Study of Performance of R600a/CNT-Lubricant in Domestic Refrigerator System

  • Conference paper
  • First Online:
Trends in Mechanical and Biomedical Design

Abstract

Energy consumption and environmental problems have been the major consideration for comfort systems manufacturers. This research work investigated a varied mass charge of R600a, an eco-friendly refrigerant with a low concentration of 0.4 and 0.6 g/L of CNT nanolubricant concentration in a domestic vapor compression refrigerating system working with pure mineral oil as the base lubricant. The experimental test performance of the system was studied considering pull-down time, COP, power consumption, and cooling capacity. The result showed that CNT nanolubricant had lower evaporator air temperature with higher COP and cooling capacity with a reduction in power consumption compared to R600a in the base lubricant in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COP:

Coefficient of performance

EG:

Ethylene glycol

h :

Enthalpy (kJ/kg)

m :

Mass flow rate (kg/s)

MWCNT:

Multiwall carbon nanotube

PAG:

Polyalkylene glycol

Q evap :

Cooling capacity (W)

SG:

Solid grinding

SWCNT:

Single wall carbon nanotube

T :

Temperature (°C)

TEM:

Transmission electron microscope

VCRS:

Vapor compression refrigeration system

W C :

Compressor power in put (W)

1:

Compressor inlet

2:

Compressor outlet

3:

Condenser outlet

4:

Evaporator outlet

References

  1. Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM (2017) Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system—a review. Renew Sustain Energy Rev 69:415–428

    Google Scholar 

  2. Babarinde TO, Akinlabi SA, Madyira DM (2018) Enhancing the performance of vapour compression refrigeration system using nano refrigerants: a review. IOP Conf Ser Mater Sci Eng 413:012068

    Article  Google Scholar 

  3. Choi C, Yoo HS, Oh JM (2008) Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys 8(6):710–712

    Article  Google Scholar 

  4. Maheshwary PB, Handa CC, Nemade KR (2018) Effect of shape on thermophysical and heat transfer properties of ZnO/R-134a nanorefrigerant. Mater Today Proc 5(1):1635–1639

    Article  Google Scholar 

  5. Jung J, Cho C, Hyun W, Tae Y (2011) Thermal conductivity measurement and characterization of binary nanofluids. Int J Heat Mass Transf 54(9–10):1728–1733

    Article  Google Scholar 

  6. Mahbubul IM, Saidur R, Amalina MA (2013) Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube. Procedia Eng 56:323–329

    Article  Google Scholar 

  7. Saidur R, Kazi SN, Hossain MS, Rahman MM, Mohammed HA (2011) A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew Sustain Energy Rev 15(1):310–323

    Article  Google Scholar 

  8. Sun B, Yang D (2013) Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube (Caractéristiques du transfert de chaleur d’écoulement en ébullition de nano-frigorigénes dans un tube horizontal). Int J Refrig 38:206–214

    Article  Google Scholar 

  9. Nabil MF, Azmi WH, Hamid KA, Mamat R, Hagos FY (2017) An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture. Int Commun Heat Mass Transf 86:181–189

    Google Scholar 

  10. Wang R, Zhang Y, Liao Y (2017) Performance of rolling piston type rotary compressor using fullerenes (C70) and NiFe2O4 nanocomposites as lubricants additives

    Google Scholar 

  11. Melnyk AV (2017) A complex investigation of the nanofluids R600a-mineral oil-Al2O3 and R600a-mineral oil-TiO2 (Thermophysical properties Une étude complexe des propriétés thermophysiques des nanofluides R600a-huile minérale-Al2O3 et R600a-huile). Int J Refrig 74:488–504

    Article  Google Scholar 

  12. Akilu S, Baheta AT, Sharma KV (2017) Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. J Mol Liq 246:396–405

    Article  Google Scholar 

  13. Sun B, Wang H, Yang D (2018) Effects of surface functionalization on the flow boiling heat transfer characteristics of MWCNT/R141b nanorefrigerants in smooth tube. Exp Therm Fluid Sci 92:162–173

    Google Scholar 

  14. Mahmoud O (2017) OMAE2016-54071, pp 1–10

    Google Scholar 

  15. Hung Y, Gu H (2014) Multiwalled carbon nanotube nanofluids used for heat dissipation in hybrid green energy systems. J Nanomater 2014(162):1–32

    Google Scholar 

  16. Malvandi A, Heysiattalab S, Ganji DD (2016) Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. J Mol Liq 216:503–509

    Article  Google Scholar 

  17. You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83(16):3374–3376

    Article  Google Scholar 

  18. Bi SS, Shi L, Zhang LL (2008) Application of nanoparticles in domestic refrigerators. Appl Therm Eng 28(14–15):1834–1843

    Google Scholar 

  19. Jwo C-S, Jeng L-Y, Teng T-P, Chang H (2009) Effects of nanolubricant on performance of hydrocarbon refrigerant system. J Vac Sci Technol B Microelectron Nanomet Struct 27(3):1473

    Google Scholar 

  20. Tiwari AK, Ghosh P, Sarkar J (2013) Performance comparison of the plate heat exchanger using different nanofluids. Exp Therm Fluid Sci 49:141–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Babarinde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babarinde, T.O., Akinlabi, S.A., Madyira, D.M. (2021). Experimental Study of Performance of R600a/CNT-Lubricant in Domestic Refrigerator System. In: Akinlabi, E., Ramkumar, P., Selvaraj, M. (eds) Trends in Mechanical and Biomedical Design. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4488-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4488-0_62

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4487-3

  • Online ISBN: 978-981-15-4488-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics