Skip to main content

Solar Fuels via Two-Step Thermochemical Redox Cycles

  • Chapter
  • First Online:
Advances in Greener Energy Technologies

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

With the advent of green technologies, solar fuel has gained particular interest that helps in producing syngas which is the primary feedstock for many of the synthetic chemicals using emissions (CO2 and H2O). Thermochemical redox cycles use metal oxides as oxygen carriers that are capable of oxygen diffusion during continuous reduction and oxidation cycles. In the chapter, the focus has been derived in many aspects such as metal oxides and their evolution, reactor design and their scope of large-scale modularity, and lastly its application in fuel, chemicals and power plants. The chapter also highlights the system analysis for different chemicals, their techno-economic feasibility, and viability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IEA (2018) IEA, global energy & CO2 status report 2017. https://www.iea.org/publications/freepublications/publication/GECO2017.pdf

  2. Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, Pongratz J, Pickers PA, Korsbakken JI, Peters GP, Canadell JG (2018) Global carbon budget 2018. Earth Syst Sci Data 10:2141–2194. https://doi.org/10.5194/essd-10-2141-2018

  3. BP Energy Economics (2018) BP energy outlook 2018. https://doi.org/10.1088/1757-899X/342/1/012091

  4. IPCC (2019) IPCC special report on global warming of 1.5 °C

    Google Scholar 

  5. Liu G, Sorensen JA, Braunberger JR, Klenner R, Ge J, Gorecki CD, Steadman EN, Harju JA (2014) CO2-based enhanced oil recovery from unconventional reservoirs: a case study of the Bakken formation. In: SPE unconventional resources conference, 7. https://doi.org/10.2118/168979-MS

  6. Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. https://doi.org/10.2172/15006100

  7. Simbeck DR, Karp AD, Dickenson RL (1998) Syngas production for gas-to-liquids applications: technologies, issues and outlook. https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/Merge/Vol-45_1-0003.pdf

  8. Sheu EJ, Mokheimer EMA, Ghoniem AF (2015) A review of solar methane reforming systems. Int J Hydrogen Energy 40:12929–12955. https://doi.org/10.1016/j.ijhydene.2015.08.005

    Article  Google Scholar 

  9. Bulfin B, Vieten J, Agrafiotis C, Roeb M, Sattler C (2017) Applications and limitations of two step metal oxide thermochemical redox cycles: a review. J Mater Chem A 5:18951–18966. https://doi.org/10.1039/c7ta05025a

    Article  Google Scholar 

  10. Graves C, Ebbesen SD, Mogensen M, Lackner KS (2011) Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew Sustain Energy Rev 15:1–23. https://doi.org/10.1016/j.rser.2010.07.014

    Article  Google Scholar 

  11. Konstandopoulos AG, Pagkoura C, Dimitrakis D, Lorentzou S, Karagiannakis G (2015) Solar hydrogen production. In: Production of hydrogen from renewable resources, pp 283–311

    Google Scholar 

  12. Detz RJ, Reek JNH, Van Der Zwaan BCC (2018) The future of solar fuels: when could they become competitive? Energy Environ Sci 11:1653–1669. https://doi.org/10.1039/c8ee00111a

    Article  Google Scholar 

  13. Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev 57:850–866. https://doi.org/10.1016/j.rser.2015.12.112

    Article  Google Scholar 

  14. Lemus RG, Duart JMM (2010) Updated hydrogen production costs and parities for conventional and renewable technologies. Int J Hydrogen Energy 35:3929–3936. https://doi.org/10.1016/j.ijhydene.2010.02.034

  15. Ruth M, Laffen M, Timbario T (2009) Hydrogen pathways: cost, well-to-wheels energy use, and emissions for the current technology status of seven hydrogen production, delivery, and distribution scenarios. DoE EERE. https://doi.org/10.2172/1107463

  16. Dimitrakis DA (2017) Thermochemical water and carbon dioxide redox splitting for neutral carbon footprint solar fuels: from material to reactor. Aristotle University of Thessaloniki, Thessaloniki

    Google Scholar 

  17. Global CCS Institute (2017) The global status of CCS: 2017, 43. https://doi.org/978-0-9944115-2-5

  18. Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443. https://doi.org/10.1016/j.rser.2014.07.093

    Article  Google Scholar 

  19. Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359:126–139. https://doi.org/10.1016/j.memsci.2009.10.041

    Article  Google Scholar 

  20. Chiesa P, Lozza G, Malandrino A, Romano M, Piccolo V (2008) Three-reactors chemical looping process for hydrogen production. Int J Hydrogen Energy 33:2233–2245. https://doi.org/10.1016/j.ijhydene.2008.02.032

    Article  Google Scholar 

  21. IEA (2004) Energy technology analysis: prospects for CO2 capture and storage, 249. https://doi.org/10.1016/B978-1-85617-710-8.00010-8

  22. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89:1609–1624. https://doi.org/10.1016/j.cherd.2010.11.005

    Article  Google Scholar 

  23. Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31:283–307. https://doi.org/10.1016/j.pecs.2005.07.001

    Article  Google Scholar 

  24. Habib MA, Nemitallah M, Ben-Mansour R (2013) Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuels 27:2–19. https://doi.org/10.1021/ef301266j

    Article  Google Scholar 

  25. Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Procedia 1:495–502. https://doi.org/10.1016/j.egypro.2009.01.066

    Article  Google Scholar 

  26. Lockwood T (2014) Developments in oxyfuel combustion of coal. IEA Clean Coal Centre, CCC/240, London, United Kingdom, pp 1–122

    Google Scholar 

  27. Chorowski M, Gizicki W (2015) Technical and economic aspects of oxygen separation for oxy-fuel purposes. Arch Thermodyn 36:157–170. https://doi.org/10.1515/aoter-2015-0011

    Article  Google Scholar 

  28. Nemitallah M, Habib M, Badr H, Said S, Aqil J, Rached B, Mokheimer EM, Mezghani K (2017) Oxy‐fuel combustion technology: current status, applications, and trends. Int J Energy Res 41:1670–1708. https://doi.org/10.1002/er.3722

  29. White Rose Project (n.d.) https://www.zeroco2.no/projects/developers/alstom. Accessed 1 Mar 2018

  30. Xiuzhang W (2014) Shenhua Group’s carbon capture and storage (CCS) demonstration. Min Rep 150:81–84. https://doi.org/10.1002/mire.201400006

    Article  Google Scholar 

  31. Allam RJ, Palmer MR, Brown GW, Fetvedt J, Freed D, Nomoto H, Itoh M, Okita N, Jones C (2013) High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide. Energy Procedia 37:1135–1149. https://doi.org/10.1016/j.egypro.2013.05.211

    Article  Google Scholar 

  32. Anderson R, Brandt H, Doyle S, Viteri F (2003) A demonstrated 20 MWt gas generator for a clean steam power plant. In: 28th international technical conference on coal utilization and fuel systems, p 916

    Google Scholar 

  33. Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J (2015) Oxyfuel combustion for CO2 capture in power plants. Int J Greenhouse Gas Control 40:55–125. https://doi.org/10.1016/j.ijggc.2015.06.010

    Article  Google Scholar 

  34. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 3:1645. https://doi.org/10.1039/c004106h

    Article  Google Scholar 

  35. Metz B, Ogunlade D, de Heleen C, Manuela L, Leo M (eds) (2005) IPCC, 2005: IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change

    Google Scholar 

  36. Van Der Zwaan B, Smekens K (2009) CO2 capture and storage with leakage in an energy-climate model. Environ Model Assess 14:135–148. https://doi.org/10.1007/s10666-007-9125-3

    Article  Google Scholar 

  37. Doughty C, Freifeld BM, Trautz RC (2008) Site characterization for CO2 geologic storage and vice versa: The Frio Brine Pilot, Texas, USA as a case study. Environ Geol 54:1635–1656. https://doi.org/10.1007/s00254-007-0942-0

    Article  Google Scholar 

  38. House KZ, Schrag DP, Harvey CF, Lackner KS (2006) Permanent carbon dioxide storage in deep-sea sediments. Proc Natl Acad Sci 103:12291–12295. https://doi.org/10.1073/pnas.0605318103

    Article  Google Scholar 

  39. Jenkins CR, Cook PJ, Ennis-King J, Undershultz J, Boreham C, Dance T, de Caritat P, Etheridge DM, Freifeld BM, Hortle A, Kirste D, Paterson L, Pevzner R, Schacht U, Sharma S, Stalker L, Urosevic M (2012) Safe storage and effective monitoring of CO2 in depleted gas fields. Proc Natl Acad Sci 109:E35–E41. https://doi.org/10.1073/pnas.1107255108

    Article  Google Scholar 

  40. Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci 109:10164–10168. https://doi.org/10.1073/pnas.1202473109

    Article  Google Scholar 

  41. Yuan Z, Eden MR, Gani R (2016) Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Ind Eng Chem Res 55:3383–3419. https://doi.org/10.1021/acs.iecr.5b03277

    Article  Google Scholar 

  42. Alessandra QE, Gabriele C, Jean-Luc D, Siglinda P (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. Chemsuschem 4:1194–1215. https://doi.org/10.1002/cssc.201100473

    Article  Google Scholar 

  43. Tour JM, Kittrell C, Colvin VL (2010) Green carbon as a bridge to renewable energy. Nat Mater 9:871. https://doi.org/10.1038/nmat2887

    Article  Google Scholar 

  44. Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102. https://doi.org/10.1016/j.jcou.2014.12.001

  45. Huang CH, Tan CS (2014) A review: CO2 utilization. Aerosol Air Qual Res 14:480–499. https://doi.org/10.4209/aaqr.2013.10.0326

    Article  Google Scholar 

  46. Aresta M (2010) Carbon dioxide: utilization options to reduce its accumulation in the atmosphere. Carbon Dioxide Chem Feed 1–13. https://doi.org/10.1002/9783527629916.ch1

  47. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32. https://doi.org/10.1016/j.cattod.2006.02.029

    Article  Google Scholar 

  48. von der Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci 6:2721–2734. https://doi.org/10.1039/C3EE41151F

    Article  Google Scholar 

  49. Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. Chemsuschem 4:1216–1240. https://doi.org/10.1002/cssc.201000447

    Article  Google Scholar 

  50. Spallina V, Shams A, Battistella A, Gallucci F, Annaland MVS (2017) Chemical looping technologies for H2 production with CO2 capture: thermodynamic assessment and economic comparison. Energy Procedia 114:419–428. https://doi.org/10.1016/j.egypro.2017.03.1184

    Article  Google Scholar 

  51. Bayham SC, Tong A, Kathe M, Fan L-S (2016) Chemical looping technology for energy and chemical production. Wiley Interdisc Rev Energy Environ 5:216–241. https://doi.org/10.1002/wene.173

    Article  Google Scholar 

  52. Traynor AJ, Jensen RJ (2002) Direct solar reduction of CO2 to fuel: first prototype results. Ind Eng Chem Res 41:1935–1939. https://doi.org/10.1021/ie010871x

    Article  Google Scholar 

  53. Nigara Y, Cales B (1986) Production of carbon monoxide by direct thermal splitting of carbon dioxide at high temperature. Bull Chem Soc Jpn 59:1997–2002. https://doi.org/10.1246/bcsj.59.1997

    Article  Google Scholar 

  54. Lyman JL, Jensen RJ (2001) Chemical reactions occurring during direct solar reduction of CO2. Sci Total Environ 277:7–14. https://doi.org/10.1016/S0048-9697(01)00829-4

    Article  Google Scholar 

  55. Sadeghbeigi R (2012) Fluid catalytic cracking handbook: an expert guide to the practical operation, design, and optimization of FCC unit, 3rd edn. Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-386965-4.X0001-8

  56. Tang M, Xu L, Fan M (2015) Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy 151:143–156. https://doi.org/10.1016/j.apenergy.2015.04.017

    Article  Google Scholar 

  57. Dilmaç N, Dilmaç ÖF, Yardımcı E (2017) Utilization of Menteş iron ore as oxygen carrier in chemical-looping combustion. Energy 138:785–798. https://doi.org/10.1016/j.energy.2017.07.126

    Article  Google Scholar 

  58. Krenzke PT, Davidson JH (2014) Thermodynamic analysis of syngas production via the solar thermochemical cerium oxide redox cycle with methane-driven reduction. Energy Fuels 28:4088–4095. https://doi.org/10.1021/ef500610n

    Article  Google Scholar 

  59. Welte M, Warren K, Scheffe JR, Steinfeld A (2017) Combined ceria reduction and methane reforming in a solar-driven particle-transport reactor. Ind Eng Chem Res 56:10300–10308. https://doi.org/10.1021/acs.iecr.7b02738

    Article  Google Scholar 

  60. Warren KJ, Scheffe JR (2018) Kinetic insights into the reduction of ceria facilitated via the partial oxidation of methane. Mater Today Energy 9:39–48. https://doi.org/10.1016/j.mtener.2018.05.001

    Article  Google Scholar 

  61. Bhavsar S, Veser G (2014) Chemical looping beyond combustion: production of synthesis gas via chemical looping partial oxidation of methane. RSC Adv 4:47254–47267. https://doi.org/10.1039/c4ra06437b

    Article  Google Scholar 

  62. Agrafiotis C, Roeb M, Sattler C (2015) A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sustain Energy Rev 42:254–285. https://doi.org/10.1016/j.rser.2014.09.039

    Article  Google Scholar 

  63. Yadav D, Banerjee R (2016) A review of solar thermochemical processes. Renew Sustain Energy Rev 54:497–532. https://doi.org/10.1016/j.rser.2015.10.026

    Article  Google Scholar 

  64. Smestad GP, Steinfeld A (2012) Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind Eng Chem Res 51:11828–11840. https://doi.org/10.1021/ie3007962

    Article  Google Scholar 

  65. Vishnevetsky I, Berman A, Epstein M (2011) Features of solar thermochemical redox cycles for hydrogen production from water as a function of reactants’ main characteristics. Int J Hydrogen Energy 36:2817–2830. https://doi.org/10.1016/j.ijhydene.2010.11.027

    Article  Google Scholar 

  66. Carrillo RJ, Scheffe JR (2017) Advances and trends in redox materials for solar thermochemical fuel production. Sol Energy 156:3–20. https://doi.org/10.1016/j.solener.2017.05.032

    Article  Google Scholar 

  67. Gael L, Stéphane A, Jumas J, Olivier-fourcade J (2014) Characterization of two-step tin-based redox system for thermochemical fuel production from solar-driven CO2 and H2O splitting cycle. Ind Eng Chem 53:5668–5677

    Article  Google Scholar 

  68. Zhang Y, Nie T, Wang Z, Liu J, Zhou J, Cen K (2016) Splitting of CO2 via the heterogeneous oxidation of zinc powder in thermochemical cycles. Ind Eng Chem Res 55:534–542. https://doi.org/10.1021/acs.iecr.5b02407

    Article  Google Scholar 

  69. Furler P, Scheffe JR, Marxer D, Steinfeld A (2014) Solar reactors for thermochemical CO2 and H2O splitting via metal oxide redox reactions. In: SFERA II Summer School 2014, Odeillo, France. https://sfera2.sollab.eu/uploads/images/networking/SFERA%20SUMMER%20SCHOOL%202014%20-%20PRESENTATIONS/Solar%20Reactor%20Reduction%20-%20Philipp%20FURLER.pdf

  70. Hartley UW, Ngoenthong N, Cheenkachorn K, Sornchamni T (2015) CO2 to syngas: metal oxides on stainless steel 316L for micro-channel reactor application. In: International conference on chemical and biochemical engineering, Paris (France), 20–22 July 2015, pp 8–11. https://www.researchgate.net/profile/Mahdi_Belguidoum/publication/289540155_AbstractsBook_ICCBE2015/links/5690232b08aec14fa557e115/AbstractsBook-ICCBE2015.pdf

  71. Tescari S, Agrafiotis C, Breuer S, De Oliveira L, Neises-Von Puttkamer M, Roeb M, Sattler C (2013) Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts. Energy Procedia 49:1034–1043. https://doi.org/10.1016/j.egypro.2014.03.111

  72. Jiang Q, Chen Z, Tong J, Yang M, Jiang Z, Li C (2016) Catalytic function of IrOx in the two-step thermochemical CO2-splitting reaction at high temperatures. ACS Catal 6:1172–1180. https://doi.org/10.1021/acscatal.5b01774

    Article  Google Scholar 

  73. Gokon N, Suda T, Kodama T (2015) Oxygen and hydrogen productivities and repeatable reactivity of 30-mol%-Fe-, Co-, Ni-, Mn-doped CeO2−δ for thermochemical two-step water-splitting cycle. Energy 90:1280–1289. https://doi.org/10.1016/j.energy.2015.06.085

    Article  Google Scholar 

  74. Nakamura T (1977) Hydrogen production from water utilizing solar heat at high temperatures. Sol Energy 19:467–475. https://doi.org/10.1016/0038-092X(77)90102-5

    Article  Google Scholar 

  75. Roeb M, Sattler C, Klüser R, Monnerie N, de Oliveira L, Konstandopoulos AG, Agrafiotis C, Zaspalis VT, Nalbandian L, Steele A, Stobbe P (2006) Solar hydrogen production by a two-step cycle based on mixed iron oxides. J Sol Energy Eng 128:125. https://doi.org/10.1115/1.2183804

    Article  Google Scholar 

  76. Darken LS, Gurry RW (1946) The system iron-oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. J Am Chem Soc 68:798–816. https://doi.org/10.1021/ja01209a030

  77. Liu F (2013) Cerium oxide promoted oxygen carrier development and scale modeling study for chemical looping combustion. University of Kentucky. https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1029&context=me_etds

  78. Chueh WC, Haile SM (2010) A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Philos Trans R Soc A Math Phys Eng Sci 368:3269–3294. https://doi.org/10.1098/rsta.2010.0114

  79. Abanades S, Flamant G (2006) Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol Energy 80:1611–1623. https://doi.org/10.1016/j.solener.2005.12.005

    Article  Google Scholar 

  80. Bulfin B, Lowe AJ, Keogh KA, Murphy BE, Lübben O, Krasnikov SA, Shvets IV (2013) Analytical model of CeO2 oxidation and reduction. J Phys Chem C 117:24129–24137. https://doi.org/10.1021/jp406578z

    Article  Google Scholar 

  81. Kümmerle EA, Heger G (1999) The structures of C-Ce2O3+δ, Ce7O12, and Ce11O20. J Solid State Chem 147:485–500. https://doi.org/10.1006/jssc.1999.8403

    Article  Google Scholar 

  82. Bulfin B, Hoffmann L, De Oliveira L, Knoblauch N, Call F, Roeb M, Sattler C, Schmücker M (2016) Statistical thermodynamics of non-stoichiometric ceria and ceria zirconia solid solutions. Phys Chem Chem Phys 18:23147–23154. https://doi.org/10.1039/c6cp03158g

    Article  Google Scholar 

  83. Knoblauch N, Simon H, Schmücker M (2017) Chemically induced volume change of CeO2δ and nonstoichiometric phases. Solid State Ionics 301:43–52. https://doi.org/10.1016/j.ssi.2017.01.003

    Article  Google Scholar 

  84. Gokon N, Sagawa S, Kodama T (2013) Comparative study of activity of cerium oxide at thermal reduction temperatures of 1300–1550 °C for solar thermochemical two-step water-splitting cycle. Int J Hydrogen Energy 38:14402–14414. https://doi.org/10.1016/j.ijhydene.2013.08.108

    Article  Google Scholar 

  85. Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A (2010) Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting. J Mater Sci 45:4163–4173. https://doi.org/10.1007/s10853-010-4506-4

    Article  Google Scholar 

  86. Le Gal A, Abanades S (2011) Catalytic investigation of ceria-zirconia solid solutions for solar hydrogen production. Int J Hydrogen Energy 36:4739–4748. https://doi.org/10.1016/j.ijhydene.2011.01.078

    Article  Google Scholar 

  87. Scheffe JR, Steinfeld A (2012) Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production. Energy Fuels 26:1928–1936. https://doi.org/10.1021/ef201875v

    Article  Google Scholar 

  88. Jiang Q, Zhou G, Jiang Z, Li C (2014) Thermochemical CO2 splitting reaction with CexM1xO2δ (M=Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions. Sol Energy 99:55–66. https://doi.org/10.1016/j.solener.2013.10.021

    Article  Google Scholar 

  89. Otsuka K, Hatano M, Morikawa A (1985) Decomposition of water by cerium oxide of δ-phase. Inorganica Chim Acta 109:193–197. https://doi.org/10.1016/S0020-1693(00)81768-5

    Article  Google Scholar 

  90. Panlener RJ, Blumenthal RN, Garnier JE (1975) A thermodynamic study of nonstoichiometric cerium dioxide. J Phys Chem Solids 36:1213–1222. https://doi.org/10.1016/0022-3697(75)90192-4

    Article  Google Scholar 

  91. Le Gal A, Abanades S, Flamant G (2011) CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions. Energy Fuels 25:4836–4845. https://doi.org/10.1021/ef200972r

    Article  Google Scholar 

  92. Singh P, Hegde MS (2010) Ce0.67Cr0.33O2.11: a new low-temperature O2 evolution material and H2 generation catalyst by thermochemical splitting of water. Chem Mater 22:762–768. https://doi.org/10.1021/cm9013305

  93. Scheffe JR, Jacot R, Patzke GR, Steinfeld A (2013) Synthesis, characterization, and thermochemical redox performance of Hf4+, Zr4+, and Sc3+ doped ceria for splitting CO2. J Phys Chem C 117:24104–24114. https://doi.org/10.1021/jp4050572

    Article  Google Scholar 

  94. Ihara S (1980) On the study of hydrogen production from water using solar thermal energy. Int J Hydrogen Energy 5:527–534. https://doi.org/10.1016/0360-3199(80)90059-2

    Article  Google Scholar 

  95. Le Gal A, Abanades S (2012) Dopant incorporation in ceria for enhanced water-splitting activity during solar thermochemical hydrogen generation. J Phys Chem C 116:13516–13523. https://doi.org/10.1021/jp302146c

    Article  Google Scholar 

  96. Hao Y, Yang CK, Haile SM (2013) High-temperature isothermal chemical cycling for solar-driven fuel production. Phys Chem Chem Phys 15:17084–17092. https://doi.org/10.1039/c3cp53270d

    Article  Google Scholar 

  97. Takalkar GD, Bhosale RR, Kumar A, AlMomani F, Khraisheh M, Shakoor RA, Gupta RB (2018) Transition metal doped ceria for solar thermochemical fuel production. Sol Energy 172:204–211. https://doi.org/10.1016/j.solener.2018.03.022

    Article  Google Scholar 

  98. Voitic G, Hacker V (2016) Recent advancements in chemical looping water splitting for the production of hydrogen. RSC Adv 6:98267–98296. https://doi.org/10.1039/C6RA21180A

    Article  Google Scholar 

  99. Jiang Q, Tong J, Zhou G, Jiang Z, Li Z, Li C (2014) Thermochemical CO2 splitting reaction with supported LaxA1xFeyB1yO3 (A=Sr, Ce, B=Co, Mn; 0 ≤ x, y ≤ 1) perovskite oxides. Sol Energy 103:425–437. https://doi.org/10.1016/j.solener.2014.02.033

    Article  Google Scholar 

  100. Yang CK, Yamazaki Y, Aydin A, Haile SM (2014) Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. J Mater Chem A 2:13612–13623. https://doi.org/10.1039/c4ta02694b

    Article  Google Scholar 

  101. Dey S, Naidu BS, Govindaraj A, Rao CNR (2015) Noteworthy performance of La1xCaxMnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2. Phys Chem Chem Phys 17:122–125. https://doi.org/10.1039/C4CP04578E

    Article  Google Scholar 

  102. Rao CNR, Dey S (2016) Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides. J Solid State Chem 242:107–115. https://doi.org/10.1016/j.jssc.2015.12.018

    Article  Google Scholar 

  103. McDaniel AH, Miller EC, Arifin D, Ambrosini A, Coker EN, O’Hayre R, Chueh WC, Tong J (2013) Sr- and Mn-doped LaAlO3δ for solar thermochemical H2 and CO production. Energy Environ Sci 6:2424. https://doi.org/10.1039/c3ee41372a

    Article  Google Scholar 

  104. Gálvez ME, Jacot R, Scheffe J, Cooper T, Patzke G, Steinfeld A (2015) Physico-chemical changes in Ca, Sr and Al-doped La-Mn-O perovskites upon thermochemical splitting of CO2 via redox cycling. Phys Chem Chem Phys 17:6629–6634. https://doi.org/10.1039/c4cp05898d

    Article  Google Scholar 

  105. Demont A, Abanades S (2015) Solar thermochemical conversion of CO2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides. J Mater Chem A 3:3536–3546. https://doi.org/10.1039/c4ta06655c

    Article  Google Scholar 

  106. Dey S, Naidu BS, Rao CNR (2016) Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1−xAxO3(A=Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O. Dalton Trans 45:2430–2435. https://doi.org/10.1039/c5dt04822b

  107. McDaniel AH, Ambrosini A, Coker EN, Miller JE, Chueh WC, O’Hayre R, Tong J (2013) Nonstoichiometric perovskite oxides for solar thermochemical H2 and CO production. Energy Procedia 49:2009–2018. https://doi.org/10.1016/j.egypro.2014.03.213

    Article  Google Scholar 

  108. Galinsky NL, Huang Y, Li F (2013) Iron oxide with facilitated O2—transport for facile fuel oxidation and CO2 capture in a chemical looping scheme. ACS Sustain Chem Eng 1:364–373. https://doi.org/10.1021/sc300177j

    Article  Google Scholar 

  109. Mathew DS, Juang RS (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65. https://doi.org/10.1016/j.cej.2006.11.001

    Article  Google Scholar 

  110. Ferreira TAS, Waerenborgh JC, Mendonça MHRM, Nunes MR, Costa FM (2003) Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. Solid State Sci 5:383–392. https://doi.org/10.1016/S1293-2558(03)00011-6

    Article  Google Scholar 

  111. Aston VJ, Evanko BW, Weimer AW (2013) Investigation of novel mixed metal ferrites for pure H2 and CO2 production using chemical looping. Int J Hydrogen Energy 38:9085–9096. https://doi.org/10.1016/j.ijhydene.2013.05.078

    Article  Google Scholar 

  112. Cocchi S, Mari M, Cavani F, Millet JMM (2014) Chemical and physical behavior of CoFe2O4 in steam-iron process with methanol. Appl Catal B Environ 152–153:250–261. https://doi.org/10.1016/j.apcatb.2014.01.040

    Article  Google Scholar 

  113. Different Types of Solar Concentrators-KTH Roya Institute of Technology Energy Department (n.d.) https://energy.kth.se/compedu/webcompedu/webhelp/S9_Renewable_Energy/B5_Solar_Energy/C3_Advanced_Solar_Thermal/ID107_files/Different_Types_of_Solar_Concentrators.htm. Accessed 2 June 2018

  114. Rao CNR, Dey S (2017) Solar thermochemical splitting of water to generate hydrogen. Proc Natl Acad Sci 2017:201700104. https://doi.org/10.1073/pnas.1700104114

    Article  Google Scholar 

  115. Muhich CL, Ehrhart BD, Al-Shankiti I, Ward BJ, Musgrave CB, Weimer AW (2016) A review and perspective of efficient hydrogen generation via solar thermal water splitting. Wiley Interdisc Rev Energy Environ 5:261–287. https://doi.org/10.1002/wene.174

    Article  Google Scholar 

  116. Lorentzou S, Pagkoura C, Zygogianni A, Karagiannakis G, Konstandopoulos AG (2017) Thermochemical cycles over redox structured reactors. Int J Hydrogen Energy 42:19664–19682. https://doi.org/10.1016/j.ijhydene.2017.06.109

    Article  Google Scholar 

  117. Siegel NP, Miller JE, Ermanoski I, Diver RB, Stechel EB (2013) Factors affecting the efficiency of solar driven metal oxide thermochemical cycles. Ind Eng Chem Res 52:3276–3286. https://doi.org/10.1021/ie400193q

    Article  Google Scholar 

  118. Chueh WC, Abbott M, Scipio D, Haile SM (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using ceria redox reactions. Science 63(80): 1797–1801. https://doi.org/10.1123/science.1197834

  119. Furler P, Scheffe JR, Steinfeld A (2012) Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor. Energy Environ Sci 5:6098–6103. https://doi.org/10.1039/C1EE02620H

    Article  Google Scholar 

  120. Houaijia A, Sattler C, Roeb M, Lange M, Breuer S, Säck JP (2013) Analysis and improvement of a high-efficiency solar cavity reactor design for a two-step thermochemical cycle for solar hydrogen production from water. Sol Energy 97:26–38. https://doi.org/10.1016/j.solener.2013.07.032

    Article  Google Scholar 

  121. Agrafiotis C, Roeb M, Konstandopoulos AG, Nalbandian L, Zaspalis VT, Sattler C, Stobbe P, Steele AM (2005) Solar water splitting for hydrogen production with monolithic reactors. Sol Energy 79:409–421. https://doi.org/10.1016/j.solener.2005.02.026

    Article  Google Scholar 

  122. Chambon M, Abanades S, Flamant G (2011) Thermal dissociation of compressed ZnO and SnO2 powders in a moving-front solar thermochemical reactor marc. AIChE J 57:2264–2273. https://doi.org/10.1002/aic

    Article  Google Scholar 

  123. Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130:041001. https://doi.org/10.1115/1.2969781

    Article  Google Scholar 

  124. Kim J, Miller JE, Maravelias CT, Stechel EB (2013) Comparative analysis of environmental impact of S2P (sunshine to petrol) system for transportation fuel production. Appl Energy 111:1089–1098. https://doi.org/10.1016/j.apenergy.2013.06.035

    Article  Google Scholar 

  125. Melchior T, Perkins C, Weimer AW, Steinfeld A (2008) A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy. Int J Therm Sci 47:1496–1503. https://doi.org/10.1016/j.ijthermalsci.2007.12.003

    Article  Google Scholar 

  126. Martinek J, Viger R, Weimer AW (2014) Transient simulation of a tubular packed bed solar receiver for hydrogen generation via metal oxide thermochemical cycles. Sol Energy 105:613–631. https://doi.org/10.1016/j.solener.2014.04.022

    Article  Google Scholar 

  127. Roeb M, Neises M, Säck JP, Rietbrock P, Monnerie N, Dersch J, Schmitz M, Sattler C (2009) Operational strategy of a two-step thermochemical process for solar hydrogen production. Int J Hydrogen Energy 34:4537–4545. https://doi.org/10.1016/j.ijhydene.2008.08.049

    Article  Google Scholar 

  128. Roeb M, Säck JP, Rietbrock P, Prahl C, Schreiber H, Neises M, de Oliveira L, Graf D, Ebert M, Reinalter W, Meyer-Grünefeldt M, Sattler C, Lopez A, Vidal A, Elsberg A, Stobbe P, Jones D, Steele A, Lorentzou S, Pagkoura C, Zygogianni A, Agrafiotis C, Konstandopoulos AG (2011) Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower. Sol Energy 85:634–644. https://doi.org/10.1016/j.solener.2010.04.014

    Article  Google Scholar 

  129. Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y (2007) Rotary-type solar reactor for solar hydrogen production with two-step water splitting process. Energy Fuels 21:2287–2293. https://doi.org/10.1021/ef060581z

    Article  Google Scholar 

  130. Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K (1995) Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy 20:325–330. https://doi.org/10.1016/0360-5442(94)00099-O

    Article  Google Scholar 

  131. Müller R, Haeberling P, Palumbo RD (2006) Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s). Sol Energy 80:500–511. https://doi.org/10.1016/j.solener.2005.04.015

    Article  Google Scholar 

  132. Muhich C, Steinfeld A (2017) Principles of doping ceria for the solar thermochemical redox splitting of H2O and CO2. J Mater Chem A 5:15578–15590. https://doi.org/10.1039/C7TA04000H

    Article  Google Scholar 

  133. Koepf E, Advani SG, Steinfeld A, Prasad AK (2012) A novel beam-down, gravity-fed, solar thermochemical receiver/reactor for direct solid particle decomposition: design, modeling, and experimentation. Int J Hydrogen Energy 37:16871–16887. https://doi.org/10.1016/j.ijhydene.2012.08.086

    Article  Google Scholar 

  134. Koepf EE, Lindemer MD, Advani SG, Prasad AK (2013) Experimental investigation of vortex flow in a two-chamber solar thermochemical reactor. J Fluids Eng 135:111103. https://doi.org/10.1115/1.4024965

    Article  Google Scholar 

  135. Scheffe JR, Welte M, Steinfeld A (2014) Thermal reduction of ceria within an aerosol reactor for H2O and CO2 splitting. Ind Eng Chem Res 53:2175–2182. https://doi.org/10.1021/ie402620k

    Article  Google Scholar 

  136. Gokon N, Mataga T, Kondo N, Kodama T (2011) Thermochemical two-step water splitting by internally circulating fluidized bed of NiFe2O4 particles: successive reaction of thermal-reduction and water-decomposition steps. Int J Hydrogen Energy 36:4757–4767. https://doi.org/10.1016/j.ijhydene.2011.01.076

    Article  Google Scholar 

  137. Ermanoski I, Siegel NP, Stechel EB (2013) A new reactor concept for efficient solar-thermochemical fuel production. J Sol Energy Eng 135:031002. https://doi.org/10.1115/1.4023356

    Article  Google Scholar 

  138. Ermanoski I (2014) Cascading pressure thermal reduction for efficient solar fuel production. Int J Hydrogen Energy 39:13114–13117. https://doi.org/10.1016/j.ijhydene.2014.06.143

    Article  Google Scholar 

  139. Mcdaniel A, Randolph K (2015) High efficiency solar thermochemical reactor for hydrogen production. Annual progress report: 2015. https://www.hydrogen.energy.gov/pdfs/progress15/ii_c_1_mcdaniel_2015.pdf

  140. Abad A, Gayán P, de Diego LF, García-Labiano F, Adánez J (2013) Fuel reactor modelling in chemical-looping combustion of coal: 1. Model formulation. Chem Eng Sci 87:277–293. https://doi.org/10.1016/j.ces.2012.10.006

  141. Schnellmann MA, Scott SA, Williams G, Dennis JS (2016) Sensitivity of chemical-looping combustion to particle reaction kinetics. Chem Eng Sci 152:21–25. https://doi.org/10.1016/j.ces.2016.05.028

    Article  Google Scholar 

  142. Fan DL-S (2017) Chemical looping partial oxidation: gasification, reforming, and chemical syntheses. Cambridge University Press, Cambridge

    Google Scholar 

  143. Yates JG, Lettieri P (2016) Fluidized-bed reactors: processes and operating conditions. https://doi.org/10.1007/978-3-319-39593-7

  144. Kramp M, Heinrich S (2012) Carbon stripping—a critical process step in chemical looping combustion of solid fuels. Chem Eng Technol 35:497–507. https://doi.org/10.1002/ceat.201100438

    Article  Google Scholar 

  145. Cuadrat A, Abad A, Gayán P, De Diego LF, García-labiano F, Adánez J (2012) Theoretical approach on the CLC performance with solid fuels: optimizing the solids inventory. Fuel 97:536–551. https://doi.org/10.1016/j.fuel.2012.01.071

    Article  Google Scholar 

  146. Brown TA, Dennis JS, Scott SA, Davidson JF, Hayhurst AN (2010) Gasification and chemical-looping combustion of a lignite char in a fluidized bed of iron oxide. Energy Fuels 24:3034–3048. https://doi.org/10.1021/ef100068m

    Article  Google Scholar 

  147. Mahalatkar K, Kuhlman J, Huckaby ED, Brien TO (2011) CFD simulation of a chemical-looping fuel reactor utilizing solid fuel. Chem Eng Sci 66:3617–3627. https://doi.org/10.1016/j.ces.2011.04.025

    Article  Google Scholar 

  148. Zhang Y, Chao Z, Jakobsen HA (2017) Modelling and simulation of chemical looping combustion process in a double loop circulating fluidized bed reactor. Chem Eng J 320:271–282. https://doi.org/10.1016/j.cej.2017.03.046

    Article  Google Scholar 

  149. Legros R, Chaouki J, Paris J (1998) Simulation of circulating fluidized bed reactors using ASPEN PLUS. Fuel 77:327–337. https://doi.org/10.1016/S0016-2361(97)00211-1

    Article  Google Scholar 

  150. Sadhwani N, Li P, Eden MR, Adhikari S (2017) Process modeling of fluidized bed biomass-CO2 gasification using ASPEN plus. In: 27th European symposium on computer aided process engineering, ESCAPE 27, Elsevier B.V., Barcelona, Spain, pp 2509–2514. https://doi.org/10.1016/B978-0-444-63965-3.50420-7

  151. Fluidization in Aspen Plus—Aspen Technology tutorial (2013)

    Google Scholar 

  152. Schaefer RJ (1974) Steady state behaviour of moving bed reactors. Chem Eng Sci 29:119–127

    Article  Google Scholar 

  153. Rahimi A, Niksiar A (2013) A general model for moving-bed reactors with multiple chemical reactions part I: model formulation. Int J Miner Process 124:58–66. https://doi.org/10.1016/j.minpro.2013.02.015

    Article  Google Scholar 

  154. Parisi DR, Laborde MA (2004) Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore. Chem Eng J 104:35–43. https://doi.org/10.1016/j.cej.2004.08.001

    Article  Google Scholar 

  155. Negri ED, Alfano OM, Chiovetta MG (1995) Moving-bed reactor model for the direct reduction of hematite. Parametric study. Ind Eng Chem 34:4266–4276. https://doi.org/10.1021/ie00039a017

  156. Dussoubs B, Jourde J, Patisson F, Houzelot JL, Ablitzer D (2002) Mathematical modelling of uranium dioxide conversion in a moving bed furnace. Powder Technol 128:168–177

    Article  Google Scholar 

  157. Benjamin BW (1985) Great plains ASPEN model development: gasifier model. Final topical report. Scientific Design Co., Inc., New York, p 180

    Google Scholar 

  158. Aspen Plus model for moving bed coal gasifier—Aspen Technology tutorial (2010)

    Google Scholar 

  159. Tong A, Zeng L, Kathe MV, Sridhar D, Fan L (2013) Application of the moving-bed chemical looping process for high methane conversion. Energy Fuels 27:4119–4128. https://doi.org/10.1021/ef3020475

    Article  Google Scholar 

  160. He C, Feng X, Hoong K (2013) Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant. Appl Energy 111:742–757. https://doi.org/10.1016/j.apenergy.2013.05.045

    Article  Google Scholar 

  161. Mukherjee S (2015) Chemical looping combustion for solid fuels—development and optimisation of industrial scale flowsheet models for power generation. University of Surrey. https://doi.org/10.13140/2.1.2554.1442

    Article  Google Scholar 

  162. Porrazzo R, White G, Ocone R (2016) Techno-economic investigation of a chemical looping combustion based power plant. Faraday Discuss 192:437–457. https://doi.org/10.1039/C6FD00033A

    Article  Google Scholar 

  163. Gençer E, Mallapragada DS, Maréchal F, Tawarmalani M, Agrawal R (2015) Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes. Proc Natl Acad Sci 112:15821–15826. https://doi.org/10.1073/pnas.1513488112

    Article  Google Scholar 

  164. de la Calle A, Bayon A (2017) Annual performance of a solar-thermochemical hydrogen production plant based on CeO2 redox cycle. In: Proceedings of 12th international modelica conference, 15–17 May 2017, Prague, Czech Republic, pp 857–866. https://doi.org/10.3384/ecp17132857

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azharuddin Farooqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farooqui, A., Boaro, M., Llorca, J., Santarelli, M. (2020). Solar Fuels via Two-Step Thermochemical Redox Cycles. In: Bhoi, A., Sherpa, K., Kalam, A., Chae, GS. (eds) Advances in Greener Energy Technologies. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4246-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4246-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4245-9

  • Online ISBN: 978-981-15-4246-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics