Skip to main content

Climate Change and Vegetation Phenology

  • Chapter
  • First Online:
Reproductive Ecology of Flowering Plants: Patterns and Processes

Abstract

The rate at which climate change is influencing the living organisms and ecosystem is considered as a major threat to sustaining the resources that are required for the human survival in the future. Environmental impacts on the life stages and functioning of organisms have been a major area of study over the last century. The information available from these studies has provided some insights to the impact of climate change on various phenophases of organisms. Individuals in a vegetation community being fixed to a location have to withstand the environmental variation as compared to animals which had the opportunity to move to favourable environments. Thus, plant phenology has greater potential value to understand the impact of climate change on organisms. Plant phenology studies traditionally provided information from ground-based studies. However, with the use of remote sensing technology and climate models, predicting the future plant community structure and functions also started. Validation of such model results using controlled condition experiments will lead to a greater understanding of the influence of climate change on the vegetation phenology. This chapter provides a summary of published information on the impact of climate change on the plant phenology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari BS, Kumar R, Singh SP (2018) Early snowmelt impact on herb species composition, diversity and phenology in a western Himalayan treeline ecotone. Trop Ecol 59(2):565–582

    Google Scholar 

  • Adole T, Dash J, Atkinson PM (2016) A systematic review of vegetation phenology of Africa. Eco Inform 34:117–128

    Google Scholar 

  • Badeck FW, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309

    Google Scholar 

  • Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. Int J Biometeorol 44:53–59

    CAS  PubMed  Google Scholar 

  • Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135(1):126–146

    Google Scholar 

  • Blundo C, Gasparri NI, Malizia A, Clark M, Gatti G, Campanello PI, Grau HR, Paolini L, Malizia LR, Chediack SE, MacDonagh P, Goldstein G (2018) Relationships among phenology, climate and biomass across subtropical forests in Argentina. J Trop Ecol 34:93–107

    Google Scholar 

  • Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem–succulent trees. Tree Physiol 21:213–221

    CAS  PubMed  Google Scholar 

  • Buitenwerf R, Rose L, Higgins SI (2016) Three decades of multi-dimensional change in global leaf phenology. Nat Clim Chang 5:364–368

    Google Scholar 

  • Burgess MD, Smith KW, Evans KL, Leech D, Pearce-Higgins JW, Branston CJ, Briggs K, Clark JR, duFeu CR, Lewthwaite K, Nager RG, Sheldon BC, Smith JA, Whytock RC, Willis SG, Phillimore AB (2018) Tritrophic phenological match-mismatch in space and time. Nat Ecol Evol 2:970–975

    PubMed  Google Scholar 

  • Bussotti F, Pollastrini M (2017) Traditional and novel indicators of climate change impacts on European forest trees. Forests 8:137. https://doi.org/10.3390/f8040137

    Article  Google Scholar 

  • CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. Proc Nat Acad Sci Am 111(13):4916–4921

    CAS  Google Scholar 

  • Carbognani M, Tomaselli M, Petraglia A (2018) Different temperature perception in high-elevation plants: new insight into phenological development and implications for climate in the alpine tundra. Oikos 127:1014–1023

    Google Scholar 

  • Chambers LE, Akwegg R, Barbraud C, Barnard P, Beaumont LJ, Crawford RJM, Durant JM, Hughes L, Keatley MR, Low M, Morellato PC, Poloczanska ES, Ruoppolo V, Vanstreels RET, Woehler EJ, Wolfaardt AC (2013) Phenological changes in the southern hemisphere. PLoS One 8(10):e75514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng M, Jin J, Zhang J, Jiang H, Wang R (2018) Effect of climate change on vegetation phenology of different land-cover types on the Tibetan plateau. Int J Remote Sens 39(2):470–487

    Google Scholar 

  • Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Google Scholar 

  • Chmielewski FM, Muller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121:69–78

    Google Scholar 

  • Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH (2019) The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol Monogr 89(1):e01337

    Google Scholar 

  • Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc B 365:3149–3160

    Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    PubMed  Google Scholar 

  • Crimmins TM, Crimmins MA, Bertelsen DC (2010) Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient. J Ecol 98:1042–1051

    Google Scholar 

  • Daham A, Han D, Jolly WM, Rico-Ramirez M, Marsh A (2019) Predicting vegetation phenology in response to climate change using bioclimatic indices in Iraq. J Water Clim Change. https://doi.org/10.2166/wcc.2018.142

  • Dahlin KM, Ponte DD, Setlock E, Nagelkirk R (2017) Global patterns of drought deciduous phenology in semi-arid and savanna-type ecosystems. Ecography 40:314–323

    Google Scholar 

  • di Francescantonio D (2017) Caracteristicas Ecologicas, Fisiologicas Y Anatomicas De Especies Arboreas Del Bosque Atlantico Y Su Relacion Con Los Diferentes Patrones Fenologicos. Tesis doctoral, Universidad de Buenos Aires, Argentina, 128 pp

    Google Scholar 

  • Donnelly A, O’Neill B (eds) (2013) Climate change impacts on phenology: implications for terrestrial ecosystems. Environmental Protection Agency, Wexford

    Google Scholar 

  • Donnelly A, Yu R (2017) The rise of phenology with climate change: an evaluation IJB publications. Int J Biometerol 61(Suppl 1):S29–S50

    Google Scholar 

  • Donnelly A, Yu R (2019) Temperate deciduous shrub phenology: the overlooked forest layer. Int J Biometeorol. https://doi.org/10.1007/s00484-019-01743-9

  • Eppich B, Dede L, Ferenczy A, Garamvolgyi A, HorvAth L, Isepy I, Priszter SZ, Hufnagel L (2009) Climate effects on the phenology of geophytes. Appl Ecol Environ Res 7(3):253–266

    Google Scholar 

  • Ettinger AK, Gee S, Wolkovich EM (2018) Phenological sequences: how early-season events define those that follow. Am J Bot 105(10):1771–1780

    CAS  PubMed  Google Scholar 

  • Fitchett JM, Grab SW, Thompson DI (2015) Plant phenology and climate change: Progress in methodological approaches and application. Prog Phys Geogr 39(4):460–482

    Google Scholar 

  • Ford KR, Harrington CA, Bansal S, Gould PJ, St. Clair JB (2016) Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Glob Chang Biol 22:3712–3723

    PubMed  Google Scholar 

  • Forrest J, Miller-Rushing AJ (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos Trans R Soc B 365:3101–3112

    Google Scholar 

  • Forrest J, Inouye DW, Thomson JD (2010) Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns? Ecology 91(2):431–440

    PubMed  Google Scholar 

  • Fu Y, Chen H, Niu H, Zhang S, Yang Y (2018) Spatial and temporal variation of vegetation phenology and its response to climate changes in Qaidam Basin from 2000 to 2015. J Geogr Sci 28(4):400–414

    Google Scholar 

  • Galan C, Carinanos P, Garcia-Mozo H, Alcazar P, Dominguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45:59–63

    CAS  PubMed  Google Scholar 

  • Gerst KL, Rossington NL, Mazer SJ (2017) Phenological responsiveness to climate differs in four species of Quercus in North America. J Ecol 105(6):1610–1622

    Google Scholar 

  • Gilbert JP (2019) Temperature directly and indirectly influences food web structure. Sci Rep 9:5312

    Google Scholar 

  • Gillison A (2019) Plant functional indicators of vegetation response to climate change, past present and future: I: trends, emerging hypotheses and plant functional modality. Flora 254:12–30

    Google Scholar 

  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16:1082–1106

    Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419:64–77

    CAS  PubMed  Google Scholar 

  • Herden J, Eckert S, Stift M, Joshi J, vanKleunen M (2019) No evidence for local adaptation and an epigenetic underpinning in native and non-native ruderal plant species in Germany. Ecol Evol 9:9412–9426

    PubMed  PubMed Central  Google Scholar 

  • Hess JJ (2019) Another piece of the puzzle: linking global environmental change, plant phenology, and health. Lancet Planet Health 3:e124–e125

    Google Scholar 

  • Hudson IL, Keatley MR (eds) (2010) Phenological research: methods for environmental and climate change analysis. Springer, Dordrecht

    Google Scholar 

  • Ibáñez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Philos Trans R Soc B 365:3247–3260

    Google Scholar 

  • Inouye DW (2008) Effects of climate change on phenology, frost damage and floral abundance of montane wildflowers. Ecology 89(2):353–362

    PubMed  Google Scholar 

  • Jones CA, Daehler CC (2018) Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications. Peer J. https://doi.org/10.7717/peerj.4576

  • Kharouba HM, Elwlen J, Gelman A, Bolmgren K, Allen JM, Travers SE, Wolkovich EM (2018) Global shifts in the phenological synchrony of species interactions over recent decades. PNAS 115(20):5211–5216

    CAS  PubMed  Google Scholar 

  • Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75

    CAS  PubMed  Google Scholar 

  • Kumar S, Chopra N (2018) Linking climate change with global phenology. Acta Sci Agri 2(4):40–44

    Google Scholar 

  • Laskin DN, McDermid GJ, Nielsen SE, Marshall SJ, Roberts DR, Montaghi A (2019) Advances in phenology are conserved across scale in present and future climates. Nat Clim Chang 6:419–425

    Google Scholar 

  • Levin DA (2019) Plant speciation in the age of climate change. Ann Bot XX:1–7

    Google Scholar 

  • Li D, Stucky BJ, Deck J, Baiser B, Guralnick RP (2019) The effect of urbanization on plant phenology depends on regional temperature. Nat Ecol Evol. https://doi.org/10.1038/s41559-019-1004-1

  • Lieth H (ed) (1974) Phenology and seasonality modeling. Springer, New York

    Google Scholar 

  • Linden A (2018) Adaptive and non-adaptive phenological synchrony. PNAS 115(20):5057–5059

    CAS  PubMed  Google Scholar 

  • Lluent A, Anadon-Rosell A, Ninot J, Grau O, Carrillo E (2013) Phenology and seed setting success of snowbed plant species in contrasting snowmelt regimes in the Central Pyrenees. Flora 208:220–231

    Google Scholar 

  • Love NLR, Park IW, Mazer SJ (2019) A new phenological metric for use in pheno-climatic models: a case study using herbarium specimens of Streptanthus tortuosus. Appl Plant Sci 7(7):e11276

    PubMed  PubMed Central  Google Scholar 

  • Marques MCM, Roper JJ, Baggio Salvalaggio AP (2004) Phenological patterns among plant life-forms in a subtropical forest in southern Brazil. Plant Ecol 173:203–213

    Google Scholar 

  • Martinez-vilalta J (2018) The rear window: structural and functional plasticity in tree responses to climate change inferred from growth rings. Tree Physiol 38:155–158

    PubMed  Google Scholar 

  • Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob Chang Biol 9:1634–1642

    Google Scholar 

  • Matteodo M, Ammann K, Verrecchia EP, Vittoz P (2016) Snowbeds are more affected than other subalpine-alpine plant communities by climate change in the Swiss Alps. Ecol Evol 6:6969–6982

    PubMed  PubMed Central  Google Scholar 

  • Maurya JP, Triozzi PM, Bhalerao RP, Perales M (2018) Environmentally sensitive molecular switches drive poplar phenology. Front Plant Sci 9:1873

    PubMed  PubMed Central  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    CAS  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aaasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Ã…, Defila C, Donnelly A, Filella Y, Jatczak K, MÃ¥ge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, RemiÅ¡ová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Google Scholar 

  • Miller-Rushing AJ, Katsuki T, Primack RB, Ishii Y, Lee SD, Higuchi H (2007) Impact of global warming on a group of related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan. Am J Bot 94:1470–1478

    PubMed  Google Scholar 

  • Moore LM, Lauenroth WK, Bell DM, Schlaepfer DR (2015) Soil water and temperature explain canopy phenology and onset of spring in a semiarid steppe. Great Plans Res 25:121–138

    Google Scholar 

  • Moser L, Fonti P, Buntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30(2):225–233

    PubMed  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern latitudes from 1981–1991. Nature 386:698–702

    CAS  Google Scholar 

  • Ovaskainen O, Skorokhodova S, Yakovleva M, Sukhov A, Kutenkov A, Kutenkova N, Shcherbakov A, Meyke E, del Mar Delgado M (2013) Community-level phenological response to climate change. PNAS 110(33):13434–13439

    CAS  PubMed  Google Scholar 

  • Park IW, Mazer SJ (2019) Climate affects the rate at which species successively flower: capturing an emergent property of regional floras. Glob Ecol Biogeogr. https://doi.org/10.1111/geb.12916

  • Parmesan C, Hanley ME (2015) Plant and climate change: complexities and surprises. Ann Bot 116:849–864

    PubMed  PubMed Central  Google Scholar 

  • Penuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324(5929):887–888

    CAS  PubMed  Google Scholar 

  • Petrauski L, Owen SF, Constantz GD, Anderson JT (2019) Changes in flowering phenology of Cardamine concatenate and Erythronium americanum over 111 years in the central Appalachians. Plant Ecol 220:817–828

    Google Scholar 

  • Qu S, Wang L, Lin A, Yu D, Yuan M, Li C (2020) Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze river basin. China Ecol Indic 108. https://doi.org/10.1016/j.ecolind.2019.105724

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Google Scholar 

  • Satake A, Kawagoe T, Saburi Y, Chiba Y, Sakurai G, Kudoh H (2013) Forecasting flowering phenology under climate warming by modeling the regulatory dynamics of flowering-time genes. Nat Commun 4:2303

    PubMed  Google Scholar 

  • Scheffers BR, Meester LD, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM (2016) The broad footprint of climate from genes to biomes to people. Science 354(6313):aaf7671

    PubMed  Google Scholar 

  • Schmidt G, Schonrock S, Schroder W (2014) Plant phenology as a biomonitor for climate change in Germany: a modelling and mapping approach. Springer, New York

    Google Scholar 

  • Schnelle F (1955) Pflanzen-Phänologie. Akademische VerlagsgeselIschaft, Leipzig

    Google Scholar 

  • Schwartz MD (1994) Monitoring global change with phenology: the case of the spring green wave. Int J Biometeorol 38:18–22

    Google Scholar 

  • Scranton K, Amarasekare P (2017) Predicting phenological shifts in a changing climate. PNAS 114(50):13212–13217

    CAS  PubMed  Google Scholar 

  • Shen M (2011) Spring phenology was not consistently related to winter warming on the Tibetan plateau. PNAS 108(19):E91–E92

    CAS  PubMed  Google Scholar 

  • Shen M, Piao S, Dorji T, Liu Q, Cong N, Chen X, An S, Wang S, Wang T, Zhang G (2015) Plant phenological responses to climate change on the Tibetan plateau: research status and challenges. Natl Sci Rev 2:454–467

    Google Scholar 

  • Singh KP, Kushwaha CP (2016) Deciduousness in tropical trees and its potential as indicator of climate change: a review. Ecol Indic 69:699–706

    Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    CAS  PubMed  Google Scholar 

  • Suonan J, Classen AT, Sanders NJ, He J-S (2019) Plant phenological sensitivity to climate change on the Tibetan plateau and relative to other areas of the world. Ecosphere 10(1):e02543

    Google Scholar 

  • Tang J, Korner C, Muraoka H, Pio S, Shen M, Thackeray SJ, Yang X (2016) Emerging opportunities and challenges in phenology: a review. Ecosphere 7(8):e01436

    Google Scholar 

  • Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125(6):827–852

    Google Scholar 

  • van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical forests: adaptive significance and consequences for primary consumers. Ann Rev Ecol Syst 24:353–377

    Google Scholar 

  • Visser ME, Caro SP, van Oers K, Schaper SV, Helm B (2010) Phenology, seasonal timing and circannual rhythms: towards a unified framework. Philos Trans R Soc B 365:3113–3127

    CAS  Google Scholar 

  • Vitasse Y, Francois C, Delpierre N, Dufrene E, Kremer A, Chuine I, Delzon S (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151:969–980

    Google Scholar 

  • Vitasse Y, Signarbieux C, Fu YH (2018) Global warming leads to more uniform spring phenology across elevations. PNAS 115(5):1004–1008

    CAS  PubMed  Google Scholar 

  • Wang T, Peng S, Lin X, Chang J (2013) Declining snow cover may affect spring phenological trend on the Tibetan plateau. PNAS 110(31):E2854–E2855

    CAS  PubMed  Google Scholar 

  • Wang H, Tetzlaff D, Buttle J, Carey SK, Laudon H, McNamara JP, Spence C, Soulsby C (2019a) Climate-phenology-hydrology interactions in northern high latitudes: assessing the value of remote sensing data in catchment ecohydrological studies. Sci Total Environ 656:19–28

    CAS  PubMed  Google Scholar 

  • Wang X, Xiao J, Li X, Cheng G, Ma M, Zhu G, Arain MA, Black TA, Jassal RS (2019b) No trends in spring and autumn phenology during the global warming hiatus. Nat Commun 10:2389

    PubMed  PubMed Central  Google Scholar 

  • Werndl C (2016) On defining climate and climate change. Br J Philos Sci 67:337–364

    Google Scholar 

  • Wilczek AM, Burghardt LT, Cobb AR, Cooper MD, Welch SM, Schmitt J (2010) Genetic and physiological bases for phenological responses to current and predicted climates. Philos Trans R Soc B 365:3129–3147

    CAS  Google Scholar 

  • Winder M, Cloern JE (2010) The annual cycles of phytoplankton biomass. Philos Trans R Soc B 365:3215–3226

    Google Scholar 

  • Wlegolaski FE (2001) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45:196–202

    Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    CAS  PubMed  Google Scholar 

  • Wright SJ, van Schaik CP (1994) Light and the phenology of tropical trees. Am Nat 143:192–199

    Google Scholar 

  • Xia J, Niu S, Ciais P, Janssens IA, Chen J, Ammann C, Arain A, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen S, Dong J, Flanagan LB, Frankenberg C, Georgiadis T, Gough CM, Hui D, Kiely G, Li J, Lund M, Magliulo V, Marcolla B, Merbold L, Montagnani L, Moors EJ, Olesen JE, Piao S, Raschi A, Roupsard O, Suyker AE, Urbaniak M, Vaccari FP, Varlagin A, Vesala T, Wilkinson M, Weng E, Wohlfahrt G, Yan L, Luo Y (2015) Joint control of terrestrial gross primary productivity by plant phenology and physiology. PNAS 112(9):2788–2793

    CAS  PubMed  Google Scholar 

  • Yang B, He M, Shishov V, Tychkov I, Vaganov E, Rossi S, Ljungqvist FC, Brauning A, Griessinger J (2017) New perspective on spring vegetation phenology and global climate change based on Tibetan plateau tree-ring data. PNAS 114(27):6966–6971

    CAS  PubMed  Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan plateau. PNAS 107(51):22151–22156

    CAS  PubMed  Google Scholar 

  • Yu S, Mo Q, Li Y, Li Y, Zou B, Xia H, Li Z, Wang F (2019) Change in seasonal precipitation distribution but not annual amount affect litter decomposition in a secondary tropical forest. Ecol Evol 9:11344–11352

    PubMed  PubMed Central  Google Scholar 

  • Zang X (ed) (2012) Phenology and climate change. Intech Open, Rijeka

    Google Scholar 

  • Zettlemoyer MA, Schultheis EH, Lau JA (2019) Phenology in a warming world: differences between native and non-native plant species. Ecol Lett. https://doi.org/10.1111/ele.13290

  • Zhang X, Friedl M, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data. Glob Chang Biol 10:1133–1145

    Google Scholar 

  • Zhang XY, Friedl MA, Schaaf CB (2006) Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J Geophys Res 111:G04017

    Google Scholar 

  • Zhang X, Friedl M, Tan B, Goldberg M, Yu Y (2012) Long-term detection of global vegetation phenology from satellite instruments. In: Zhang X (ed) Phenology and climate change. In Tech, Rijeka, pp 297–320

    Google Scholar 

  • Zhang Y, Bielory L, Cai T, Mi Z, Georgopoulos P (2015) Predicting onset and duration of airborne allergenic pollen season in the United States. Atmos Environ 103:297–306

    CAS  Google Scholar 

  • Zhang J, Yi Q, Xing F, Tang C, Wang L, Ye W, Ng II, Chan TI, Chen H, Liu D (2018) Rapid shifts of peak flowering phenology in 12 species under the effects of extreme climate events in Macao. Sci Rep 8:13950

    PubMed  PubMed Central  Google Scholar 

  • Zhao M, Peng C, Xiang W, Deng X, Tian D, Zhou X, Yu G, He H, Zhao Z (2013) Plant phenological modeling and its application in global climate change research: overview and future challenges. Environ Rev 21:1–14

    Google Scholar 

  • Zheng Z, Zhu W, Zhang Y (2020) Seasonally and spatially varied controls of climatic factors on net primary productivity in alpine grasslands on the Tibetan plateau. Glob Ecol Conserv 21:e00814

    Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069

    Google Scholar 

  • Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N, Elder MA, Filley W, Shropshire J, Ford LB, Hedberg C, Fleetwood P, Hovanky KT, Kavanugh T, Fulford G, Vrtis RF, Patz JA, Portnoy J, Coates F, Bielory L, Frenz D (2011) Recent warming by latitude associated with increased length of ragweed pollen season in Central North America. Proc Nat Acad Sci U S A 108:4248–4251

    CAS  Google Scholar 

  • Ziska LH, Makra L, Harry SK, Bruffaerts N, Hendrickx M, Coates F, Saarto A, Thibaudon M, Oliver G, Damialis A, Charalampopoulos A, Vokou D, Heidmarsson S, Gudjohnsen E, Bonini M, Oh J-W, Sullivan K, Ford L, Brooks GD, Myszkowska D, Severova E, Gehrig R, Ramon GD, Beggs PJ, Knowlton K, Crimmins AR (2019) Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis. Lancet Planet Health 3:e124–e131

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, K.G., Rao, K.S. (2020). Climate Change and Vegetation Phenology. In: Tandon, R., Shivanna, K., Koul, M. (eds) Reproductive Ecology of Flowering Plants: Patterns and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4210-7_2

Download citation

Publish with us

Policies and ethics