Skip to main content

(Trans)Gene Flow: Mechanisms, Biosafety Concerns and Mitigation for Containment

  • Chapter
  • First Online:
Reproductive Ecology of Flowering Plants: Patterns and Processes

Abstract

Rapid progress in genetic engineering of plants has opened vistas for manipulation of traits to not only meet the ever-increasing need of food, feed, and fuel but also produce novel compounds in transgenic plants (genetically modified crops or GM crops). The widespread global adoption of transgenic plants has raised doubts and fears about its ill-impact on the health of intended consumers of end-products (humans and animals), on non-target organisms (pollinators, microbes, other biotic factors, etc.), and, environmental concerns (impact on biodiversity through escape of transgene and hybridization causing weediness, erosion of biodiversity). Transgene flow is a multistep process, influenced by several biotic and abiotic factors and pollen-mediated gene flow (PMGF) or gametic transmission is the most common mode. Some of these factors that influence (trans)gene flow include population structure and reproductive strategies of source/donor and sink/recipient species, overlap in geographical distribution, flowering phenology, genome compatibility, pollen-transfer mechanism (pollinators, wind direction and speed, pollen characteristics), pre- and post-fertilization barriers, survival of progeny as feral and volunteer population, etc. Several of these aspects have been investigated using both transgenic and non-transgenic plants and which revealed, for instance, that pollen-mediated flow can occur over large distances. Similarly, seed-mediated gene flow (SMGF) and vegetative propagule-mediated gene flow (VPMGF) of germplasm has also been established as a significant contributor to gene flow. Gene flow events are considered a threat if the resultant hybrids have equal or higher vigour, and are viable and fertile, as has been found in several cases. Indeed, increased vigour is a potential contributor to evolution of aggressive weediness and extinction of wild relatives through processes of genetic swamping, selective sweep, and genetic assimilation, an ecological consequence of (trans)gene escape. Horizontal gene flow, or gene flow between unrelated organisms (e.g. plants to microbes, humans, pollinators, etc.), is the major biosafety concern, although investigations have found such fears largely unfounded. Several containment and mitigation strategies including spatial and temporal barriers, biological barriers grouped under Genetic Use Restriction Technologies (GURTs) such as male sterility, bisexual/total sterility, cleistogamy, apomixis, maternal inheritance (transplastomics), preventing seed dispersal, secondary dormancy, competitive self-thinning, interfering with floral induction or bolting, are widely used or recommended to minimize or prevent (trans)gene escape. Transgenic technology is still a developing area, and next generation of plants generated through Genome Editing while addressing existing biosafety and environmental concerns are also likely to throw up newer challenges, including formulation of appropriate robust regulatory framework for which adequate data based on research needs to be collated and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CWR:

Crop wild relatives

GURT:

Genetic Use Restriction Technologies

HGT:

Horizontal gene transfer

PGF:

Pollen-mediated gene flow

References

  • Aeschbacher K, Messikommer R, Meile L, Wenk C (2005) Bt176 corn in poultry nutrition: physiological characteristics and fate of recombinant plant DNA in chickens. Poult Sci 84(3):385–394

    CAS  PubMed  Google Scholar 

  • Akosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J Biotechnol 10(19):3659–3670

    Google Scholar 

  • Al-Ahmad H, Galili S, Gressel J (2005) Poor competitive fitness of transgenically mitigated tobacco in competition with the wild type in a replacement series. Planta 222(2):372–385

    CAS  PubMed  Google Scholar 

  • Al-Ahmad H, Dwyer J, Moloney M, Gressel J (2006) Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene. Plant Biotechnol J 4(1):7–21

    CAS  PubMed  Google Scholar 

  • Andersen NS, Siegismund HR, Meyer V, Jørgensen RB (2005) Low level of gene flow from cultivated beets (Beta vulgaris L. ssp. vulgaris) into Danish populations of sea beet (Beta vulgaris L. ssp. maritima (L.) Arcangeli). Mol Ecol 14(5):1391–1405

    CAS  PubMed  Google Scholar 

  • Arias DM, Rieseberg LH (1994) Gene flow between cultivated and wild sunflowers. Theor Appl Genet 89(6):655–660

    CAS  PubMed  Google Scholar 

  • Arnaud JF, Viard F, Delescluse M, Cuguen J (2003) Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): consequences for the release of genetically modified crop species with weedy lineages. Proc R Soc Lond Ser B Biol Sci 270(1524):1565–1571

    Google Scholar 

  • Arrigo N, Guadagnuolo R, Lappe S, Pasche S, Parisod C, Felber F (2011) Gene flow between wheat and wild relatives: empirical evidence from Aegilops geniculata, Ae neglecta and Ae triuncialis. Evol Appl 4(5):685–695

    PubMed  PubMed Central  Google Scholar 

  • Arriola PE, Ellstrand NC (1996) Crop-to-weed gene flow in the genus Sorghum (Poaceae): spontaneous interspecific hybridization between johnsongrass, Sorghum halepense, and crop sorghum, S bicolor. Am J Bot 83(9):1153–1159

    Google Scholar 

  • Arriola PE, Ellstrand NC (1997) Fitness of interspecific hybrids in the genus Sorghum: persistence of crop genes in wild populations. Ecol Appl 7(2):512–518

    Google Scholar 

  • Bacles CF, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311(5761):628–628

    PubMed  Google Scholar 

  • Bacles CF, Ennos RA (2008) Paternity analysis of pollen-mediated gene flow for Fraxinus excelsior L. in a chronically fragmented landscape. Heredity 101(4):368–380

    CAS  PubMed  Google Scholar 

  • Baek JS, Chung NJ (2012) Seed wintering and deterioration characteristics between weedy and cultivated rice. Rice 5(1):21

    PubMed  PubMed Central  Google Scholar 

  • Barrandeguy ME, García MV (2018) A regression approach to estimate the relative roles of pollen-versus seed-mediated gene flow under an isolation by distance model. Silvae Genetica 67(1):41–50

    Google Scholar 

  • Barrett SH (1983) Crop mimicry in weeds. Econ Bot 37(3):255–282

    Google Scholar 

  • Bartsch D, Lehnen M, Clegg J, Pohl-Orf M, Schuphan I, Ellstrand NC (1999) Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations. Mol Ecol 8(10):1733–1741

    CAS  PubMed  Google Scholar 

  • Basu A, Maiti MK, Kar S, Sen SK, Pandey B (2011) U.S. Patent No. 7,985,890. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Bauer-Panskus A, Breckling B, Hamberger S, Then C (2013) Cultivation-independent establishment of genetically engineered plants in natural populations: current evidence and implications for EU regulation. Environ Sci Eur 25(1):34

    Google Scholar 

  • Beagle JM, Apgar GA, Jones KL, Griswold KE, Radcliffe JS, Qiu X et al (2006) The digestive fate of Escherichia coli glutamate dehydrogenase deoxyribonucleic acid from transgenic corn in diets fed to weanling pigs. J Anim Sci 84(3):597–607

    CAS  PubMed  Google Scholar 

  • Bertolla F, Simonet P (1999) Horizontal gene transfers in the environment: natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. Res Microbiol 150(6):375–384

    CAS  PubMed  Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1995) An evaluation of the potential of intergeneric gene transfer between Brassica napus and Sinapis arvensis. Plant Breed 114(6):481–484

    Google Scholar 

  • Biology of Zea mays, MoEFCC and DBT (2011). http://geacindia.gov.in/resource-documents.aspx

  • Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241

    CAS  PubMed  Google Scholar 

  • Bøhn T, Aheto DW, Mwangala FS, Fischer K, Bones IL, Simoloka C et al (2016) Pollen-mediated gene flow and seed exchange in small-scale Zambian maize farming, implications for biosafety assessment. Sci Rep 6:34483

    PubMed  PubMed Central  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538

    CAS  PubMed  Google Scholar 

  • Briefs, I.S.A.A.A (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years

    Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433(7026):629

    CAS  PubMed  Google Scholar 

  • Brunet J, Zhao Y, Clayton MK (2019) Linking the foraging behavior of three bee species to pollen dispersal and gene flow. PLoS One 14(2):e0212561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burke JM, Gardner KA, Rieseberg LH (2002) The potential for gene flow between cultivated and wild sunflower (Helianthus annuus) in the United States. Am J Bot 89(9):1550–1552

    PubMed  Google Scholar 

  • Callaway E (2018) EU law deals blow to CRISPR crops. Nature 560:16

    CAS  PubMed  Google Scholar 

  • Campbell LG, Snow AA (2007) Competition alters life history and increases the relative fecundity of crop–wild radish hybrids (Raphanus spp.). New Phytol 173(3):648–660

    PubMed  Google Scholar 

  • Campbell LG, Snow AA, Ridley CE (2006) Weed evolution after crop gene introgression: greater survival and fecundity of hybrids in a new environment. Ecol Lett 9(11):1198–1209

    PubMed  Google Scholar 

  • Campbell LG, Snow AA, Sweeney PM, Ketner JM (2009) Rapid evolution in crop-weed hybrids under artificial selection for divergent life histories. Evol Appl 2(2):172–186

    PubMed  Google Scholar 

  • Castillo GF, Goodman MM (1997) Research on gene flow between improved land races. In: Serratos JA, Willcox MC, Castillo-Gonzalez F (eds) Proc Forum: gene flow among maize landraces,improved maize varieties, and teosinte: implications for transgenic maize. CIMMYT, El Batan, pp 67–72

    Google Scholar 

  • Ceccherini M, Poté J, Kay E, Maréchal J, Pietramellara G, Nannipieri P et al (2003) Degradation and transformability of DNA from transgenic leaves. Appl Environ Microbiol 69(1):673–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chadoeuf R, Darmency H, Maillet J, Renard M (1998) Survival of buried seeds of interspecific hybrids between oilseed rape, hoary mustard and wild radish. Field Crop Res 58(3):197–204

    Google Scholar 

  • Chang Z, Chen Z, Wang N, Xie G, Lu J, Yan W et al (2016) Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci 113(49):14145–14150

    CAS  PubMed  Google Scholar 

  • Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134(4):1289–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chat J, Chalak L, Petit RJ (1999) Strict paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in intraspecific crosses of kiwifruit. Theor Appl Genet 99(1–2):314–322

    Google Scholar 

  • Chavez NB, Flores JJ, Martin J, Ellstrand NC, Guadagnuolo R, Heredia S, Welles SR (2012) Maize x teosinte hybrid cobs do not prevent crop gene introgression. Econ Bot 66(2):132–137

    PubMed  PubMed Central  Google Scholar 

  • Che P, Zhao ZY, Glassman K, Dolde D, Hu TX, Jones TJ et al (2016) Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified Sorghum. Proc Natl Acad Sci 113(39):11040–11045

    CAS  PubMed  Google Scholar 

  • Chen LJ, Lee DS, Song ZP, Suh HS, Lu BR (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot 93(1):67–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Li W, Katin-Grazzini L, Ding J, Gu X, Li Y et al (2018) A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Hortic Res 5(1):13

    PubMed  PubMed Central  Google Scholar 

  • Chèvre AM, Eber F, Baranger A, Renard M (1997) Gene flow from transgenic crops. Nature 389(6654):924

    Google Scholar 

  • Chhabra AK, Sethi SK (1991) Inheritance of cleistogamic flowering in durum wheat (Triticum durum). Euphytica 55(2):147–150

    Google Scholar 

  • Christou P (2002) No credible scientific evidence is presented to support claims that transgenic DNA was introgressed into traditional maize landraces in Oaxaca, Mexico. Transgenic Res 11(1):3–5

    Google Scholar 

  • Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D et al (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci 108(42):17550–17555

    CAS  PubMed  Google Scholar 

  • Conner AJ (1992) Monitoring “escapes” from field trials of transgenic potatoes: a basis for assessing environmental risks. In: Seminar on scientific approaches for the assessment of research trials with genetically modified plants, Jouy-en-Josas, France, pp 34–40

    Google Scholar 

  • Conner AJ (1994) Analysis of containment and food safety issues associated with the release of transgenic potatoes. In: Belknap WR, Vayda ME, Park WD (eds) The molecular and cellular biology of potatoes, 2nd edn. CAB International, Wallingford, pp 245–264

    Google Scholar 

  • Conner AJ, Dale PJ (1996) Reconsideration of pollen dispersal data from field trials of transgenic potatoes. Theor Appl Genet 92(5):505–508

    CAS  PubMed  Google Scholar 

  • Crawley MJ, Hails RS, Rees M, Kohn D, Buxton J (1993) Ecology of transgenic oilseed rape in natural habitats. Nature 363(6430):620–623

    Google Scholar 

  • Curtis IS, Nam HG, Yun JY, Seo KH (2002) Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Res 11(3):249–256

    CAS  PubMed  Google Scholar 

  • D’Hertefeldt T, Jørgensen RB, Pettersson LB (2008) Long-term persistence of GM oilseed rape in the seedbank. Biol Lett 4(3):314–317

    PubMed  PubMed Central  Google Scholar 

  • Dai P, Wang M, Geng L, Yan Z, Yang Y, Guo L et al (2019) The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). Ecotoxicol Environ Saf 181:381–387

    CAS  PubMed  Google Scholar 

  • Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20(6):567–574

    CAS  PubMed  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20(6):581–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16(4):345–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2009) Genetic transformation of the sugar beet plastome. Transgenic Res 18(1):17–30

    CAS  PubMed  Google Scholar 

  • de Wet JMJ, Harlan JR (1972) Origin of maize: the tripartite hypothesis. Euphytica 21(2):271–279

    Google Scholar 

  • de Wet JMJ, Harlan JR, Brink DE (1982) Systematics of Tripsacum dactyloides (Gramineae). Am J Bot 69(8):1251–1257

    Google Scholar 

  • de Wet JMJ, Brink DE, Cohen CE (1983) Systematics of Tripsacum section Fasciculata (Gramineae). Am J Bot 70(8):1139–1146

    Google Scholar 

  • Demanèche S, Sanguin H, Poté J, Navarro E, Bernillon D, Mavingui P et al (2008) Antibiotic-resistant soil bacteria in transgenic plant fields. Proc Natl Acad Sci 105(10):3957–3962

    PubMed  Google Scholar 

  • Desplanque B, Boudry P, Broomberg K, Saumitou-Laprade P, Cuguen J, Van Dijk H (1999) Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet 98(8):1194–1201

    CAS  Google Scholar 

  • Devos Y, Reheul D, De Schrijver A (2005) The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization. Environ Biosaf Res 4(2):71–87

    Google Scholar 

  • Devos Y, Ortiz-Garcia S, Hokanson KE, Raybould A (2018) Teosinte and maize × teosinte hybrid plants in Europe− environmental risk assessment and management implications for genetically modified maize. Agric Ecosyst Environ 259:19–27

    Google Scholar 

  • Di-Fazio SP, Leonardi S, Slavov GT, Garman SL, Adams WT, Strauss SH (2012) Gene flow and simulation of transgene dispersal from hybrid poplar plantations. New Phytol 193(4):903–915

    CAS  Google Scholar 

  • Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007) Domestication to crop improvement: genetic resources for Sorghum and S. accharum (Andropogoneae). Ann Bot 100(5):975–989

    PubMed  PubMed Central  Google Scholar 

  • Doebley J (1990) Molecular evidence for gene flow among Zea species. Bioscience 40(6):443–448

    Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1998) Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol 64(1):75–90

    PubMed  Google Scholar 

  • Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C et al (2007) Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol J 5(1):118–133

    CAS  PubMed  Google Scholar 

  • Duncan B, Leyva-Guerrero E, Werk T, Stojšin D, Baltazar BM, García-Lara S et al (2019) Assessment of potential impacts associated with gene flow from transgenic hybrids to Mexican maize landraces. Transgenic Res:1–15

    Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil-and plant-associated microbial communities. J Environ Qual 33(3):806–815

    CAS  PubMed  Google Scholar 

  • Eber F, Chevre AM, Baranger A, Vallée P, Tanguy X, Renard M (1994) Spontaneous hybridization between a male-sterile oilseed rape and two weeds. Theor Appl Genet 88(3–4):362–368

    CAS  PubMed  Google Scholar 

  • Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H (2019a) Plants developed by new genetic modification techniques—comparison of existing regulatory frameworks in the EU and non-EU countries. Front Bioeng Biotechnol 7:26

    PubMed  PubMed Central  Google Scholar 

  • Eckerstorfer MF, Dolezel M, Heissenberger A, Miklau M, Reichenbecher W, Steinbrecher RA, Waßmann F (2019b) An EU perspective on biosafety considerations for plants developed by genome editing and other New Genetic Modification techniques (nGMs). Front Bioeng Biotechnol 7:31. https://doi.org/10.3389/fbioe.2019.00031. eCollection 2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert JE (1933) The flight range of the honeybee. J Agric Res 47:257–285

    Google Scholar 

  • Ehrlich PR, Raven PH (1969) Differentiation of populations. Science 165:1228–1232

    CAS  PubMed  Google Scholar 

  • Ellstrand NC (1992) Gene flow by pollen: implications for plant conservation genetics. Oikos 63:77–86

    Google Scholar 

  • Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc Lond Ser B Biol Sci 358(1434):1163–1170

    Google Scholar 

  • Ellstrand NC (2014) Is gene flow the most important evolutionary force in plants? Am J Bot 101(5):737–753

    PubMed  Google Scholar 

  • Ellstrand NC (2018) Does introgression of crop alleles into wild and weedy living populations create cryptic in situ germplasm banks? Mol Ecol 27(1):38–40

    PubMed  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24(1):217–242

    Google Scholar 

  • Ellstrand NC, Hoffman CA (1990) Hybridization as an avenue of escape for engineered genes. Bioscience 40(6):438–442

    Google Scholar 

  • Ellstrand NC, Rieseberg LH (2016) When gene flow really matters: gene flow in applied evolutionary biology. Evol Appl 9(7):833–836

    PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97(13):7043–7050

    CAS  PubMed  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30(1):539–563

    Google Scholar 

  • Ellstrand NC, Garner LC, Hegde S, Guadagnuolo R, Blancas L (2007) Spontaneous hybridization between maize and teosinte. J Hered 98(2):183–187

    CAS  PubMed  Google Scholar 

  • Ellstrand NC, Heredia SM, Leak-Garcia JA, Heraty JM, Burger JC, Yao L et al (2010) Crops gone wild: evolution of weeds and invasives from domesticated ancestors. Evol Appl 3(5–6):494–504

    PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Meirmans P, Rong J, Bartsch D, Ghosh A, De Jong TJ et al (2013) Introgression of crop alleles into wild or weedy populations. Annu Rev Ecol Evol Syst 44:325–345

    Google Scholar 

  • Elorriaga E, Klocko AL, Ma C, Strauss SH (2015) CRISPR-Cas nuclease mutagenesis for genetic containment of genetically engineered forest trees. Mosaic 42:46

    Google Scholar 

  • Endler JA (1977) Geographic variation, speciation, and clines (no. 10). Princeton University Press, Princeton

    Google Scholar 

  • Ennos R (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72(3):250

    Google Scholar 

  • Eriksson D, Harwood W, Hofvander P, Jones H, Rogowsky P, Stöger E, Visser RGF (2018) A welcome proposal to amend the GMO legislation of the EU. Trends Biotechnol 36(11):1100–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eubanks M (1995) A cross between two maize relatives: Tripsacum dactyloides and Zea diploperennis (Poaceae). Econ Bot 49(2):172–182

    Google Scholar 

  • Eubanks MW (1997) Molecular analysis of crosses between Tripsacum dactyloides and Zea diploperennis (Poaceae). Theor Appl Genet 94(6–7):707–712

    CAS  Google Scholar 

  • Faisal S, Guo Y, Zang S, Cao B, Qu G, Hu S (2018) Morphological and genetic analysis of a cleistogamous mutant in rapeseed (Brassica napus L.). Genet Resour Crop Evol 65(2):397–403

    CAS  Google Scholar 

  • Fargue A, Colbach N, Pierre J, Picault H, Renard M, Meynard JM (2006) Predictive study of the advantages of cleistogamy in oilseed rape in limiting unwanted gene flow. Euphytica 151(1):1–13

    Google Scholar 

  • Fenart S, Austerlitz F, Cuguen J, ARNAUD JF (2007) Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study. Mol Ecol 16(18):3801–3813

    PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    CAS  PubMed  Google Scholar 

  • Freckleton RP, Watkinson AR (1998) Predicting the determinants of weed abundance: a model for the population dynamics of Chenopodium album in sugar beet. J Appl Ecol 35(6):904–920

    Google Scholar 

  • Friedrichs S, Takasu Y, Kearns P, Dagallier B, Oshima R, Schofield J, Moreddu C (2019) An overview of regulatory approaches to genome editing in agriculture. Biotechnol Res Innov. https://doi.org/10.1016/j.biori.2019.07.001

  • Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, Von Zitzewitz J et al (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Gen Genomics 273(1):54–65

    CAS  Google Scholar 

  • Futuyama DJ (1998) Evolutionary biology, 3rd edn. Sinauer Press, Sunderland

    Google Scholar 

  • Gandhi HT, Mallory-Smith CA, Watson CJ, Vales MI, Zemetra RS, Riera-Lizarazu O (2006) Hybridization between wheat and jointed goatgrass (Aegilops cylindrica) under field conditions. Weed Sci 54(6):1073–1079

    CAS  Google Scholar 

  • GEAC: Biology of Cotton (2011). http://geacindia.gov.in/resource-documents/biosafety-regulations/resource-documents/Biology_of_Cotton.pdf

  • Gepts P, Papa R (2003) Possible effects of (trans) gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosaf Res 2(2):89–103

    Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV et al (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24(9):513–522

    CAS  PubMed  Google Scholar 

  • Girin T, Stephenson P, Goldsack CM, Kempin SA, Perez A, Pires N et al (2010) Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation. Plant J 63(2):329–338

    CAS  PubMed  Google Scholar 

  • Gómez MI, Islam-Faridi MN, Zwick MS, Czeschin DG Jr, Hart GE, Wing RA et al (1998) Brief communication. Tetraploid nature of Sorghum bicolor (L.) Moench. J Hered 89(2):188–190

    Google Scholar 

  • Gómez JF, Talle B, Wilson ZA (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57(11):876–891

    PubMed  PubMed Central  Google Scholar 

  • Gómez-Tatay L, Hernández-Andreu JM (2019) Biosafety and biosecurity in synthetic biology: A review. Crit Rev Environ Sci Technol:1–35

    Google Scholar 

  • Gompert Z, Buerkle CA (2016) What, if anything, are hybrids: enduring truths and challenges associated with population structure and gene flow. Evol Appl 9(7):909–923

    PubMed  PubMed Central  Google Scholar 

  • Gressel J (1999) Tandem constructs: preventing the rise of superweeds. Trends Biotechnol 17(9):361–366

    CAS  PubMed  Google Scholar 

  • Gressel J (2015) Dealing with transgene flow of crop protection traits from crops to their relatives. Pest Manag Sci 71(5):658–667

    CAS  PubMed  Google Scholar 

  • Gressel J, Valverde BE (2009) A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds. Pest Manag Sci 65(7):723–731

    CAS  PubMed  Google Scholar 

  • Guadagnuolo R, Savova-Bianchi D, Felber F (2001) Gene flow from wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host.), as revealed by RAPD and microsatellite markers. Theor Appl Genet 103(1):1–8

    CAS  Google Scholar 

  • Guadagnuolo R, Clegg J, Ellstrand NC (2006) Relative fitness of transgenic vs. non-transgenic maize × teosinte hybrids: a field evaluation. Ecol Appl 16(5):1967–1974

    CAS  PubMed  Google Scholar 

  • Guéritaine G, Bazot S, Darmency H (2003) Emergence and growth of hybrids between Brassica napus and Raphanus raphanistrum. New Phytol 158(3):561–567

    Google Scholar 

  • Haider N, Allainguillaume J, Wilkinson MJ (2009) Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment. Curr Genet 55(2):139–150

    CAS  PubMed  Google Scholar 

  • Hails RS, Rees M, Kohn DD, Crawley MJ (1997) Burial and seed survival in Brassica napus subsp. oleifera and Sinapis arvensis including a comparison of transgenic and non–transgenic lines of the crop. Proc R Soc Lond Ser B Biol Sci 264(1378):1–7

    CAS  Google Scholar 

  • Halfhill MD, Richards HA, Mabon SA, Stewart CN (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor Appl Genet 103(5):659–667

    CAS  Google Scholar 

  • Hamblin MT, Mitchell SE, White GM, Gallego J, Kukatla R, Wing RA et al (2004) Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of Sorghum bicolor. Genetics 167(1):471–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen LB, Siegismund HR, Jørgensen RB (2001) Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genet Resour Crop Evol 48(6):621–627

    Google Scholar 

  • He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y (2018) Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant 11(9):1210–1213

    CAS  PubMed  Google Scholar 

  • Henley EC, Taylor JRN, Obukosia SD (2010) The importance of dietary protein in human health: combating protein deficiency in sub-Saharan Africa through transgenic biofortified Sorghum. In: Advances in food and nutrition research, vol 60. Academic, Amsterdam, pp 21–52

    Google Scholar 

  • Hills MJ, Hall L, Arnison PG, Good AG (2007) Genetic use restriction technologies (GURTs): strategies to impede transgene movement. Trends Plant Sci 12(4):177–183

    CAS  PubMed  Google Scholar 

  • Ho MW (2014) Horizontal transfer of GM DNA–why is almost no one looking? Open letter to Kaare Nielsen in his capacity as a member of the European Food Safety Authority GMO panel. Microb Ecol Health Dis 25(1):25919

    Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11(4):395–407

    CAS  PubMed  Google Scholar 

  • Hong JK, Kim SY, Kim JS, Kim JA, Park BS, Lee YH (2011) Promoters of three Brassica rapa FLOWERING LOCUS C differentially regulate gene expression during growth and development in Arabidopsis. Genes Genomics 33(1):75–82

    CAS  Google Scholar 

  • Hore DK, Rathi RS (2007) Characterization of Jobís tears germplasm in north-East India. Indian J Nat Prod Resour 6(1):50–54

    Google Scholar 

  • Horn P, Nausch H, Baars S, Schmidtke J, Schmidt K, Schneider A et al (2017) Paternal inheritance of plastid-encoded transgenes in Petunia hybrida in the greenhouse and under field conditions. Biotechnol Rep 16:26–31

    Google Scholar 

  • Hovick SM, Campbell LG, Snow AA, Whitney KD (2011) Hybridization alters early life-history traits and increases plant colonization success in a novel region. Am Nat 179(2):192–203

    PubMed  Google Scholar 

  • http://dbtindia.gov.in/regulations-guidelines/regulations/biosafety-programme

  • https://farmer.gov.in/imagedefault/pestanddiseasescrops/normalmaizeproductiontechnologies.pdf

  • https://www.the-scientist.com/the-nutshell/usda-will-not-regulate-crispr-edited-crops-29852

  • Huang J, Smith AR, Zhang T, Zhao D (2016) Creating completely both male and female sterile plants by specifically ablating microspore and megaspore mother cells. Front Plant Sci 7:30

    PubMed  PubMed Central  Google Scholar 

  • Hüsken A, Dietz-Pfeilstetter A (2007) Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Res 16(5):557–569

    PubMed  Google Scholar 

  • Iqbal MZ, Cheng M, Su Y, Li Y, Jiang W, Li H et al (2019) Allopolyploidization facilitates gene flow and speciation among corn, Zea perennis and Tripsacum dactyloides. Planta 249(6):1949–1962

    CAS  PubMed  Google Scholar 

  • Jackson JF, Pounds JA (1979) Comments on assessing the dedifferentiating effect of gene flow. Syst Biol 28(1):78–85

    Google Scholar 

  • Jarosz N, Loubet B, Durand B, McCartney A, Foueillassar X, Huber L (2003) Field measurements of airborne concentration and deposition rate of maize pollen. Agric For Meteorol 119(1–2):37–51

    Google Scholar 

  • Jarosz N, Loubet B, Huber L (2004) Modelling airborne concentration and deposition rate of maize pollen. Atmos Environ 38(33):5555–5566

    CAS  Google Scholar 

  • Jarosz N, Loubet B, Durand B, Foueillassar X, Huber L (2005) Variations in maize pollen emission and deposition in relation to microclimate. Environ Sci Technol 39(12):4377–4384

    CAS  PubMed  Google Scholar 

  • Jenczewski E, Prosperi JM, Ronfort J (1999a) Differentiation between natural and cultivated populations of Medicago sativa (Leguminosae) from Spain: analysis with random amplified polymorphic DNA (RAPD) markers and comparison to allozymes. Mol Ecol 8(8):1317–1330

    CAS  PubMed  Google Scholar 

  • Jenczewski E, Prosperi JM, Ronfort JL (1999b) Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers andquantitative traits. Am J Bot 86(5):677–687

    CAS  PubMed  Google Scholar 

  • Jia S, Wang F, Shi L, Yuan Q, Liu W, Liao Y et al (2007) Transgene flow to hybrid rice and its male-sterile lines. Transgenic Res 16(4):491–501

    CAS  PubMed  Google Scholar 

  • Jia S, Yuan Q, Pei X, Wang F, Hu N, Yao K, Wang Z (2014) Rice transgene flow: its patterns, model and risk management. Plant Biotechnol J 12(9):1259–1270

    PubMed  Google Scholar 

  • Jorgensen RB, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. Am J Bot 81(12):1620–1626

    Google Scholar 

  • Keese P (2008) Risks from GMOs due to horizontal gene transfer. Environ Biosaf Res 7(3):123–149

    CAS  Google Scholar 

  • Kena AW (2017) Silencing seed dormancy genes to mitigate risk of transgene flow to weedy rice. Theses and Dissertations 1188. http://openprairie.sdstate.edu/etd/1188

  • Kiang YT (1979) The extinction of wild rice (Oryza perennis-formosana) in Taiwan. J Asian Ecol 1:1–9

    Google Scholar 

  • Kleter GA, Peijnenburg AA, Aarts HJ (2005) Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. Biomed Res Int 2005(4):326–352

    Google Scholar 

  • Klinger T, Elam DR, Ellstrand NC (1991) Radish as a model system for the study of engineered gene escape rates via crop-weed mating. Conserv Biol 5(4):531–535

    Google Scholar 

  • Klocko AL, Lu H, Magnuson A, Brunner AM, Ma C, Strauss SH (2018) Phenotypic expression and stability in a large-scale field study of genetically engineered poplars containing sexual containment transgenes. Front Bioeng Biotechnol 6:100

    PubMed  PubMed Central  Google Scholar 

  • Knight WE, Bennett HW (1953) Preliminary report of the effect of photoperiod and temperature on the flowering and growth of several southern grasses. Agron J 45(6):268–269

    CAS  Google Scholar 

  • Kobayashi K, Munemura I, Hinata K, Yamamura S (2006) Bisexual sterility conferred by the differential expression of Barnase and Barstar: a simple and efficient method of transgene containment. Plant Cell Rep 25(12):1347–1354

    CAS  PubMed  Google Scholar 

  • Kumar S (2014) Biosafety issues of genetically modified organisms. Biosafety 3:e150. https://doi.org/10.4172/2167-0331.1000e150

    Article  Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28(2):313–316

    Google Scholar 

  • Lavigne C, Klein EK, Vallée P, Pierre J, Godelle B, Renard M (1998) A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor Appl Genet 96(6–7):886–896

    Google Scholar 

  • Ledford H (2019) EU regulators face CRISPR crop condundrum. Nature 572:15

    CAS  PubMed  Google Scholar 

  • Lee MS, Anderson EK, Stojšin D, McPherson MA, Baltazar B, Horak MJ et al (2017) Assessment of the potential for gene flow from transgenic maize (Zea mays L.) to eastern gamagrass (Tripsacum dactyloides L.). Transgenic Res 26(4):501–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404(6779):766

    CAS  PubMed  Google Scholar 

  • Lin C, Fang J, Xu X, Zhao T, Cheng J, Tu J et al (2008) A built-in strategy for containment of transgenic plants: creation of selectively terminable transgenic rice. PLoS One 3(3):e1818

    PubMed  PubMed Central  Google Scholar 

  • Linder CR, Taha I, Rieseberg LH, Seiler GJ, Snow AA (1998) Long-term introgression of crop genes into wild sunflower populations. Theor Appl Genet 96(3–4):339–347

    CAS  PubMed  Google Scholar 

  • Liu CW, Lin CC, Yiu JC, Chen JJ, Tseng MJ (2008) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet 117(1):75–88

    CAS  PubMed  Google Scholar 

  • Liu YB, Wei W, Ma KP, Darmency H (2010) Backcrosses to Brassica napus of hybrids between B. juncea and B. napus as a source of herbicide-resistant volunteer-like feral populations. Plant Sci 179(5):459–465

    CAS  PubMed  Google Scholar 

  • Liu Y, Chen F, Guan X, Li J (2015) High crop barrier reduces gene flow from transgenic to conventional maize in large fields. Eur J Agron 71:135–140

    Google Scholar 

  • Liu Y, Neal Stewart Jr C, Li J, Wei W (2018) One species to another: sympatric Bt transgene gene flow from Brassica napus alters the reproductive strategy of wild relative Brassica juncea under herbivore treatment. Ann Bot 122(4):617–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo L (2014) Genetic use restriction technologies: a review. Plant Biotechnol J 12(8):995–1005

    PubMed  Google Scholar 

  • Lombardo F, Kuroki M, Yao SG, Shimizu H, Ikegaya T, Kimizu M et al (2017) The superwoman1-cleistogamy2 mutant is a novel resource for gene containment in rice. Plant Biotechnol J 15(1):97–106

    CAS  PubMed  Google Scholar 

  • Lonsdale WM, Watkinson AR (1983) Plant geometry and self-thinning. J Ecol 71:285–297

    Google Scholar 

  • Loureiro I, Escorial MC, González-Andujar JL, García-Baudin JM, Chueca MC (2007) Wheat pollen dispersal under semiarid field conditions: potential outcrossing with Triticum aestivum and Triticum turgidum. Euphytica 156(1–2):25–37

    Google Scholar 

  • Loureiro I, Escorial MC, González Á, Chueca MC (2012) Pollen-mediated gene flow in wheat (Triticum aestivum L.) in a semiarid field environment in Spain. Transgenic Res 21(6):1329–1339

    CAS  PubMed  Google Scholar 

  • Lu BR (2008) Transgene escape from GM crops and potential biosafety consequences: an environmental perspective. Collect Biosaf Rev 4:66–141

    Google Scholar 

  • Lu BR (2013) Introgression of transgenic crop alleles: its evolutionary impacts on conserving genetic diversity of crop wild relatives. J Syst Evol 51(3):245–262

    Google Scholar 

  • Luna V, Figueroa M, Baltazar M, Gomez L, Townsend R, Schoper JB (2001) Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci 41(5):1551–1557

    Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y et al (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5(2):263–374

    CAS  PubMed  Google Scholar 

  • Luo S, Li J, Stoddard TJ, Baltes NJ, Demorest ZL, Clasen BM et al (2015) Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8(9):1425–1427

    CAS  PubMed  Google Scholar 

  • Ma BL, Blackshaw RE, Roy J, He T (2011) Investigation on gene transfer from genetically modified corn (Zea mays L.) plants to soil bacteria. J Environ Sci Health B 46(7):590–599

    PubMed  Google Scholar 

  • Maeng JY, Won YJ, Piao R, Cho YI, Jiang W, Chin JH, Koh HJ (2006) Molecular mapping of a gene ‘ld (t)‘controlling cleistogamy in rice. Theor Appl Genet 112(8):1429–1433

    CAS  PubMed  Google Scholar 

  • Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B et al (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in Sorghum. Biol Plant 54(4):647–652

    CAS  Google Scholar 

  • Malone L (2004) Potential effects of GM crops on honey bee health. Bee World 85(2):29–36

    Google Scholar 

  • Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347(6295):737

    CAS  Google Scholar 

  • Mascia PN, Flavell RB (2004) Safe and acceptable strategies for producing foreign molecules in plants. Curr Opin Plant Biol 7(2):189–195

    CAS  PubMed  Google Scholar 

  • Maselko M, Heinsch SC, Chacón JM, Harcombe WR, Smanski MJ (2017) Engineering species-like barriers to sexual reproduction. Nat Commun 8(1):883

    PubMed  PubMed Central  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Boston, MA

    Google Scholar 

  • Mazza R, Soave M, Morlacchini M, Piva G, Marocco A (2005) Assessing the transfer of genetically modified DNA from feed to animal tissues. Transgenic Res 14(5):775–784

    CAS  PubMed  Google Scholar 

  • McCartney HA, Lacey ME (1991) Wind dispersal of pollen from crops of oilseed rape (Brassica napus L.). J Aerosol Sci 22(4):467–477

    Google Scholar 

  • McPartlan HC, Dale PJ (1994) An assessment of gene transfer by pollen from field-grown transgenic potatoes to non-transgenic potatoes and related species. Transgenic Res 3(4):216–225

    Google Scholar 

  • McPherson MA, Yang RC, Good AG, Nielson RL, Hall LM (2009) Potential for seed-mediated gene flow in agroecosystems from transgenic safflower (Carthamus tinctorius L.) intended for plant molecular farming. Transgenic Res 18(2):281–299

    CAS  PubMed  Google Scholar 

  • McWhorter CG (1961) Morphology and development of johnsongrass plants from seeds and rhizomes. Weeds 9:558–562

    Google Scholar 

  • Mello LV, Silva WJ, Medina Filho HP, Balvvé R (1995) Breeding systems in Coix lacryma-jobi populations. Euphytica 81(2):217–221

    Google Scholar 

  • Merwine NC, Gourley LM, Blackwell KH (1981) Inheritance of papery glume and cleistogamy in Sorghum L. Crop Sci 21(6):953–956

    Google Scholar 

  • Messeguer J (2003) Gene flow assessment in transgenic plants. Plant Cell Tissue Organ Cult 73(3):201–212

    CAS  Google Scholar 

  • Messeguer J, Fogher C, Guiderdoni E, Marfa V, Catala MM, Baldi G, Melé E (2001) Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theor Appl Genet 103(8):1151–1159

    CAS  Google Scholar 

  • Messeguer J, Marfa V, Catala MM, Guiderdoni E, Melé E (2004) A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed. Mol Breed 13(1):103–112

    CAS  Google Scholar 

  • Metje-Sprink J, Menz J, Modrzejewski D, Sprink T (2018) DNA-free genome editing: past, present and future. Front Plant Sci 9:1957

    PubMed  Google Scholar 

  • Mikhaylova EV, Kuluev BR (2018) Potential for gene flow from genetically modified Brassica napus on the territory of Russia. Environ Monit Assess 190(9):557

    PubMed  Google Scholar 

  • Millwood R, Nageswara-Rao M, Ye R, Terry-Emert E, Johnson CR, Hanson M et al (2017) Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field. BMC Biotechnol 17(1):40

    PubMed  PubMed Central  Google Scholar 

  • MoEFCC and DBT (2011). http://geacindia.gov.in/resource-documents.aspx

  • Mondon A, Owens GL, Poverene M, Cantamutto M, Rieseberg LH (2018) Gene flow in Argentinian sunflowers as revealed by genotyping-by-sequencing data. Evol Appl 11(2):193–204

    CAS  PubMed  Google Scholar 

  • Morrell PL, Lundy KE, Clegg MT (2003) Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proc Natl Acad Sci 100(19):10812–10817

    CAS  PubMed  Google Scholar 

  • Nagahara U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. J Jpn Bot 7:389–452

    Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G et al (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci 107(1):490–495

    CAS  PubMed  Google Scholar 

  • Nawaz MA, Mesnage R, Tsatsakis AM, Golokhvast KS, Yang SH, Antoniou MN, Chung G (2018) Addressing concerns over the fate of DNA derived from genetically modified food in the human body: a review. Food Chem Toxicol 124:423–430

    PubMed  Google Scholar 

  • Netherwood T, Martín-Orúe SM, O'Donnell AG, Gockling S, Graham J, Mathers JC, Gilbert HJ (2004) Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nat Biotechnol 22(2):204

    CAS  PubMed  Google Scholar 

  • Ni DH, Li J, Duan YB, Yang YC, Wei PC, Xu RF et al (2014) Identification and utilization of cleistogamy gene cl7 (t) in rice (Oryza sativa L.). J Exp Bot 65(8):2107–2117

    CAS  PubMed  Google Scholar 

  • Nicolia A, Manzo A, Veronesi F, Rosellini D (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34(1):77–88

    CAS  PubMed  Google Scholar 

  • Nieh SC, Lin WS, Hsu YH, Shieh GJ, Kuo BJ (2014) The effect of flowering time and distance between pollen source and recipient on maize. GM Crops Food 5(4):287–295

    PubMed  PubMed Central  Google Scholar 

  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria–a rare event? FEMS Microbiol Rev 22(2):79–103

    CAS  PubMed  Google Scholar 

  • Nirodi N (1955) Studies on Asiatic relatives of maize. Ann Mo Bot Gard 42(2):103–130

    Google Scholar 

  • O’Brien C, Arathi HS (2018) Bee genera, diversity and abundance in genetically modified canola fields. GM Crops Food 9(1):31–38

    PubMed  PubMed Central  Google Scholar 

  • Ohadi S, Hodnett G, Rooney W, Bagavathiannan M (2017) Gene flow and its consequences in Sorghum spp. Crit Rev Plant Sci 36(5–6):367–385

    Google Scholar 

  • Ohigashi K, Mizuguti A, Yoshimura Y, Matsuo K, Miwa T (2014) A new method for evaluating flowering synchrony to support the temporal isolation of genetically modified crops from their wild relatives. J Plant Res 127(1):109–117

    PubMed  Google Scholar 

  • Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh NS, Tucker EJ et al (2019) CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol J 17:1905–1913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-García S, Ezcurra E, Schoel B, Acevedo F, Soberón J, Snow AA (2005) Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003–2004). Proc Natl Acad Sci 102(35):12338–12343

    PubMed  Google Scholar 

  • Ostergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky MF (2006) Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J 4(1):45–51

    CAS  PubMed  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci 101(26):9885–9890

    CAS  PubMed  Google Scholar 

  • Palaudelmàs M, Peñas G, Melé E, Serra J, Salvia J, Pla M et al (2009) Effect of volunteers on maize gene flow. Transgenic Res 18(4):583–594

    PubMed  Google Scholar 

  • Palmblad IG (1968) Competition in experimental populations of weeds with emphasis on the regulation of population size. Ecology 49(1):26–34

    Google Scholar 

  • Park SE, Benjamin LR, Watkinson AR (2003) The theory and application of plant competition models: an agronomic perspective. Ann Bot 92(6):741–748

    PubMed  PubMed Central  Google Scholar 

  • Pascher K (2016) Spread of volunteer and feral maize plants in Central Europe: recent data from Austria. Environ Sci Eur 28(1):30

    PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci 92(13):6127–6131

    CAS  PubMed  Google Scholar 

  • Phelan S, Fitzgerald T, Grant J, Byrne S, Meade C, Mullins E (2015) Propensity for seed-mediated gene flow from potato crops and potential consequences for the coexistence of GM and non-GM potato systems. Eur J Agron 67:52–60

    Google Scholar 

  • Pigliucci M, Murren CJ (2003) Perspective: genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by? Evolution 57(7):1455–1464

    PubMed  Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209(12):2362–2367

    PubMed  Google Scholar 

  • Piñeyro-Nelson A, Van Heerwaarden J, Perales HR, Serratos-Hernández JA, Rangel A, Hufford MB et al (2009) Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Mol Ecol 18(4):750–761

    PubMed  PubMed Central  Google Scholar 

  • Pipatpongpinyo W, Korkmaz U, Wu H, Kena A, Ye H, Feng J, Gu XY (2019) Assembling seed dormancy genes into a system identified their effects on seedbank longevity in weedy rice. Heredity:1–11

    Google Scholar 

  • Pons E, Navarro A, Ollitrault P, Pena L (2011) Pollen competition as a reproductive isolation barrier represses transgene flow between compatible and co-flowering citrus genotypes. PLoS One 6(10):e25810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pontiroli A, Rizzi A, Simonet P, Daffonchio D, Vogel TM, Monier JM (2009) Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. Appl Environ Microbiol 75(10):3314–3322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash D, Verma S, Bhatia R, Tiwary BN (2011) Risks and precautions of genetically modified organisms. ISRN Ecol:2011

    Google Scholar 

  • Pu DQ, Shi M, Wu Q, Gao MQ, Liu JF, Ren SP et al (2014) Flower-visiting insects and their potential impact on transgene flow in rice. J Appl Ecol 51(5):1357–1365

    Google Scholar 

  • Qu GP, Sun YY, Pang HX, Wu Q, Wang FL, Hu SW (2014) EMS mutagenesis and ALS-inhibitor herbicide-resistant mutants of Brassica napus L. Chin J Oil Crop Sci 36(1):25–31

    Google Scholar 

  • Quispe-Huamanquispe DG, Gheysen G, Yang J, Jarret R, Rossel G, Kreuze JF (2019) The horizontal gene transfer of Agrobacterium T-DNAs into the series Batatas (genus Ipomoea) genome is not confined to hexaploid sweetpotato. Sci Rep 9(1):1–13

    CAS  Google Scholar 

  • Quist D (2010) Vertical (trans) gene flow: implications for crop diversity and wild relatives. Biotechnology & Biosafety Series, 11

    Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414(6863):541–543

    CAS  PubMed  Google Scholar 

  • Ramirez DA (1997) Gene introgression in maize (Zea mays ssp mays L.). Philipp J Crop Sci 22(2):51–63

    Google Scholar 

  • Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M et al (2017) Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J Evol Biol 30(8):1450–1477

    CAS  PubMed  Google Scholar 

  • Raynor GS, Ogden EC, Hayes JV (1972) Dispersion and deposition of corn pollen from experimental sources 1. Agron J 64(4):420–427

    Google Scholar 

  • Renganayaki K, Amirthadevaranthinam A, Sadasivam S (2000) Species relationship and hybrid identification in Sorghum using RAPD, protein and isozyme techniques. J Genet Breeding 54(2):117–124

    CAS  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27(1):83–109

    Google Scholar 

  • Ribbands CR (1951) The flight range of the honey-bee. J Anim Ecol:220–226

    Google Scholar 

  • Richardson AO, Palmer JD (2006) Horizontal gene transfer in plants. J Exp Bot 58(1):1–9

    PubMed  Google Scholar 

  • Ricroch A, Akkoyunlu S, Martin-Laffon J, Kuntz M (2018) Assessing the environmental safety of transgenic plants: honey bees as a case study. In: Advances in botanical research, vol 86. Academic, Amsterdam, pp 111–167

    Google Scholar 

  • Ridley CE, Alexander LC (2016) Applying gene flow science to environmental policy needs: a boundary work perspective. Evol Appl 9(7):924–936

    PubMed  PubMed Central  Google Scholar 

  • Rieben S, Kalinina O, Schmid B, Zeller SL (2011) Gene flow in genetically modified wheat. PLoS One 6(12):e29730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieseberg LH, Kim MJ, Seiler GJ (1999a) Introgression between the cultivated sunflower and a sympatric wild relative, Helianthus petiolaris (Asteraceae). Int J Plant Sci 160(1):102–108

    Google Scholar 

  • Rieseberg LH, Whitton J, Gardner K (1999b) Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152(2):713–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers JS (1950) Fertility relationships in maize-teosinte hybrids. Texas FARMER Collection. Tex Agric Exp Station Bull 730:1–18

    Google Scholar 

  • Rong J, Song Z, Su J, Xia H, Lu BR, Wang F (2005) Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing. New Phytol 168(3):559–566

    CAS  PubMed  Google Scholar 

  • Rong J, Lu BR, Song Z, Su J, Snow AA, Zhang X et al (2007) Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytol 173(2):346–353

    PubMed  Google Scholar 

  • Rong J, Song Z, De Jong TJ, Zhang X, Sun S, Xu X, Lu BR (2010) Modelling pollen-mediated gene flow in rice: risk assessment and management of transgene escape. Plant Biotechnol J 8(4):452–464

    PubMed  Google Scholar 

  • Rose CW, Millwood RJ, Moon HS, Rao MR, Halfhill MD, Raymer PL et al (2009) Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations. BMC Biotechnol 9(1):93

    PubMed  PubMed Central  Google Scholar 

  • Rossi F, Morlacchini M, Fusconi G, Pietri A, Mazza R, Piva G (2005) Effect of Bt corn on broiler growth performance and fate of feed-derived DNA in the digestive tract. Poult Sci 84(7):1022–1030

    CAS  PubMed  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19(9):870–875

    CAS  PubMed  Google Scholar 

  • Rutherford S, van der Merwe M, Wilson PG, Kooyman RM, Rossetto M (2019) Managing the risk of genetic swamping of a rare and restricted tree. Conserv Genet:1–19

    Google Scholar 

  • Ryffel GU (2014) Transgene flow: facts, speculations and possible countermeasures. GM Crops Food 5(4):249–258

    PubMed  PubMed Central  Google Scholar 

  • Sandhu S, Blount AR, Quesenberry KH, Altpeter F (2010) Apomixis and ploidy barrier suppress pollen-mediated gene flow in field grown transgenic turf and forage grass (Paspalum notatum Flüggé). Theor Appl Genet 121(5):919–929

    PubMed  Google Scholar 

  • Santalla M, Rodiño A, De Ron A (2002) Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean. Theor Appl Genet 104(6–7):934–944

    CAS  PubMed  Google Scholar 

  • Sapre AB, Barve SS, Deshpande DS (1985) Cytological report on the spontaneous interspecific hybrids in Coix L. involving aneuploids. Cytologia 50(4):655–661

    Google Scholar 

  • Saxena KB, Singh L, Ariyanayagam RP (1992) Role of partial cleistogamy in maintaining genetic purity of pigeonpea. Euphytica 66(3):225–229

    Google Scholar 

  • Schlüter K, Fütterer J, Potrykus I (1995) “Horizontal” gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs—if at all—at an extremely low frequency. Bio/Technology 13(10):1094–1098

    PubMed  Google Scholar 

  • Schmidt JJ, Pedersen JF, Bernards ML, Lindquist JL (2013) Rate of shattercane × Sorghum hybridization in situ. Crop Sci 53(4):1677–1685

    Google Scholar 

  • Schubbert R, Lettmann C, Doerfler W (1994) Ingested foreign (phage M13) DNA survives transiently in the gastrointestinal tract and enters the bloodstream of mice. Mol Gen Genet 242(5):495–504

    CAS  PubMed  Google Scholar 

  • Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc Natl Acad Sci 94(3):961–966

    CAS  PubMed  Google Scholar 

  • Seefeldt SS, Zemetra R, Young FL, Jones SS (1998) Production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) × wheat (Triticum aestivum) hybrids in the field by natural hybridization. Weed Sci 46(6):632–634

    CAS  Google Scholar 

  • Séguin-Swartz G, Beckie HJ, Warwick SI, Roslinsky V, Nettleton JA, Johnson EN, Falk KC (2013) Pollen-mediated gene flow between glyphosate-resistant Brassica napus canola and B. juncea and B. carinata mustard crops under large-scale field conditions in Saskatchewan. Can J Plant Sci 93(6):1083–1087

    Google Scholar 

  • Seide VE, Bernardes RC, Pereira EJG, Lima MAP (2018) Glyphosate is lethal and cry toxins alter the development of the stingless bee Melipona quadrifasciata. Environ Pollut 243:1854–1860

    CAS  PubMed  Google Scholar 

  • Serratos-Hernández JA, Gómez-Olivares JL, Salinas-Arreortua N, Buendía-Rodríguez E, Islas-Gutiérrez F, de-Ita A (2007) Transgenic proteins in maize in the soil conservation area of Federal District, México. Front Ecol Environ 5(5):247–252

    Google Scholar 

  • Sharma R, Alexander TW, McAllister TA, Bilodeau-Goeseels S (2007) Fate of transgenic 5-enolpyruvyl-shikimate-3-phosphate synthase (Cp4 Epsps) Dna from roundup ready cañóla in intestinal epithelial caco-2 cells. Res J Anim Sci 1:36–43

    Google Scholar 

  • Shi Y, Wang T, Li Y, Darmency H (2008) Impact of transgene inheritance on the mitigation of gene flow between crops and their wild relatives: the example of foxtail millet. Genetics 180(2):969–975

    PubMed  PubMed Central  Google Scholar 

  • Shivanna KR, Bahadur B (2015) Efficacy of biotechnological approaches to raise wide sexual hybrids. In: Bahadur B et al (eds) Plant biology and biotechnology: volume II: plant genomics and biotechnology. Springer, New Delhi, pp 347–362

    Google Scholar 

  • Singh M, Kumar M, Albertsen MC, Young JK, Cigan AM (2018) Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol Biol 97(4–5):371–383

    CAS  PubMed  Google Scholar 

  • Skogsmyr I (1994) Gene dispersal from transgenic potatoes to conspecifics: a field trial. Theor Appl Genet 88(6–7):770–774

    CAS  PubMed  Google Scholar 

  • Slarkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16(1):393–430

    Google Scholar 

  • Slavov GT, Leonardi S, Burczyk J, Adams WT, Strauss SH, Difazio SP (2009) Extensive pollen flow in two ecologically contrasting populations of Populus trichocarpa. Mol Ecol 18(2):357–373

    CAS  PubMed  Google Scholar 

  • Small E (1984) Hybridization in the domesticated-weed-wild complex. Plant Biosyst 195:210

    Google Scholar 

  • Snow AA, Moran-Palma P, Rieseberg LH, Wszelaki A, Seiler GJ (1998) Fecundity, phenology, and seed dormancy of F1 wild–crop hybrids in sunflower (Helianthus annuus, Asteraceae). Am J Bot 85(6):794–801

    CAS  PubMed  Google Scholar 

  • Snow AA, Uthus KL, Culley TM (2001) Fitness of hybrids between weedy and cultivated radish: implications for weed evolution. Ecol Appl 11(3):934–943

    Google Scholar 

  • Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR et al (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol Appl 13(2):279–286

    Google Scholar 

  • Snow AA, Culley TM, Campbell LG, Sweeney PM, Hegde SG, Ellstrand NC (2010) Long-term persistence of crop alleles in weedy populations of wild radish (Raphanus raphanistrum). New Phytol 186(2):537–548

    CAS  PubMed  Google Scholar 

  • Song Z, Lu B, Zhu Y, Chen J (2002) Pollen competition between cultivated and wild rice species (Oryza sativa and O. rufipogon). New Phytol 153(2):289–296

    Google Scholar 

  • Song ZP, Lu BR, Zhu YG, Chen JK (2003) Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol 157(3):657–665

    CAS  Google Scholar 

  • Song Z, Zhu W, Rong J, Xu X, Chen J, Lu BR (2006) Evidences of introgression from cultivated rice to Oryza rufipogon (Poaceae) populations based on SSR fingerprinting: implications for wild rice differentiation and conservation. Evol Ecol 20(6):501–522

    Google Scholar 

  • Spencer LJ, Snow AA (2001) Fecundity of transgenic wild–crop hybrids of Cucurbita pepo (Cucurbitaceae): implications for crop-to-wild gene flow. Heredity 86(6):694–702

    CAS  PubMed  Google Scholar 

  • Stanley SM (1979) Macroevolution: pattern and process. Freeman, San Francisco

    Google Scholar 

  • Stewart CN Jr, Halfhill MD, Warwick SI (2003) Genetic modification: transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4(10):806–817

    CAS  PubMed  Google Scholar 

  • Svab Z, Maliga PAL (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci 90(3):913–917

    CAS  PubMed  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci 104(17):7003–7008

    CAS  PubMed  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci 87(21):8526–8530

    CAS  PubMed  Google Scholar 

  • Telem SR, Wani H, Singh BN, Nandini R, Sadhukhan R, Bhattacharya S, Mandal N (2013) Cisgenics-a sustainable approach for crop improvement. Curr Genomics 14(7):468–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tenaillon MI, U'Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21(7):1214–1225

    CAS  PubMed  Google Scholar 

  • Thomson JA (2001) Horizontal transfer of DNA from GM crops to bacteria and to mammalian cells. J Food Sci 66(2):188–193

    CAS  Google Scholar 

  • Timmons AM, O’brien ET, Charters YM, Dubbels SJ, Wilkinson MJ (1995) Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera. In: The methodology of plant genetic manipulation: criteria for decision making. Springer, Dordrecht, pp 417–423

    Google Scholar 

  • Ting YC (1960) Cytological observations on two tropical forms of Tripsacum. Bot Mus Leafl Harv Univ 19(4):97–108

    Google Scholar 

  • Turturo C, Friscina A, Gaubert S, Jacquemond M, Thompson JR, Tepfer M (2008) Evaluation of potential risks associated with recombination in transgenic plants expressing viral sequences. J Gen Virol 89(1):327–335

    CAS  PubMed  Google Scholar 

  • Turuspekov Y, Mano Y, Honda I, Kawada N, Watanabe Y, Komatsuda T (2004) Identification and mapping of cleistogamy genes in barley. Theor Appl Genet 109(3):480–487

    CAS  PubMed  Google Scholar 

  • Tynan JL, Williams MK, Conner AJ (1990) Low frequency of pollen dispersal from a field trial of transgenic potatoes. J Genet Breeding 44(4):303–305

    Google Scholar 

  • Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC et al (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5′ and 3′ regulatory sequences. Transgenic Res 20(1):137–151

    CAS  PubMed  Google Scholar 

  • Vallaeys G (1948) Le “Coix Lacryma-Jobi”. Bull Agricole du Congo Belge Arch 39:247–304

    CAS  Google Scholar 

  • Van de Wiel CCM, Groot MHM, den Nijs HCM (2003) Gene flow from crops to wild plants and its population-ecological consequences in the context of GM-crop biosafety, including some recent experiences from lettuce. In: Proceedings of the frontis workshop on environmental costs and benefits of transgenic crops, Wageningen, the Netherlands, 1–4 June 2003 (No. 7, pp 97–110). Springer

    Google Scholar 

  • Van Deynze AE, Sundstrom FJ, Bradford KJ (2005) Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Sci 45(4):1565–1570

    Google Scholar 

  • Van Eenennaam AL, Wells KD, Murray JD (2019) Proposed U.S. regulation of gene-edited food animals is not fit for purpose. Science Food (Nat Partner J) 3:3. https://doi.org/10.1038/s41538-019-0035-y

    Article  Google Scholar 

  • Vanderlip RL, Reeves HE (1972) Growth stages of sorghum [Sorghum bicolor (L.) Moench]. Agron J 64(1):13–16

    Google Scholar 

  • Vázquez DE, Ilina N, Pagano EA, Zavala JA, Farina WM (2018) Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS One 13(10):e0205074

    PubMed  PubMed Central  Google Scholar 

  • Walsh MC, Buzoianu SG, Rea MC, O’Donovan O, Gelencser E, Ujhelyi G et al (2012) Effects of feeding Bt MON810 maize to pigs for 110 days on peripheral immune response and digestive fate of the cry1Ab gene and truncated Bt toxin. PLoS One 7(5):e36141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zemetra RS, Hansen J, Mallory-Smith CA (2001) The fertility of wheat × jointed goatgrass hybrid and its backcross progenies. Weed Sci 49(3):340–345

    CAS  Google Scholar 

  • Wang T, Li Y, Shi Y, Reboud X, Darmency H, Gressel J (2004) Low frequency transmission of a plastid-encoded trait in Setaria italica. Theor Appl Genet 108(2):315–320

    CAS  PubMed  Google Scholar 

  • Wang F, Yuan QH, Shi L, Qian Q, Liu WG, Kuang BG et al (2006) A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O. rufipogon) and barnyard grass (Echinochloa crusgalli). Plant Biotechnol J 4(6):667–676

    CAS  PubMed  Google Scholar 

  • Wang X, Singer SD, Liu Z (2012) Silencing of meiosis-critical genes for engineering male sterility in plants. Plant Cell Rep 31(4):747–756

    CAS  PubMed  Google Scholar 

  • Warwick SI, Francis A, Gugel RK (2009) Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae). Agriculture and Agri-Food Canada, Ottawa, pp 1–6

    Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M et al (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci 101(40):14533–14538

    CAS  PubMed  Google Scholar 

  • Weekes R, Allnutt T, Boffey C, Morgan S, Bilton M, Daniels R, Henry C (2007) A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Res 16(2):203–211

    CAS  PubMed  Google Scholar 

  • Whitton J, Wolf DE, Arias DM, Snow AA, Rieseberg LH (1997) The persistence of cultivar alleles in wild populations of sunflowers five generations after hybridization. Theor Appl Genet 95(1–2):33–40

    Google Scholar 

  • Wilcks A, van Hoek AH, Joosten RG, Jacobsen BB, Aarts HJ (2004) Persistence of DNA studied in different ex vivo and in vivo rat models simulating the human gut situation. Food Chem Toxicol 42(3):493–502

    CAS  PubMed  Google Scholar 

  • Wilkes HG (1977) Hybridization of maize and teosinte, in Mexico and Guatemala and the improvement of maize. Econ Bot:254–293

    Google Scholar 

  • Willenborg CJ, Brûlé-Babel AL, Van Acker RC (2009) Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.). Transgenic Res 18(6):841–854

    CAS  PubMed  Google Scholar 

  • Yan S, Zhu J, Zhu W, Li Z, Shelton AM, Luo J et al (2015) Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators. Sci Rep 5:15917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan S, Zhu W, Zhang B, Zhang X, Zhu J, Shi J et al (2018) Pollen-mediated gene flow from transgenic cotton is constrained by physical isolation measures. Sci Rep 8(1):2862

    PubMed  PubMed Central  Google Scholar 

  • Zapiola ML, MALLORY-SMITH CA (2012) Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population. Mol Ecol 21(19):4672–4680

    CAS  PubMed  Google Scholar 

  • Zapiola ML, Mallory-Smith CA (2017) Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level. PLoS One 12(3):e0173308

    PubMed  PubMed Central  Google Scholar 

  • Zemetra RS, Hansen J, Mallory-Smith CA (1998) Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci 46(3):313–317

    CAS  Google Scholar 

  • Zhang BH, Pan XP, Guo TL, Wang QL, Anderson TA (2005) Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.). Mol Biotechnol 31(1):11–20

    CAS  PubMed  Google Scholar 

  • Zhang C, Norris-Caneda KH, Rottmann WH, Gulledge JE, Chang S, Kwan BYH et al (2012) Control of pollen-mediated gene flow in transgenic trees. Plant Physiol 159(4):1319–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Lou J, Foley ME, Gu XY (2017) Comparative mapping of seed dormancy loci between tropical and temperate ecotypes of weedy rice (Oryza sativa L.). G3: Genes Genomes Genetics 7(8):2605–2614

    CAS  PubMed  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19(1):210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou T, He Z, Qu L, Liu M, Zeng J, Liang Y et al (2017) Knockout of OsACOS12 caused male sterility in rice. Mol Breed 37(10):126

    Google Scholar 

  • Zuo L, Yang R, Zhen Z, Liu J, Huang L, Yang M (2018) A 5-year field study showed no apparent effect of the Bt transgenic 741 poplar on the arthropod community and soil bacterial diversity. Sci Rep 8(1):1956

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements and Declarations

Research in our laboratory is funded by Department of Biotechnology, Govt. of India; Department of Science and Technology, Govt. of India; University Grants Commission, Govt. of India through extra-mural research grant, and Delhi University through R&D support and Infrastructure grant. Financial assistance in form of JRF/SRF/Post-doctoral fellowship to ML (UGC), EB (UGC/DU), NC (UGC) and MD (UGC) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lal, M., Bhardwaj, E., Chahar, N., Dangwal, M., Das, S. (2020). (Trans)Gene Flow: Mechanisms, Biosafety Concerns and Mitigation for Containment. In: Tandon, R., Shivanna, K., Koul, M. (eds) Reproductive Ecology of Flowering Plants: Patterns and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4210-7_15

Download citation

Publish with us

Policies and ethics