Skip to main content

Outbreeding in Angiosperms: Floral Architecture and Sexuality

  • Chapter
  • First Online:
Reproductive Ecology of Flowering Plants: Patterns and Processes
  • 860 Accesses

Abstract

Sexuality in flowering plants is distinctly correlated with mating systems. Maximum numbers of flowering plants are outbreeders, and cross-pollination is the predominant type of pollen transfer to increase genetic variation. Morphological traits that promote outbreeding include temporal (dichogamy) and spatial separation (herkogamy) of male and female functions of flowers, monoecy and dioecy. Monoecy permits both inbreeding and outbreeding, while outbreeding is the only means of reproduction in dioecious species. Outbreeding confers on plant an opportunity to ‘move’ its genes amongst conspecific populations and is largely influenced by the availability of pollinators. Though pollinator-driven mating is favoured by most plant species, certain populations may occasionally maximize their reproductive fitness under adverse conditions by adopting multiple strategies such as autonomous selfing, dichogamy, late and early selfing, prepotency and outbreeding. Sexual plasticity manifested through mixed-mating, multiple mating, biparental inbreeding and sex switching has helped plants not only reproduce sexually but also ‘move on’. In addition, pollination environment also alters the outcrossing rates in a population emphasizing the fact that mating systems are labile. How various populations maintain potential for such shifts needs to be investigated. This chapter focuses on the outbreeding strategies in plants and also discusses how mating systems may evolve over the next few decades in response to challenges presented by changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizen MA, Feinsinger P (1994) Habitat fragmentation, native insect pollinators, and feral honey bees in argentine ‘Chaco Serrano’. Ecol Appl 4(2):378–392

    Google Scholar 

  • Armbruster WS, Mulder CPH, Baldwin BG, Kalisz S, Wessa B, Nute H (2002) Comparative analysis of late floral development and mating-system evolution in tribe Collinsieae (Scrophulariaceae, s.l.). Amer J Bot 89:37–49

    Google Scholar 

  • Ashman TL, Knight TM, Steets JA et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9:347–349

    Google Scholar 

  • Baker HG, Hurd PD Jr (1968) Intrafloral ecology. Annu Rev Entomol 55:10–18

    Google Scholar 

  • Barrett SCH (1992) Evolution and function of heterostyly. Springer-Verlag, Berlin

    Google Scholar 

  • Barrett SCH (2000) Microevolutionary influences of global change on plant invasions. In: Mooney HA, Hobbs RK (eds) The impact of global change on invasive species. Island Press, Covelo, CA, pp 115–139

    Google Scholar 

  • Barrett SCH (2002) Sexual interference of the floral kind. Heredity 88:154–159

    CAS  PubMed  Google Scholar 

  • Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc Biol Sci 280(1765):20130913

    PubMed  PubMed Central  Google Scholar 

  • Barrett SCH, Ness RW, Vallejo-Marín M (2009) Evolutionary pathways to self-fertilization in a tristylous plant species. New Phytol 183:546–556

    PubMed  Google Scholar 

  • Bergh BO (1975) Avocados. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 541–554

    Google Scholar 

  • Bertin RI, Newman CM (1993) Dichogamy in angiosperms. Bot Rev 59:112–152

    Google Scholar 

  • Bhardwaj M, Eckert CG (2001) Functional analysis of synchronous dichogamy in flowering rush, Butomus umbellatus (Butomaceae). Amer J Bot 88:2204–2213

    CAS  Google Scholar 

  • Borges RM (1998) Gender in Plants 2. More about why and how plants change sex. Resonance 3:30–39

    Google Scholar 

  • Busch JW, Delph LF (2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann Bot 109:553–562

    PubMed  Google Scholar 

  • Cardoso JCF, Viana ML, Matias R, Furtado MT, Caetano APS, Consolaro HN, Brito VLG (2018) Towards a unified terminology for angiosperm reproductive systems. Acta Botanica Brasilica 32(3):329–348

    Google Scholar 

  • Castro S, Silveira P, Navarro L (2008) Consequences of nectar robbing for the fitness of a threatened plant species. Plant Ecol 199:201–208

    Google Scholar 

  • Charlesworth D (1989a) Why do plants produce so many more ovules than seeds? Nature 338:21–22

    Google Scholar 

  • Charlesworth D (1989b) Evolution of low female fertility in plants: pollen limitation, resource allocation and genetic load. Trends Ecol Evol 4:289–292

    CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Amer Nat 112:975–997

    Google Scholar 

  • Chaudhary A, Yadav SR, Tandon R (2018) Delayed selfing ensures reproductive assurance in Utricularia praeterita and Utricularia babui in Western Ghats. J Plant Res 131:599–610

    PubMed  Google Scholar 

  • Crossman A, Charlesworth D (2013) Breakdown of dioecy: models where males acquire cosexual function. Evolution 68:426–440

    PubMed  Google Scholar 

  • Cruden RW, Hermann-Parker SM (1977) Temporal dioecism: An alternative to dioecism? Evolution 31:863–866

    PubMed  Google Scholar 

  • Cruden RW, Lyon DL (1989) Facultative xenogamy: examination of a mixed mating system. In: Bock JH, Linhart YB (eds) The evolutionary ecology of plants. Westview Press, Boulder, pp 171–208

    Google Scholar 

  • Darwin CR (1896) Recollections of Darwin. In: Lankester ER, Darwin CR, Warner CD (eds) Library of the world’s best literature ancient and modern, vol 2. Peale RS and Hill JA, New York, pp 4835–4393

    Google Scholar 

  • De Jong PC (1976) Flowering and sex expression in Acer L. A biosystematic study. Mededelingen Landbouwhogeschool Wageningen 76:1–201

    Google Scholar 

  • De Jong AJ, Schmidt ΕDL, de Vries SC (1993) Early events in higher plant embryogenesis. Plant Mol Biol 22:367–377

    PubMed  Google Scholar 

  • Dixon KW (2009) Pollination and restoration. Science 325:571–573

    CAS  PubMed  Google Scholar 

  • Dorken ME, Friedman J, Barrett SCH (2002) The evolution and maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae). Evolution 56:31

    PubMed  Google Scholar 

  • Dufay M, Champelovier P, Kafer J, Henry JP, Mousset S, Marais GAB (2014) An angiosperm-wide analysis of the gynodioecy-dioecy pathway. Ann Bot 114:539–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert CG (2002) Effect of geographical variation in pollinator fauna on the mating system of Decodon verticillatus (Lythraceae). Int J Plant Sci 163:123–132

    Google Scholar 

  • Eckert CG, Herlihy CR (2004) Using a cost-benefit approach to understand the evolution of self-fertilization in plants: the perplexing case of Aquilegia canadensis (Ranunculaceae). Plant Spec Biol 19:159–173

    Google Scholar 

  • Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou PO, Goodwillie C, Johnston MO, Kelly JK, Moeller DA, Porcher E, Ree RH, Vallejo-Marín M, Winn AA (2010) Plant mating systems in a changing world. Trends Ecol Evol 25(1):35–43

    PubMed  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    PubMed  Google Scholar 

  • Ehlers BK, Bataillon T (2007) ‘Inconstant males’ and the maintenance of labile sex expression in subdioecious plants. New Phytol 174:194–211

    Google Scholar 

  • Endress PK (1990) Patterns of floral construction in ontogeny and phylogeny. Biol J Linn Soc 39:153–176

    Google Scholar 

  • Endress PK (1996) Structure and function of female and bisexual organ complexes in Gnetales. Int J Plant Sci 157:S113–S125

    Google Scholar 

  • Endress PK (2010) Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J Syst Evol 48:225–239

    Google Scholar 

  • Endress PK, Igersheim A (2000a) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161:S211–S223

    Google Scholar 

  • Endress PK, Igersheim A (2000b) The reproductive structures of the basal angiosperm Amborella trichopoda (Amborellaceae). Int J Plant Sci 161:S237–S248

    Google Scholar 

  • Fenster CB, Galloway LF (2000) Population differentiation in an annual legume: genetic architecture. Evolution 54:1157–1172

    CAS  PubMed  Google Scholar 

  • Fenster CB, Marte’n-Rodrı’guez S (2007) Reproductive assurance and the evolution of pollination specialization. Int JPlant Sci 168:215–228

    Google Scholar 

  • Fetscher AE (2001) Resolution of male - female conflict in an hermaphroditic flower. Proc Biol Sci 268(1466):525–529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugenics 11:53–63

    Google Scholar 

  • Goldberg MT, Spigler RB, Ashman TL (2010) Comparative genetic mapping points to different sex chromosomes in sibling species of wild strawberry (Fragaria). Genetics 186:1425–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Ann Rev Ecol Evol Sys 36:47–79

    Google Scholar 

  • Harder L, Aizen M (2010) Floral adaptation and diversification under pollen limitation. Phil Trans R Soc B 365:529–543

    PubMed  Google Scholar 

  • Herlihy C, Eckert CG (2007) Evolutionary analysis of a key floral trait in Aquilegia canadensis (Ranunculaceae): genetic variation in herkogamy and its effect on the mating system. Evolution 61:1661–1674

    PubMed  Google Scholar 

  • Howlett BJ, Knox RB, Paxton SH, Heslop-Harrison J (1975) Pollen-wall proteins: physiochemical characterization and role in self-incompatibility in Cosmos bipinnatus. Proc R Soc Lond Ser B Biol Sci 188:167–182

    Google Scholar 

  • Igic B, Busch JW (2013) Is self-fertilization an evolutionary dead end? New Phytol 198:386–397

    PubMed  Google Scholar 

  • Jacquemyn H, Brys R (2008) Density-dependent mating and reproductive assurance in the temperate forest herb Paris quadrifolia (Trilliaceae). Amer J Bot 95:294–298

    Google Scholar 

  • Jacquemyn H, De Meester L, Jongejans E, Honnay O (2012) Evolutionary changes in plant reproductive traits following habitat fragmentation and their consequences for population fitness. J Ecol 100:76–87

    Google Scholar 

  • Jain SK (1976) The evolution of in-breeding in plants. Ann Rev Ecol Syst 7:469–495

    Google Scholar 

  • Jeiter J, Danisch F, Hilger HH (2016) Polymery and nectary chambers in Codon (Codonaceae): flower and fruit development in a small, capsule-bearing family of Boraginales. Flora – morphology, distribution. Funct Ecol Plants 220:94–102

    Google Scholar 

  • Jennersten O, Loman J, Moller AP, Robertson J, Widen B (1992) Conservation biology in agricultural habitat islands. In: Hansson L (ed) Conservation biology by ecological principles. Elsevier, London, pp 396–425

    Google Scholar 

  • Kalisz S, Vogler DW (2003) Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84:2928–2942

    Google Scholar 

  • Kalisz S, Vogler DM, Hanley KM (2004) Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430:884–887

    CAS  PubMed  Google Scholar 

  • Karron JD, Mitchell RJ, Bell JM (2006) Multiple pollinator visits to Mimulus ringens (Phrymaceae) flowers increase mate number and seed set within fruits. Am J Bot 93(9):1306–1312

    PubMed  Google Scholar 

  • Klinkhamer PGL, de Jong TJ (1993) Attractiveness to pollinators: a plant’s dilemma. Oikos 66:180–184

    Google Scholar 

  • Kramer EM, Lewandowski M, Beri S, Bernard J, Borkowski M, Borkowski MH et al (2008) Auxin gradients are associated with polarity changes in trees. Science 320:1610

    CAS  PubMed  Google Scholar 

  • Lande R (1994) Risk of population extinction from fixation of new deleterious mutations. Evolution 48(5):1460–1469

    PubMed  Google Scholar 

  • Lankinen A, Armbruster WS (2007) Pollen competition reduces inbreeding depression in Collinsia heterophylla (plantaginaceae). J Evol Biol 20:737–749

    CAS  PubMed  Google Scholar 

  • Lankinen A, Madjidian JA (2011) Enhancing pollen competition by delaying stigma receptivity: pollen deposition schedules affect siring ability, paternal diversity and seed production in Collinsia heterophylla (plantaginaceae). Am J Bot 98:1–10

    Google Scholar 

  • Lloyd DG (1975a) Breeding systems in Cotula. IV. Reversion from dioecy to monoecy. New Phytol 74:125–145

    Google Scholar 

  • Lloyd DG (1975b) Maintenance of gynodioecy and andriodioecy in angiosperms. Genetica 45:325–339

    Google Scholar 

  • Lloyd DG (1979) Some reproductive factors affecting the selection of self-fertilization in plants. Amer Nat 113:67–79

    Google Scholar 

  • Lloyd DG (1980) Demographic factors and mating patterns in angiosperms. In: Solbrig OT (ed) Demography and evolution in plant populations. Univ California Press, Berkeley, pp 67–88

    Google Scholar 

  • Lloyd DG (1982) Selection of combined versus separate sexes in seed plants. Amer Nat 120:571–585

    Google Scholar 

  • Lloyd DG, Yates JMA (1982) Intra sexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified by Wahlenbergia albomarginata (campanulaceae). Evolution 36:903–916

    PubMed  Google Scholar 

  • Lloyd DG (1984) Gender allocations in outcrossing cosexual plants. In: Dirzo R, Sarukhan J (eds) Perspectives on plant population ecology. Sinauer, Sunderland, pp 277–300

    Google Scholar 

  • Lloyd DG, Schoen DJ (1992) Self and cross fertilization in plants 1. Functional dimensions. Int J Plant Sci 153:358–369

    Google Scholar 

  • Lloyd DG, Bawa KS (1984) Modification of the gender of seed plants in varying conditions. Evol Biol 17:255–338

    Google Scholar 

  • Lloyd DG, Schoen DJ (1992) Self and cross-fertilization in plants. I. Functional dimensions. Int J Plant Sci 153:358–369

    Google Scholar 

  • Lloyd DG, Webb CJ (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperm. I. Dichogamy. New Zeal J Bot 24:135–162

    Google Scholar 

  • Mangla Y, Tandon R (2011) Insects facilitate wind pollination in pollen-limited Crateva adansonii (Capparaceae). Austr J Bot 59:61–69

    Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  • McCauley DE, Bailey MF (2009) Recent advances in the study of gynodioecy: the interface of theory and empiricism. Ann Bot 104:611–620

    PubMed  PubMed Central  Google Scholar 

  • Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD (2009) New frontiers in competition for pollination. Ann Bot 103:1403–1413

    PubMed  PubMed Central  Google Scholar 

  • Mulcahy DL (1979) The rise of the angiosperms: a genecological factor. Science 206:20–23

    CAS  PubMed  Google Scholar 

  • Muyle A, Martin H, Zemp N et al (2018) Dioecy in plants: an evolutionary dead end? Insights from a population genomics study in the Silene genus. Biorxiv. https://doi.org/10.1101/414771

  • Pannell JR (2002) The evolution and maintenance of androdioecy. Ann Rev Ecol Syst 33:397–425

    Google Scholar 

  • Pazy B (1984) Insect induced self-pollination. Plant Syst Evol 144:315–320

    Google Scholar 

  • Ohya I, Nanami S, Itoh A (2017) Dioecious plants are more precocious than cosexual plants: a comparative study of relative sizes at the onset of sexual reproduction in woody species. Ecol Evol 7:1–9

    Google Scholar 

  • Qu R, Li X, Luo Y et al (2007) Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination. Ann Bot 100:1155–1164

    PubMed  PubMed Central  Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Amer J Bot 101:1588–1596

    Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Amer J Bot 82:596–606

    Google Scholar 

  • Richards AJ (1986) Plant breeding systems George Allen & Unwin, London

    Google Scholar 

  • Riley CV (1873) On a new genus in the lepidopterous family Tineidae, with remarks on the fertilization of Yucca. Trans Acad Sci St Louis 3:55–64. (Reprinted in Fifth Annual Report of the Missouri State Entomologist, pp. 150–160)

    Google Scholar 

  • Rogstad SH (1994) Biosystematics and evolution of the Polyalthia- Hypoleuca species complex of Malesia 3. Floral ontogeny and breeding systems. Amer J Bot 81:145–154

    Google Scholar 

  • Ronse De Craene LP (2010) Floral diagrams: an aid to understanding flower morphology and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Ross MD (1978) The evolution of gynodioecy and subdioecy. Evolution 32:147–188

    Google Scholar 

  • Rossetto M, Gross CL, Jones R, Hunter J (2004a) The impact of clonality on an endangered tree (Elaeocarpus williamsianus) in a fragmented rainforest. Biol Conserv 117:33–39

    Google Scholar 

  • Rossetto M, Jones R, Hunter J (2004b) Genetic effects of rainforest fragmentation in an early successional tree (Elaeocarpus grandis). Heredity 93:610–618

    CAS  PubMed  Google Scholar 

  • Rudall PJ, Sokoloff DD, Remizowa MV, Conran JG, Davis JI et al (2007) Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage. Amer J Bot 94:1073–1092

    Google Scholar 

  • Rudall PJ, Remizowa MV, Prenner G, Prychid CJ, Tuckett RE, Sokoloff DD (2009) Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower. Amer J Bot 96:67–82

    Google Scholar 

  • Sakai AK, Weller SG (1999) Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. In: Geber MA, Dawson TE, Delph LF (eds) Sexual and gender dimorphism in flowering plants. Springer-Verlag, Heidelberg, pp 1–31

    Google Scholar 

  • Sargent RD, Mandegar MA, Otto SP (2006) A model of the evolution of dichogamy incorporating sex-ratio selection, anther-stigma interference, and inbreeding depression. Evolution 60:934–944

    PubMed  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:8–32

    Google Scholar 

  • Schaefer H, Renner SS (2010) A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. Molec Phylog Evol 54:553–560

    Google Scholar 

  • Schneider EL, Buchanan JD (1980) Morphological studies of the Nymphaeaceae. XI. The floral biology of Nelumbo pentapetala. Amer J Bot 67:189–193

    Google Scholar 

  • Schoen DJ, Brown AHD (1991) Whole- and part-flower self-pollination in Glycine clandestina and G. argyrea and the evolution of autogamy. Evolution 45:1665–1674

    Google Scholar 

  • Schoen DJ, Morgan MT, Bataillon T (1996) How does self-pollination evolve? Inferences from floral ecology and molecular genetic variation. Philos Trans Royal Soc London B 351:1281–1290

    Google Scholar 

  • Sharma MV, Uma Shanker R, Vasudeva R, Shivanna KR (2010) Functional dioecy in Nothapodytes nimmoniana, a distylous species in the Western Ghats. Curr Sci 99:1444–1449

    Google Scholar 

  • Shivanna KR (2015) Reproductive assurance through autogamous self-pollination across diverse sexual and breeding systems. Curr Sci 109:1255–1263

    Google Scholar 

  • Specht CD, Bartlett ME (2009) Flower evolution: the origin and subsequent diversification of the angiosperm flower. Annu Rev Ecol Evol Syst 40:217–243

    Google Scholar 

  • Stebbins GL (1957) Self-fertilization and population variability in the higher plants. Am Nat 91:337–354

    Google Scholar 

  • Stout AB (1928) Dichogamy in flowering plants. Bull Torrey Bot Club 55:141–153

    Google Scholar 

  • Takebayashi N, Morrell PL (2001) Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Amer J Bot 88:1143–1150

    CAS  Google Scholar 

  • Vamosi JC et al (2006) Pollination decays in biodiversity hotspots. Proc Natl Acad Sci 103:95

    Google Scholar 

  • van Kleunen M (2007) Adaptive genetic differentiation in life-history traits between populations of Mimulus guttatus with annual and perennial life cycles. Evol Ecol 21:185–199

    Google Scholar 

  • van der Pijl L (1978) Reproductive integration and sexual disharmony in floral functions. In: Richards AJ (ed) The pollination of flowers by insects. Academic, London, pp 79–88

    Google Scholar 

  • Waites AR, Agren J (2006) Stigma receptivity and effects of prior self-pollination on seed set in tristylous Lythrum salicaria (lythraceae). Am J Bot 93:142–147

    Google Scholar 

  • Webb CJ, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zea J Bot 24:163–178

    Google Scholar 

  • Weiblen GD, Oyama RK, Donoghue MJ (2000) Phylogenetic analysis of dioecy in monocotyledons. Amer Nat 155:46–58

    Google Scholar 

  • Weigend M, Gottschling M (2006) Evolution of funnel-revolver flowers and ornithophily in Nasa (Loasaceae). Plant Biol 8:120–142

    CAS  PubMed  Google Scholar 

  • Wiebes JT (1979) Co-evolution of figs and their insect pollinators. Ann Rev Ecol Syst 10:1–12

    Google Scholar 

  • Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proc R Soc Lond B 280:20130133

    Google Scholar 

  • Wyatt R (1983) Pollinator–plant interactions and the evolution of breeding systems. In: Real L (ed) Pollination biology. Academic Press, Orlando, pp 51–95

    Google Scholar 

  • Yahara T (1992) Graphical analysis of mating system evolution in plants. Evolution 46:557–561

    PubMed  Google Scholar 

  • Zhang Q, Onstein RE, Little SA, Sauquet H (2019) Estimating divergence times and ancestral breeding systems in Ficus and moraceae. Ann Bot 123(1):191–204

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, I. (2020). Outbreeding in Angiosperms: Floral Architecture and Sexuality. In: Tandon, R., Shivanna, K., Koul, M. (eds) Reproductive Ecology of Flowering Plants: Patterns and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4210-7_11

Download citation

Publish with us

Policies and ethics