Skip to main content

Methods of Seed Enhancement

  • Chapter
  • First Online:
Advances in Seed Production and Management
  • 455 Accesses

Abstract

Seed is one of the most basic inputs for agriculture. It evolves over time to respond to a variety of environments including human behaviour. The adaptation of seed leads to sustainable crop production and its satisfactory performance over a period of time. Seed enhancement technique further improves seed performance. Agriculture productivity is directly proportional to viability of seeds. Normally only 20–25% of total seeds are able to germinate. In seed enhancement methods, seeds are pretreated physically, physiologically and biologically to overcome germination constraints. Various other techniques have been employed, which are followed by conceptual development of processes for germination rates and seedling vigour. This chapter considers post-harvest treatments that improve germination or seedling growth or facilitate the delivery of seeds and other materials required at the time of sowing. Other considerations are seed hydration, biological seed treatment and seed coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal I, Ashraf S, Qasim M, Basra SMA, Shahid M (2009) Does halopriming improve germination and seedling vigor in marigold (Tagetus sp.). Seed Sci Technol 37:436–445

    Article  Google Scholar 

  • Afzal I, Hussain B, Basra SMA, Rehman H (2012) Priming with MLE reduces imbibitional chilling injury in spring maize. Seed Sci Technol 40:271–276

    Article  Google Scholar 

  • Afzal I, Noor MA, Bakhtavar MA, Ahmad A, Haq Z (2015) Improvement of spring maize (Zea mays) performance through physical and physiological seed enhancements. Seed Sci Technol 43(2):1–12

    Article  Google Scholar 

  • Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W (2007) Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–624

    Article  CAS  PubMed  Google Scholar 

  • Akitsu T, Ohkawa H, Tsuji M, Kimura H, Kogoma M (2005) Plasma sterilization using glow discharge at atmospheric pressure. Surface Coatings Technol 193:29–34

    Article  CAS  Google Scholar 

  • Al-Salhi M, Ghannam MM, Al-Ayed MS, El-Kameesy SU, Roshdy S (2004) Effect of gamma irradiation on the biophysical and morphological properties of corn. Nahrung 48:95–98

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2001) Processing of the oil seed meet. Tamil Nadu Agriculture University, Coimbatore

    Google Scholar 

  • Araújo SS, Paparella S, Dondi D, Bentivoglio A, Carbonera D, Balestrazzi A (2016) Physical methods for seed invigoration: advantages and challenges in seed technology. Front Plant Sci 7:646

    Article  PubMed Central  Google Scholar 

  • Bajehbaj AF (2010) The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. African J Biotechnol (12):1764–1770

    Google Scholar 

  • Bakhtavar MA, Afzal I, Basra SMA, Ahmad A, Noor M (2015) Physiological strategies to improve the performance of spring maize (Zea mays L.) planted under early and optimum sowing conditions. PLoS One 10(4):e0124441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhosale RS, More AD (2013) Effect of EMS (ethyl methane sulfonate) on seed germination, seedling height and seedling injury in Withania somnifera, (L.) Dunal. Int J Life Sci 1(2):158–160

    Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under different field conditions. Res J Agric Biol Sci 22:33–37

    Google Scholar 

  • Burgass RW, Powell AA (1984) Evidence for repair processes in the invigoration of seeds by hydration. Ann Bot 53:753–757

    Article  Google Scholar 

  • Chauhan JS, Tomar YK, Singh IN, Ali S, Debarati A (2009) Effect of growth hormones on seed germination and seedling growth of black gram and horse gram. J Am Sci 5:79–84

    Google Scholar 

  • Coolbear P et al (1980) “Osmotic pre-sowing treatments and nucleic acid accumulation in tomato seeds”, (LycopersiconCycopersicum). Seed Sci Technol 8:289–303

    CAS  Google Scholar 

  • de Castro RD, van Lammeren AAM, Groot SPC, Bino RJ, Hilhorst HWM (2000) Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol 122:327–335

    Article  PubMed  PubMed Central  Google Scholar 

  • De Souza A, Garcia D, Sueiro L, Gilart F, Porras E, Licea L (2006) Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics 27:247–257

    Article  PubMed  Google Scholar 

  • Dhayal M, Lee SY, Park SU (2006) Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80:499–506

    Article  CAS  Google Scholar 

  • Evenari M (1980) The history of germination research and the lesson it contains for today. Israel J Bot 29:4–21

    Google Scholar 

  • Farooq M, Basra SMA, Tabassum R, Afzal I (2006) Enhancing the performance of direct seeded fine rice by seed priming. Plant Prod Sci 9(4):446–456

    Article  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geetha VV, Bhaskaran M (2013) Ragi seed quality enhancement techniques under rainfed conditions of tribal habitations of Hosur forest division. J Acad Ind Res 2(1):2278–5213

    Google Scholar 

  • Ghassemi-Golezani K, Aliloo AA, Valizadeh M, Moghaddam M (2008) Effects of hydro and Osmo-priming on seed germination and field emergence of lentil (Lens culinaris Medik). Not Bot Hort Agrobot Cluj 36:29–33

    Google Scholar 

  • Ghassemi-Golezani K, Dalil B (2014) Effects of seed vigor on growth and grain yield of maize. Plant Breed Seed Sci 70:81–90

    Article  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gong F, Wu X, Wang W (2013) Comparative proteomic identification of embryo proteins associated with hydropriming induced rapid-germination of maize seeds. Plant Omics 6(5):333–339

    CAS  Google Scholar 

  • Graystone SJ, Stephens JH and Nelson LM (1991) Field and greenhouse studies on growth promotion of spring wheat inoculated with co-existent rhizobacteria. In: Keel C, Koller B De'fago G (eds) Plant growth promoting rhizobacteria-progress and prospects. IOBC/WPRS Bulletin XIV, pp 11–16

    Google Scholar 

  • Guzman M, Olave J (2006) Response of growth and biomass production of primed melon seed (Cucumis melo L. cv. Primal) germination to salinity level and N-forms in nursery. J Food Agri Enviro Ethics 4:163–165

    Google Scholar 

  • Hameed A, Mahmud TS, Atta BM, Haq MA, Sayed H (2008) Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabuli chickpea. Pak J Bot 40:1033–1041

    Google Scholar 

  • Harris D, Raghuwanshi BS, Gangwar JS, Singh SC, Joshi KD, Rashid A, Hollington PA (2001) Participatory evaluation by farmers of ‘on-farm’ seed priming in wheat in India, Nepal and Pakistan. Exp Agric 37(3):403–415

    Article  Google Scholar 

  • Harris D, Rashid A, Hollington A, Jasi L, Riches C (2007) Prospects of improving maize yield with on farm seed priming. In: Rajbhandari NP, Ransom JK (eds) Sustainable maize production systems for Nepal. NARC and CIMMYT, Kathmandu, pp 180–185

    Google Scholar 

  • Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low temperature plasma. Biologia 67:490–497

    Article  CAS  Google Scholar 

  • Heydecker W, Higgins J, Gulliver RL (1973) Accelerated germination by osmotic seed treatment. Nature 246:42–46

    Article  CAS  Google Scholar 

  • Imran M, Mahmood A, Römheld V, Neumann G (2013) Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. Eur J Agron 49:141–148

    Article  CAS  Google Scholar 

  • Janmohammadi M, Moradi DP, Sharifzadeh F (2008) Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen Appl Plant Physiol 34(3–4):215–226

    Google Scholar 

  • Jiayun T, Rui H, Xiaoli Z, Ruoting Z, Weiwen C, Size Y (2014) Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Sci Technol 16:260

    Article  CAS  Google Scholar 

  • Junges E, Muniz MFB, Bastos BDO, Oruoski P (2016) Biopriming in bean seeds. Acta Agric Scand Sect B Soil Plant Sci 66:207–214

    CAS  Google Scholar 

  • Karssen CM, Zagorski S, Kepczynski J, Groot SPC (1989) Key role for endogenous gibberellins in the control of seed germination. Ann Bot 63:71–80

    Article  CAS  Google Scholar 

  • Khan AA (1992) Preplant physiological seed conditioning. Horticult Rev 13:131–181

    Google Scholar 

  • McDonald M (2000) Seed priming. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Mergen F, Johansen TS (1963) Effect of ionizing radiation on microsporogenesis in Pinus rigida mill. Rad Bot 3:321–331

    Article  Google Scholar 

  • Moussa JP (2006) Role of gamma irradiation in regulation of NO3 level in rocket (Eruca vesicaria subsp. sativa) plants. Russ J Plant Physiol 53:193–197

    Article  CAS  Google Scholar 

  • Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for biomass production and improvement of stress tolerance: mechanisms of action, applications and future prospects. In: Arora NK (ed) Plant microbe symbiosis—applied facets. Springer, The Netherlands, pp 1–36

    Google Scholar 

  • Peeran SN, Natanasabapathy S (1980) Potassium chloride pretreatment on rice seeds. Int Rice Res Newslett 5:19

    Google Scholar 

  • Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947

    Article  Google Scholar 

  • Pietruszewski S, Kania K (2010) Effect of magnetic field on germination and yield of wheat. Int Agrophys 24:275–302

    Google Scholar 

  • Pill WG, Necker AD (2001) The effect of seed treatment on germination and establishment of Kentucky blue grass (Poa pretenses L.). Seed Sci Technol 29:65–72

    Google Scholar 

  • Pill WG, Frett JJ, Morneau DC (1991) Germination and seedling emergence of primed tomato and asparagus seeds under adverse conditions. Hort Sci 26:1160–1162

    Google Scholar 

  • Rehman A, Farooq M, Ata Z, Wahid A (2013) Role of boron in leaf elongation and tillering dynamics in fine-grain aromatic rice. J Plant Nutr 36(1):42–54

    Article  CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogozhin VV, Kuriliuk TT, Filippova NP (2000) Change in the reaction of the antioxidant system of wheat sprouts after UV-irradiation of seeds. Biofizika 45:730–736

    CAS  PubMed  Google Scholar 

  • Rood SB, Williams PH, Pearce D, Murofushi N, Mander LN, Pharis R (1990) A mutant gene that increases gibberellin production in Brassica. Plant Physiol 93:1168–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JM (1989) Seed coatings and treatments and their effects on plant establishment. Adv Agron 42:43–83

    Article  CAS  Google Scholar 

  • Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillium spp. by cold plasma treatment. Bioresour Technol 99:5104–5109

    Article  CAS  PubMed  Google Scholar 

  • Sera B, Spatenka P, Sery M, Vrchotova N, Hruskova I (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 38:2963–2968

    Article  Google Scholar 

  • Sherrell CG (1984) Effect of molybdenum concentration in the seed on the response of pasture legumes to molybdenum. New Zealand J Agric Res 27:417–423

    Article  CAS  Google Scholar 

  • Silva JAT, Dobranszki J (2016) Magnetic fields: how is plant growth and development impacted. Protoplasma 253:231–248

    Article  PubMed  CAS  Google Scholar 

  • Sosnin EA, Stoffels E, Erofeev MV, Kieft IE, Kunts SE (2004) The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative approach. IEEE Trans Plasma Sci 32:1544–1550

    Article  Google Scholar 

  • Stacey G, Burris RH, Evans HJ (1992) Biological nitrogen fixation. Chapman & Hall, New York

    Google Scholar 

  • Suslow TV, Schroth MN (1978) Bacterial culture preservation in methylcellulose (abstr.). Phytopathol News 12:136

    Google Scholar 

  • Tahvonen R (1982) Preliminary experiments into the use of Streptomyces spp. isolated from peat in the biological control of soil and seed-borne diseases in peat cultures. J Sci Agric Soc Finl 54:29–36

    Google Scholar 

  • Taylor AG, Harman GE (1990) Concepts and technologies of selected seed treatments. Annu Rev Phytopathol 28:321–339

    Article  Google Scholar 

  • Taylor AG, Klein DE, Whitlow TH (1988) SMP: solid matrix priming of seeds. Scientia Hort 37:1–11

    Article  Google Scholar 

  • Taylor AG, Harman GE, Nielsen PA (1994) Biological seed treatments using Trichoderma harzianum for horticultural crops. HortTech 4:105–109

    Article  Google Scholar 

  • Taylor AG, Allen PS, Bennett MA, Bradford KJ, Burris JS, Misra MK (1998) Seed enhancements. Seed Sci Res 8:245–256

    Article  Google Scholar 

  • Thomas B, Murphy DJ, Murray BG (2003) Encyclopedia of applied plant sciences (3 volume set). Elsevier Science BV

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Volin JC, Denes FS, Young RA, Park SM (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40:1706–1718

    Article  CAS  Google Scholar 

  • Wilhelm NS, Graham RD, Rovira AD (1988) Application of different sources of manganese sulphate decreases take-all (Gaeumannomyces graminis var. tritici) of wheat grown in a manganese deficient soil. Austr J Agric Res 39:1–10

    Article  CAS  Google Scholar 

  • Zhou Z, Huang Y, Yang S, Chen W (2011) Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agric Sci 2:23

    Google Scholar 

Download references

Acknowledgements

Author AK is funded by Science and Engineering Research Board Govt of India. The author is also thankful to Sr Director Mr. Ajay Pratap Singh and Head of the Dept Ms. Garima Gupta for their keen interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, V., Kumar, A. (2020). Methods of Seed Enhancement. In: Tiwari, A.K. (eds) Advances in Seed Production and Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-4198-8_23

Download citation

Publish with us

Policies and ethics