Skip to main content

An Introduction to Microbial Forensics

  • Chapter
  • First Online:
Microbial Diversity, Interventions and Scope
  • 628 Accesses

Abstract

An incredible life is present beyond the scope of the naked eye. The one present underneath the lens of a microscope is the life of “microorganisms.” Microorganisms are present everywhere in the environment. Human body serves as a host to a wide variety of microbes including bacteria and viruses. Though most of the microorganisms are harmless to humans, they can cause diseases in humans as well as in animals and plants. Microorganisms play a vital role in food and dairy industries; production of enzymes, amino acids, vitamins, antibiotics, etc.; genetic engineering; biotechnology; and so on. With advancement in science and technology, the antisocial elements are manufacturing bioweapons by using the microorganisms and the toxins produced by them. Microbial forensics refers to deployment of scientific principles to analyze microbial evidence. Technologies like massive parallel sequencing (MPS) and next-generation sequencing (NSG) help scientists to understand the role of microorganisms in the origin of biocrimes, cause and time of death, sexual assault, homicide, agricultural contamination, and medical malpractice. The microbial forensic investigation results in linking the causative agent with a specific group or an individual by following special procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez-Lafuente R, Aguilera B, Suárez-Mier MP et al (2008) Detection of human herpesvirus-6, Epstein-Barr virus and cytomegalovirus in formalin-fixed tissues from sudden infant death: a study with quantitative real-time PCR. Forensic Sci Int 178(2–3):106–111

    PubMed  Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora DR, Gautam V, Arora B (2002) Biological warfare: bioterrorism. Indian J Med Microbiol 20(1):6–11

    CAS  PubMed  Google Scholar 

  • Bhatia M, Mishra B, Thakur A et al (2016) Concept of forensic microbiology and its applications. SMU Med J 3(1):275–294

    Google Scholar 

  • Blackwell C (2004) Infection, inflammation and SIDS. FEMS Pathogens Dis 42(1):1–2

    CAS  Google Scholar 

  • Bojar RA, Holland KT (2002) The human cutaneous microflora and factors controlling colonisation. World J Microbiol Biotechnol 18(9):889–903

    CAS  Google Scholar 

  • Borgula LM, Robinson FG, Rahimi M, Chew KEK, Birchmeier KR, Owens SG, Kieser JA, Tompkins GR (2003) Recovery of oral bacteria from experimental bite marks. J Forensic Odontostomato 21:23–30

    CAS  Google Scholar 

  • Brookes PC, McGrath SP (1984) Effect of metal toxicity on the size of the soil microbial biomass. J Soil Sci 35(2):341–346

    CAS  Google Scholar 

  • Budowle B (2003) Defining a new forensic discipline: microbial forensics. Profiles in DNA 6(1):7–10 

    Google Scholar 

  • Budowle B, Schutzer SE, Einseln A et al (2003) Building microbial forensics as a response to bioterrorism. Science 301(5641):1852–1853

    CAS  PubMed  Google Scholar 

  • Budowle B, Johnson MD, Fraser CM et al (2005) Genetic analysis and attribution of microbial forensics evidence. Crit Rev Microbiol 31(4):233–254

    CAS  PubMed  Google Scholar 

  • Buttner MP, Cruz-Perez P, Stetzenbach LD (2001) Enhanced detection of surface-associated bacteria in indoor environments by quantitative PCR. Appl Environ Microbiol 67(6):2564–2570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buttner MP, Cruz P, Stetzenbach LD et al (2005) Evaluation of the biological sampling kit (BiSKit) for large-area surface sampling. Appl Environ Microbiol 70(12):7040–7045

    Google Scholar 

  • Butzbach DM, Stockham PC, Kobus HJ et al (2013) Bacterial degradation of risperidone and paliperidone in decomposing blood. J Forensic Sci 58(1):90–100

    CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Costello EK et al (2011) Moving pictures of the human microbiome. Genome Biol 12(5):R50

    PubMed  PubMed Central  Google Scholar 

  • Cardona OD, van Aalst MK, Birkmann J, Fordham M, McGregor G, Mechler R (2012) Determinants of risk: exposure and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Carrillo C, Rock DL (2005) Molecular epidemiology and forensics of RNA viruses. In: Breeze R, Budowle B, Schutzer S (eds) Microbial forensics. Academic Press, Amsterdam

    Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1):12–24

    CAS  PubMed  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2008) Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl Soil Ecol 40(1):129–137

    Google Scholar 

  • Carroll IM, Ringel-Kulka T, Siddle JP et al (2012) Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One 7(10):e46953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carus WS (2001) Bioterrorism and biocrimes: the illicit use of biological agents since 1900. National Defense University, Washington, DC

    Google Scholar 

  • Carus WS (2017) A short history of biological warfare: from from pre-history to the 21st century. National Defense University Press, Washington, DC

    Google Scholar 

  • Catts EP, Haskell NH (1990) Entomology and death: a procedural guide. Joyce’s Print Shop. Inc., Clemson, p 182

    Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2002) Occupational health guidelines for remediation workers at Bacillus anthracis-contaminated sites–United States, 2001–2002. MMWR. Morbidity and mortality weekly report. 51(35):786

    Google Scholar 

  • Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crompton R, Gall D (1980) Georgi Markov—death in a pellet. Med Leg J 48(2):51–62

    CAS  PubMed  Google Scholar 

  • Cummings CA, Relman DA (2002). Microbial Forensics-“Cross-Examining Pathogens”. Science’s Compass 296:1976–77

    Google Scholar 

  • Delmont TO, Robe P, Clark I, Simonet P, Vogel TM (2011) Metagenomic comparison of direct and indirect soil DNA extraction approaches. J Microbiol Methods 86(3):397–400

    CAS  PubMed  Google Scholar 

  • Dickson GC, Poulter RT, Maas EW et al (2011) Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Sci Int 209(1–3):1–10

    PubMed  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D (1998) Rates of spontaneous mutation. Genetics 148(4):1667–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan RVI, Smith LA (2012) Of beans and beads: ricin and abrin in bioterrorism and biocrime. J Bioterr Biodef S2:002. https://doi.org/10.4172/2157-2526.S2-002

    Article  Google Scholar 

  • Eilers KG, Debenport S, Anderson S et al (2012) Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65

    CAS  Google Scholar 

  • Elliott ET (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils 1. Soil Sci Soc Am J 50(3):627–633

    Google Scholar 

  • Evans WE (1963) Adipocere formation in a relatively dry environment. Med Sci Law 3:145–153

    Google Scholar 

  • Fierer N, Lauber CL, Zhou N et al (2010) Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A 107(14):6477–6481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers LK, Mothershead JL, Blackwell TH (2002) Bioterrorism preparedness. II: the community and emergency medical services systems. Emerg Med Clin North Am 20(2):457–476

    PubMed  Google Scholar 

  • Forbes SL, Perrault KA, Stefanuto PH et al (2014) Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS One 9(11):e113681

    PubMed  PubMed Central  Google Scholar 

  • Gleeson M, Cripps A (2004) Development of mucosal immunity in the first year of life and relationship to sudden infant death syndrome. FEMS Immunol Med Microbiol 42(1):21–33

    CAS  PubMed  Google Scholar 

  • Goff ML (1993) Estimation of postmortem interval using arthropod development and successional patterns. Forensic Sci Rev 5:81–94

    CAS  PubMed  Google Scholar 

  • Goodman RA, Munson JW, Dammers K et al (2003) Forensic epidemiology: law at the intersection of public health and criminal investigations. J Law Med Ethics 31(4):684–700

    PubMed  Google Scholar 

  • Green MS, LeDuc J, Cohen D et al (2019) Confronting the threat of bioterrorism: realities, challenges, and defensive strategies. Lancet Infect Dis 19(1):e2–e13

    PubMed  Google Scholar 

  • Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grundmann O (2014) The current state of bioterrorist attack surveillance and preparedness in the US. Risk Manage Healthc Policy 7:177–187

    Google Scholar 

  • Gu Y, Mao X, Zha L, Hou Y, Yun L (2015) Development of a candidate method for forensic microbial genotyping using multiplex pyrosequencing combined with a universal biotinylated primer. Forensic Sci Int 246:e1–e6

    CAS  PubMed  Google Scholar 

  • Gunn A (2009) Essential forensic biology, 2nd edn. John Wiley & Sons

    Google Scholar 

  • Gunn A, Sarah JP (2012) Microbes as forensic indicators. Trop Biomed 29(3):311–330

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson G, Cox F, Kittelmann S et al (2013) Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8(9):e74787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12(3):235–240

    CAS  PubMed  Google Scholar 

  • Hill PW, Marshall C, Williams CG, Blum H, Harmens H, Jones DL, Farrar JF (2007) The fate of photosynthetically-fixed carbon in grassland as modified by elevated CO and sward management. New Phytol 173(4):766–777

    CAS  PubMed  Google Scholar 

  • Hopkins DW, Wiltshire PE, Turner BD (2000) Microbial characteristics of soils from graves: an investigation at the interface of soil microbiology and forensic science. Appl Soil Ecol 14(3):283–288

    Google Scholar 

  • Howard GT, Duos B, Watson-Horzelski EJ (2010) Characterization of the soil microbial community associated with the decomposition of a swine carcass. Int Biodeterior Biodegradation 64:300–304

    Google Scholar 

  • Hyde ER, Haarmann DP, Lynne AM et al (2013) The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PloS one 8(10):e77733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janaway RC, Percival SL, Wilson AS (2009) Decomposition of human remains. In: Microbiology and aging. Humana Press, Totowa, pp 313–334

    Google Scholar 

  • Janik E, Ceremuga M, Saluk-Bijak J et al (2019) Biological toxins as the potential tools for bioterrorism. Int J Mol Sci 20(5):1181

    CAS  PubMed Central  Google Scholar 

  • Jansen HJ, Breeveld FJ, Stijnis C (2014) Biological warfare, bioterrorism, and biocrime. Clin Microbiol Infect 20(6):488–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaureguy F, Chariot P, Vessieres A, Picard B (2016) Prevalence of chlamydia trachomatis and Neisseria gonorrhoeae infections detected by real-time PCR among individuals reporting sexual assaults in the Paris, France area. Forensic Sci Int 266:130–133

    CAS  PubMed  Google Scholar 

  • Junkins EN, Embriette RH, David OC (2017) Culture and long-term storage of microorganisms for forensic science. In: Carter DO, Tomberlin JK, Benbow ME, Metcalf JL (eds). John Wiley & Sons, New York

    Google Scholar 

  • Kakirde K, Parsley L, Liles M (2010) Size does matter: application-driven approaches for soil metagenomics. Soil Biol Biochem 42(11):1911–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakizaki E, Takahama K, Seo Y et al (2008) Marine bacteria comprise a possible indicator of drowning in seawater. Forensic Sci Int 176(2–3):236–247

    PubMed  Google Scholar 

  • Kaur M, Gupte S, Aggarwal P et al (2014) Methods in microbial forensics. J Punjab Acad Forensic Med Toxicol 14(1):51–54

    Google Scholar 

  • Lazarevic V, Whiteson K, Huse S et al (2009) Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 79(3):266–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarevic V, Whiteson K, Hernandez D et al (2010) Study of inter-and intra-individual variations in the salivary microbiota. BMC Genomics 11(1):523

    PubMed  PubMed Central  Google Scholar 

  • Leake SL, Pagni M, Falquet L (2016) The salivary microbiome for differentiating individuals: proof of principle. Microbes Infect 18(6):399–405

    CAS  PubMed  Google Scholar 

  • Lenz EJ, Foran DR (2010) Bacterial profiling of soil using genus-specific markers and multidimensional scaling. J Forensic Sci 55(6):1437–1442

    CAS  PubMed  Google Scholar 

  • Lin CY, Yen WC, Hsieh HM et al (2014) Diatomological investigation in sphenoid sinus fluid and lung tissue from cases of suspected drowning. Forensic Sci Int 244:111–1115

    PubMed  Google Scholar 

  • Ludes B, Coste M, North N, Doray S, Tracqui A, Kintz P (1999) Diatom analysis in victim’s tissues as an indicator of the site of drowning. Int J Legal Med 112(3):163–166

    CAS  PubMed  Google Scholar 

  • Maccallum WG, Hastings TW (1899) A case of acute endocarditis caused by micrococcus zymogenes (Nov. Spec.), with a description of the microorganism. J Exp Med 4(5–6):521–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Männistö MK, Tiirola M, Häggblom MM (2009) Effect of freeze-thaw cycles on bacterial communities of Arctic tundra soil. Microb Ecol 58(3):621–631

    PubMed  Google Scholar 

  • Megyesi MS, Nawrocki SP, Haskell NH (2005) Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci 50(3):1–9

    Google Scholar 

  • Melvin JR, Cronholm LS, Simson LR et al (1984) Bacterial transmigration as an indicator of time of death. J Forensic Sci 29(2):412–417

    PubMed  Google Scholar 

  • Meyers MS, Foran DR (2008) Spatial and temporal influences on bacterial profiling of forensic soil samples. J Forensic Sci 53(3):652–660

    PubMed  Google Scholar 

  • Mickley A (2010) Preventing the sixth plague: microbial forensics in the war against terrorism. Honors College Theses 1:91

    Google Scholar 

  • Moghaddasi H, Arani LS, Zarghi A (2018) Features of bioterrorism information system. J Bioterror Biodefense 9:1–6

    Google Scholar 

  • Moreno LI, Mills DK, Entry J, Sautter RT, Mathee K (2006) Microbial metagenome profiling using amplicon length heterogeneity-polymerase chain reaction proves more effective than elemental analysis in discriminating soil specimens. J Forensic Sci 51(6):1315–1322

    CAS  PubMed  Google Scholar 

  • Morse SA, Budowle B (2006) Microbial forensics: application to bioterrorism preparedness and response. Infect Dis Clin 20(2):455–473

    Google Scholar 

  • Murch RS (2003) Microbial forensics: building a national capacity to investigate bioterrorism. Biosecur Bioterr Biodef Strategy Pract Sci 1(2):117–122

    Google Scholar 

  • Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7(2–3):57–66

    CAS  Google Scholar 

  • Oliveira M, Amorim A (2018) Microbial forensics: new breakthroughs and future prospects. Appl Microbiol Biotechnol 102(24):10377–10391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ou CY, Kwok S, Mitchell SW et al (1988) DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239(4837):295–297

    CAS  PubMed  Google Scholar 

  • Ou CY, Ciesielski CA, Myers G et al (1992) Molecular epidemiology of HIV transmission in a dental practice. Science 256(5060):1165–1171

    CAS  PubMed  Google Scholar 

  • Parachin NS, Schelin J, Norling B, Rådström P, Gorwa-Grauslund MF (2010) Flotation as a tool for indirect DNA extraction from soil. Appl Microbiol Biotechnol 87(5):1927–1933

    CAS  PubMed  Google Scholar 

  • Pechal JL, Crippen TL, Tarone AM et al (2013) Microbial community functional change during vertebrate carrion decomposition. PLoS One 8(11):e79035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pechal JL, Crippen TL, Benbow ME et al (2014) The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. Int J Legal Med 128(1):193–205

    PubMed  Google Scholar 

  • Pechal JL, Schmidt CJ, Jordan HR, Benbow ME (2017) Frozen: thawing and its effect on the postmortem microbiome in two pediatric cases. J Forensic Sci 62(5):1399–1405

    CAS  PubMed  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC et al (2009) Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97(4):801–811

    CAS  Google Scholar 

  • Preston BD, Poiesz BJ, Loeb LA (1988) Fidelity of HIV-1 reverse transcriptase. Science 242(4882):1168–1171

    CAS  PubMed  Google Scholar 

  • Quaak FCA, Kuiper I (2011). Statistical data analysis of bacterial t-RFLP profiles in forensic soil comparisons. Forensic Sci Int 210:96–101

    Google Scholar 

  • Rana AK, Manhas S (2018) The future of forensic biology. J Biomed 3:13–18

    Google Scholar 

  • Ranjard L, Poly F, Lata JC et al (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67(10):4479–4487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins KE, Lemey P, Pybus OG et al (2003) US human immunodeficiency virus type 1 epidemic: date of origin, population history, and characterization of early strains. J Virol 77(11):6359–6366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rochelle P, Cragg B, Fry J et al (1994) Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol Ecol 15(1–2):215–225

    CAS  Google Scholar 

  • Rogers P, Whitby S, Dando M (1999) Biological warfare against crops. Sci Am 280(6):70–75

    CAS  PubMed  Google Scholar 

  • Rossodivita A, Visconti A, Saporito T et al (2019) Bioterrorism: toxins as potential biological weapons-an emerging global health threat. Int J Infect Dis 79:55

    Google Scholar 

  • Roth RR, James WD (1988) Microbial ecology of the skin. Annu Rev Microbiol 42(1):441–464

    CAS  PubMed  Google Scholar 

  • Ruffell A (2010) Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil forensics. Forensic Sci Int 202(1–3):9–12

    PubMed  Google Scholar 

  • Sala M, Wain-Hobson S (2000) Are RNA viruses adapting or merely changing? J Mol Evol 51(1):12–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago-Rodriguez TM, Cano RJ (2016) Soil microbial forensics. Microbiol Spectrum. 4(4). https://doi.org/10.1128/microbiolspec.EMF-0007-2015

  • Saraswat PK, Nirwan PS, Saraswat S et al (2008) Biodegradation of dead bodies including human cadavers and their safe disposal with reference to mortuary practice. J Indian Acad Forensic Med 30:273–280

    Google Scholar 

  • Schoenen D, Schoenen H (2013) Adipocere formation—the result of insufficient microbial degradation. Forensic Sci Int 226(1–3):301e1–301e6

    Google Scholar 

  • Schutzer SE, Budowle B, Atlas RM (2005) Biocrimes, microbial forensics, and the physician. PLoS Med 2(12):e337

    PubMed  PubMed Central  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    PubMed  PubMed Central  Google Scholar 

  • Seng P, Abat C, Rolain JM et al (2013) Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 51(7):2182–2194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sensabaugh G (2009) Microbial community profiling for the characterisation of soil evidence: forensic considerations. In: Ritz K, Dawson LA, Miller D (eds) Criminal and environmental soil forensics. Springer, London, p 49e60

    Google Scholar 

  • Slonczewski JL, Foster JW (2013) Microbiology: an evolving science. W.W. Norton and Company, New York

    Google Scholar 

  • Smart JK (1997) History of chemical and biological warfare: an American perspective. In: Medical aspects of chemical and biological warfare. Office of the Surgeon General, Washington, DC, pp 9–86

    Google Scholar 

  • Smith JA (2011) Collection and preservation of microbial forensic samples. In: Microbial Forensics. Academic, London, pp 379–392

    Google Scholar 

  • Stahringer SS, Clemente JC, Corley RP (2012) Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res 22(11):2146–2152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stockdale EA, Brookes PC (2006) Detection and quantification of the soil microbial biomass–impacts on the management of agricultural soils. J Agric Sci 144(4):285–302

    CAS  Google Scholar 

  • Stokes KL, Forbes SL, Tibbett M (2009) Freezing skeletal muscle tissue does not affect its decomposition in soil: evidence from temporal changes in tissue mass, microbial activity and soil chemistry based on excised samples. Forensic Sci Int 183(1–3):6–13

    CAS  PubMed  Google Scholar 

  • Svarovskaia ES, Xu H, Mbisa JL et al (2004) Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 279(34):35822–35828

    CAS  PubMed  Google Scholar 

  • Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond Ser B Biol Sci 356(1411):983–989

    CAS  Google Scholar 

  • Tibbett M, Carter DO (2009) Research in forensic taphonomy: a soil-based perspective. In: Criminal and environmental soil forensics. Springer, Dordrecht, pp 317–331

    Google Scholar 

  • Timperman J (1972) The diagnosis of drowning. A review. Forensic Sci 1(4):397–409

    CAS  PubMed  Google Scholar 

  • Vass AA (2001) Beyond the grave-understanding human decomposition. Microbiol Today 28:190–193

    Google Scholar 

  • Vass AA, Smith RR, Thompson CV (2004) Decompositional odor analysis database. J Forensic Sci 49(4):1–10

    Google Scholar 

  • Wagner Mackenzie B, Waite DW, Taylor MW (2015) Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Microbiol 6:130

    PubMed  PubMed Central  Google Scholar 

  • Weiss S, Carter DO, Metcalf JL et al (2016) Carcass mass has little influence on the structure of gravesoil microbial communities. Int J Legal Med 130(1):253–263

    PubMed  Google Scholar 

  • Wescott DJ (2018) Recent advances in forensic anthropology: decomposition research. Forensic Sci Res 3(4):278–293

    Google Scholar 

  • Wilfinger WW, Mackey K, Chomczynski P (1997) Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. BioTechniques 22(3):474–481

    CAS  PubMed  Google Scholar 

  • Wilson MJ, Weightman AJ, Wade WG (1997) Applications of molecular ecology in the characterization of uncultured microorganisms associated with human disease. Rev Med Microbiol 8(2):91–103

    Google Scholar 

  • Wilson TM, Gregg DA, King DJ et al (2001) Agroterrorism, biological crimes, and biowarfare targeting animal agriculture: the clinical, pathologic, diagnostic, and epidemiologic features of some important animal diseases. Clin Lab Med 21(3):549–592

    CAS  PubMed  Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Söll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64(1):202–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zala K (2007) Dirty science: soil forensics digs into new techniques. Science 318(5849):386–387

    CAS  PubMed  Google Scholar 

  • Zaura E, Keijser BJ, Huse SM et al (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9(1):259

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aeri, R., Arora, J., Kapoor, P., Sharma, A.D. (2020). An Introduction to Microbial Forensics. In: Sharma, S., Sharma, N., Sharma, M. (eds) Microbial Diversity, Interventions and Scope. Springer, Singapore. https://doi.org/10.1007/978-981-15-4099-8_21

Download citation

Publish with us

Policies and ethics