Skip to main content

State of the Art in Cryopreservation of Bivalve Spermatozoa

  • Chapter
  • First Online:
Cryopreservation of Fish Gametes

Abstract

In the current context of decreasing, shrinking or disappearing of ecosystems, species, wild populations, local plant and animal varieties and local breeds of domestic animals, cryo-conservation is a powerful way to safeguard the highly endangered biodiversity. In this chapter, we review the present knowledge on the reproductive biology of different bivalve species and on the characteristics and quality of their spermatozoa, including their structure, motility, and energy metabolism. Moreover, we summarized the various ways to collect sperm prior to cryo-conservation and the different methodologies used for conservation of bivalve sperm: cold storage and the key steps of the cryo-conservation techniques commonly used to preserve the ability to move of the spermatozoa of these species, such as cryoprotectant selection and equilibration, packing of samples for freezing, cooling rate and freezing, and finally thawing. Taking in account the quality of sperm prior to freezing and understanding of the successive steps involved in the cryo-conservation process constitute an unescapable way to improve the success of this valuable technique for oysters and marine mollusk species sperm long-term preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

BLPO:

Black-lip pearl oyster

DMSO:

Dimethyl sulfoxide

EG:

Ethylene glycol

EGTA:

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

EO:

European oyster

GS:

Great scallop

JS:

Japanese scallop

LN:

Liquid nitrogen

MC:

Manila clam

OP:

Osmotic pressure

OXPHOS:

Oxidative phosphorylation

PEG:

Polyethylene glycol

PO:

Pacific oyster

SW:

Sea water

VAP:

Velocity of the average path

References

  • Abe H, Hamaguchi M, Kajihara N, Taniai Y, Oshino A, Moriyama A, Kamiyama T (2019) Population dynamics of the Manila clam Ruditapes philipinnarum and the implications of the 2011 tsunami impact in two-shallow semi-enclosed bays in northeastern Japan. In: Komatzu T et al (eds) Oceanography challenges to future earth: human and natural impact on our seas, vol 29. Springer Nature, Basel, pp 365–386

    Google Scholar 

  • Acosta-Salmón H, Jerry DJ, Southgate PC (2007) Effects of cryoprotectant agents and freezing protocol on motility of black-lip pearl oyster (Pinctada margaritifera L.) spermatozoa. Cryobiology 54:13–18

    PubMed  Google Scholar 

  • Adams SL, Smith JF, Roberts RD, Janke A, Kaspar HF, Tervit HR, Pugh PA, Webb SC, King N (2004) Cryopreservation of sperm of the pacific oyster (Crassostrea gigas): development of a practical method for commercial spat production. Aquaculture 242(1–4):271–282

    CAS  Google Scholar 

  • Adams SL, Smith JF, Roberts RD, Janke AR, King N, Tervit HR, Webb SC (2008) Application of sperm cryopreservation in selective breeding of the Pacific oyster, Crassostrea gigas (Thunberg). Aquacult Res 39(13):1434–1442. https://doi.org/10.1111/j.1365-2109.2008.02013.x

    Article  Google Scholar 

  • Adams SL, Tervit HR, Salinas-Flores L, Smith JF, McGowan LT, Roberts RD, Janke A, King NG, Webb SC, Gale SL (2011) Cryopreservation of Pacific oyster oocytes. In: Tiersch TR, Green CC (eds) Cryopreservation in aquatic species, 2nd edn. World Aquaculture Society, Baton Rouge, pp 616–623

    Google Scholar 

  • Alavi SMH, Matsumura N, Shiba K, Itoh N, Takahashi KG, Inaba K, Osada M (2014) Roles of extracellular ions and pH in 5-HT-induced sperm motility in marine bivalve. Reproduction 147:331–345. https://doi.org/10.1530/REP-13-0418

    Article  CAS  PubMed  Google Scholar 

  • Alavi SMH, Cosson J (2006) Sperm motility in fishes: (II) effects of ions and osmotic pressure. Cell Biol Int 30:1–14. https://doi.org/10.1016/j.cellbi.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  • Andersen S, Christophersen G, Magnesen T (2011) Spat production of the great scallop (Pecten maximus): a roller coaster1. Can J Zool 89(7):579–598

    Google Scholar 

  • Anglès d’Auriac M, Rinde E, Norling P, Lapègue S, Staalstrom A, Hjermann D, Thaulow J (2017) Rapid expansion of the invasive oyster Crassostrea gigas at its northern distribution limit in Europe: naturally dispersed or introduced? PLoS One 12(5):e0177481. https://doi.org/10.1371/journal.pone.0177481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azeredo FF (2015) Development and standardization of a protocol for sperm cryopreservation of two important commercial oyster species. Thesis for Master of Science Degree, Faculty of Sciences and Technology, University of Algarve, pp 65

    Google Scholar 

  • Barber BJ, Blake NJ (2006) Reproductive physiology. In: Shumway SE, Parsons GJ (eds) Scallops: biology ecology and aquaculture, Developments in aquaculture and fisheries, vol 6. Science Elsevier Press, Amsterdam, pp 357–416. https://doi.org/10.1016/S0167-9309(06)80033-5

    Chapter  Google Scholar 

  • Barnabé G (ed) (2003) Aquaculture: biology and ecology of cultured species, 1st edn. CRC Press Book, Boca Raton

    Google Scholar 

  • Beaumont A, Gjedrem T (2007) Scallops—Pecten maximus and P. Jacobaeus. In: Svasand T, et al. (ed.) Genetic impact of aquaculture activities on native populations. Genimpact Final Scientific Report (EU Contract n. RICA-CT-2005-022802), pp 83–90

    Google Scholar 

  • Bernard I, Massabuau JC, Ciret P, Sottolichio A, Pouvreau S, Tran D (2016) In situ spawning in a marine broadcast spawner, the Pacific oyster Crassostrea gigas: timing and environmental triggers. J Limnol Oceanogr 61:635–647

    Google Scholar 

  • Bockaert J, Claeysen S, Dumuis A, Marin P (2010) Classification and signaling characteristics of 5-HT receptors. In: Müller CP, Jacobs BL (eds) Handbook of the behavioral neurobiology of serotonin, handbook of behavioral neuroscience, vol 21. Elsevier, Amsterdam, pp 103–121

    Google Scholar 

  • Boitano S, Omoto CK (1991) Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. J Cell Sci 98:343–349

    PubMed  Google Scholar 

  • Bondarenko V, Cosson J (2019) Theriogeneology structure and beating behavior of the sperm motility apparatus of aquatic animals. Theriogenology 135:152–163. https://doi.org/10.1016/j.theriogenology.2019.06.005

    Article  PubMed  Google Scholar 

  • Boulais M, Soudant P, Le Goïc N, Quéré C, Boudry P, Suquet M (2015) Involvement of mitochondrial activity and OXPHOS in ATP synthesis during the motility phase of spermatozoa in the Pacific oyster, Crassostrea gigas. Biol Reprod 93:1–7. https://doi.org/10.1095/biolreprod.115.128538

    Article  CAS  Google Scholar 

  • Boulais M, Soudant P, Le Goïc N, Quéré C, Boudry P, Suquet M (2017) ATP content and viability of spermatozoa drive variability of fertilization success in the Pacific oyster (Crassostrea gigas). Aquaculture 479:114–119. https://doi.org/10.1016/j.aquaculture.2017.05.035

    Article  CAS  Google Scholar 

  • Boulais M, Suquet M, Arsenault-Pernet EJ, Malo F, Queau I, Pignet P, Ratiskol D, Le Grand J, Huber M, Cosson J (2018) pH controls spermatozoa motility in the Pacific oyster (Crassostrea gigas). Biol Open 7:bio031427. https://doi.org/10.1242/bio.031427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulais M, Demoy-Schneider M, Alavi SMH, Cosson J (2019) Spermatozoa motility in bivalves: signaling, flagellar beating behavior, and energetics. Theriogenology 136:15–27. https://doi.org/10.1016/j.theriogenology.2019.06.025

    Article  PubMed  Google Scholar 

  • Bougrier S, Robemanana LD (1986) Cryopreservation of the spermatozoa of the Japanese oyster, Crassostrea gigas. Aquaculture 58:277–280

    Google Scholar 

  • Brand AR (1991) Scallop ecology: distributions and behavior. In: Shumway SE, Parsons GJ (eds) Scallops: biology ecology and aquaculture, Developments in aquaculture and fisheries, vol 21. Science Elsevier Press, Amsterdam, pp 517–584

    Google Scholar 

  • Bregman YE (1979) Population-genetic structure of bivalve Patinopecten yessoensis. Izvestiya TINRO 103:66–78. (In Russian with English abstract)

    Google Scholar 

  • Britton W (1991) Clam cultivation manual. Aquaculture explained, vol 8. Aqua. Tech. Sec. Bord Iascaigh Mhara, Dun Laoghaire, Co., Dublin, Ireland

    Google Scholar 

  • Brugère C, De Young C (2015) Assessing climate change vulnerability in fisheries and aquaculture. Available methodologies and their relevance for the sector. In: FAO (ed) Fisheries and aquaculture technical paper 597, Rome

    Google Scholar 

  • Chang YJ, Mori K, Nomura T (1985) Studies on the scallop, Patinopecten yessoensis, in sowing cultures in Abashiri waters-reproductive periodicity. Tokohu J Agric Res 35(2–4):91–105

    Google Scholar 

  • Christen RW, Schackmann RW, Shapiro BM (1982) Elevation of intracellular pH activates respiration and motility of sperm of the sea urchin Strongylocentrotus purpuratus. J Biol Chem 257:14881–14890

    CAS  PubMed  Google Scholar 

  • Clark MS, Husmann G, Thorne MAS, Burns G, Truebano M, Peck LS, Abele D, Philipp EE (2013) Hypoxia impacts large adults first: consequences in a warming world. Glob Change Biol 19:2215–2263

    Google Scholar 

  • Cook SP, Babcock DF (1993) Selective modulation by cGMP of the K channel activated by speract. J Biol Chem 268(30):22402–22407

    CAS  PubMed  Google Scholar 

  • Correia J, Michelangeli F, Publicover S (2015) Regulation and roles of Ca2+ stores in human sperm. Reproduction 150:65–76. https://doi.org/10.1530/REP-15-0102

    Article  CAS  Google Scholar 

  • Cosson J, Billard R, Cibert C, Dreanno C, Suquet M (1999) Ionic factors regulating the motility of fish sperm. In: Gagnon C (ed) The male gamete: from basic to clinical applications. Cache River Press, Vienna, pp 161–186

    Google Scholar 

  • Cosson J, Huitorel P, Gagnon C (2003) How spermatozoa come to be confined to surfaces. Cell Motil Cytoskel 54(1):56–63

    CAS  Google Scholar 

  • Cosson J, Faure C, Devauchelle N, Suquet M (2008a) Activation of oyster (Crassostrea gigas) sperm motility. In: Physiomar 08. Brest, France, 1–4 September 2008. Book of abstracts. http://archimer.ifremer.fr/doc/2008/acte-4600.pdf

  • Cosson J, Dreanno C, Fauvel C, Groison AL, Suquet M, Billard R (2008b) Marine fish spermatozoa: racing ephemeral swimmers. Reproduction 136:277–294. https://doi.org/10.1530/REP-07-0522

    Article  CAS  PubMed  Google Scholar 

  • Dai PF, Rao XZ, Chen YS (2004) Ultrastructural studies on spermatozoon and spermatogenesis of Ruditapes philippinarum. Chin J Zool 39:26–32

    Google Scholar 

  • Deguchi R, Osanai K (1994) Repetitive intracellular Ca2+ increases at fertilization and the role of Ca2+ in meiosis reinitiation from the first metaphase in oocytes of marine bivalves. Dev Biol 163:162–174. https://doi.org/10.1006/dbio.1994.1132

    Article  CAS  PubMed  Google Scholar 

  • Demoy-Schneider M, Levêque A, Schmitt N, Le Pennec M, Cosson J (2012) Motility activation and metabolism characteristics of spermatozoa of the black-lip-pearl oyster Pinctada margaritifera var: cumingii (Jameson 1901). Theriogenology 77:53–64. https://doi.org/10.1016/j.theriogenology.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  • Demoy-Schneider M, Schmitt N, Suquet M, Labbé C, Boulais M, Prokopchuk G, Cosson J (2014) Biological characteristics of sperm in two oyster species: the Pacific oyster, Crassostrea gigas, and the black-lip-pearl oyster, Pinctada Margaritifera. In: Erickson BT (ed) Spermatozoa, biology, motility and function and chromosomal abnormalities. Nova Science Publishers Inc., New York, pp 15–75

    Google Scholar 

  • Demoy-Schneider M, Schmitt N, Le Pennec G, Suquet M, Cosson J (2018) Quality assessment of cryopreserved black-lip pearl oyster Pinctada margaritifera spermatozoa. Aquaculture 97:278–286. https://doi.org/10.1016/j.aquaculture.2018.07.067

    Article  CAS  Google Scholar 

  • Devauchelle N, Faure C, Girard JP (1994) The quality of sperm of two bivalves: the oyster, Crassostrea gigas and the scallop, Pecten maximus. In: Muir J, Sevila F (eds.) Measures for success, vol 21. Eur. Aquac. Soc., Spec. Publ., pp 214–216

    Google Scholar 

  • Dinamani P (1987) Gametogenic patterns in populations of Pacific oyster, Crassostrea gigas, in Northland, New Zealand. Aquaculture 64:65–76. https://doi.org/10.1016/0044-8486(87)90206-7

    Article  Google Scholar 

  • Dong Q, Eudeline B, Allen SK Jr, Tiersch TR (2002) Factors affecting sperm motility of tetraploid Pacific oysters. J Shellfish Res 21:719–723

    Google Scholar 

  • Dong Q, Huang C, Tiersch TR (2005a) Spermatozoal ultrastructure of diploid and tetraploid Pacific oysters. Aquaculture 249:487–496. https://doi.org/10.1016/j.aquaculture.2005.03.009

    Article  Google Scholar 

  • Dong Q, Eudeline B, Huang C, Allen SK Jr, Tiersch TR (2005b) Commercial-scale sperm cryopreservation of diploid and tetraploid Pacific oysters, Crassostrea gigas. Cryobiology 50(1):1–16

    PubMed  Google Scholar 

  • Dong Q, Huang C, Eudeline B, Tiersch TR (2005c) Systematic factor optimization for cryopreservation of shipped sperm samples of diploid Pacific oysters, Crassostrea gigas. Cryobiology 51(2):176–197

    CAS  PubMed  Google Scholar 

  • Dong Q, Huang C, Eudeline B, Allen SK Jr, Tiersch TR (2006) Systematic factor optimization for sperm cryoconservation of tetraploïd Pacific oysters, Crassostrea gigas. Theriogenology 66:387–403

    PubMed  Google Scholar 

  • Dong Q, Huang C, Tiersch TR (2007a) Control of sperm concentration is necessary for standardization of sperm cryopreservation in aquatic species: evidence from sperm agglutination in oysters. Cryobiology 54(1):87–98. https://doi.org/10.1016/j.cryobiol.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  • Dong Q, Huang C, Eudeline B, Tiersch TR (2007b) Cryoprotectant optimization for sperm of diploïd Pacific oysters by use of commercial dairy sperm freezing facilities. Aquaculture 271:537–545

    CAS  Google Scholar 

  • Dorange G, Le Pennec M (1989) Ultrastructural characteristics of spermatogenesis in Pecten maximus (Mollusca, Bivalvia). Invertebrate Reprod Dev 15:109–117. https://doi.org/10.1080/07924259.1989.9672031

    Article  Google Scholar 

  • Douroudi MS, Southgate PC, Mayer RJ (2001) The combined effects of temperature and salinity on embryos and larvae of the black-lip pearl oyster, Pinctada margaritifera (L.). Aquacult Res 30(4):271–277. https://doi.org/10.1046/j.1365-2109.1999.00324.x

    Article  Google Scholar 

  • Drinkwaard AC (1999) Introductions and developments of oysters in the North Sea area: a review. Helgol Mar Res 52:301–308

    Google Scholar 

  • Drozdov AL, Sharina SN, Tyurin SA (2009) Sperm ultrastructure in representatives of six bivalve families from Peter the Great Bay, Sea of Japan. Russ J Mar Biol 35:236–241

    Google Scholar 

  • Drummond L, Mulcahy M, Culloty SC (2006) The reproductive biology of the Manila clam, Ruditapes philippinarum, from the north-west of Ireland. Aquaculture 254(1–4):326–340. https://doi.org/10.1016/j.aquaculture.2005.10.052

    Article  Google Scholar 

  • Everett EM, Williams PJ, Gibson G, Stewart DT (2004) Mitochondrial DNA polymorphisms and sperm motility in Mytilus edulis (Bivalvia : Mytilidae). J Exp Zool 301A:906–910

    CAS  Google Scholar 

  • Falese LE, Russel MP, Dollahon N (2011) Spermcasting of spermatozeugmata by the bivalves Nutricola confusa and N. tantilla. Invertebr Biol 130:334–343

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2003a) Crassostrea gigas (Thunberg, 1793) (Ostreidae). In: Cultured aquatic species fact sheets. Fisheries and Aquaculture Department

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2003b) Pecten maximus (Linnaeus, 1758). In: Cultured aquatic species fact sheets. Fisheries and Aquaculture Department

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2003c) Patinopecten yessoensis (Jay, 1857) Cultured aquatic species fact sheets. Fisheries and Aquaculture Department

    Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2006) The state of world fisheries and aquaculture. Rome, pp 162

    Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2008) The state of world fisheries and aquaculture. Rome, pp 176

    Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2012) The state of world fisheries and aquaculture. Rome, pp 209

    Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2018) The state of world fisheries and aquaculture. Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. pp 210

    Google Scholar 

  • Faure C (1996) Paramètres physiologiques de l’émission et de l’activation des gametes mâles de deux mollusques bivalves, la coquille Saint Jacques Pecten maximus (L.) et l’huître creuse Crassostrea gigas (Thunberg). Ph.D. Thesis, Fac Diderot, Univ. Paris VII, Paris, pp 255

    Google Scholar 

  • Faure C, Devauchelle N, Girard JP, Cosson J (1993) The quality of Pecten maximus sperm. Proceedings of the 9th international pectinid workshop, J fish res board can

    Google Scholar 

  • Faure C, Devauchelle N, Girard JP (1994) Ionic factors affecting motility, respiration and fertilization of the sperm of the bivalve Pecten maximus (L.). J Comp Physiol Part A 164:444–450. https://doi.org/10.1007/BF00714581

    Article  Google Scholar 

  • Fujinoki M (2011) Serotonin-enhanced hyperactivation of hamster sperm. Reproduction 142(2):255–266

    CAS  PubMed  Google Scholar 

  • Galstoff PS (1940) Physiology of reproduction of Ostrea virginica. III; Stimulation of spawning in the male oyster. Biol Bull 78:117–135

    Google Scholar 

  • Galstoff PS (1964) The American Oyster Crassostrea virginica Gmelin, vol 64. Fishery Bulletin of the Fish and Wildlife Service, Washington, pp 219–238

    Google Scholar 

  • Gibbons M, Goodsell JG, Castagna M, Luz R (1983) Chemical stimulation of spawning by serotonin in the ocean quahog Artica islandica (Linné). J Shellfish Res 3:203–205

    CAS  Google Scholar 

  • Gibbons M, Castagna M (1984) Serotonin as an inducer of spawning in six bivalve species. Aquaculture 40:189–191

    CAS  Google Scholar 

  • Gibbons M, Castagna M (1985) Responses of hard clam Mercenaria mercenaria (Linné) to induction of spawning by serotonin. J Shellfish Res 5:65–67

    Google Scholar 

  • Goulletquer P (1997) A bibliography of the Manila clam Tapes philippinarum. IFREMER, RIDRV-97.02/RA/LA, La Tremblade, pp 122

    Google Scholar 

  • Goulletquer P (2015) Ruditapes philippinarum (Adams & Reeve, 1850). In: FAO (ed) Cultured aquatic species information programme, 2005–2015. FAO Fisheries and Aquaculture Department, Rome

    Google Scholar 

  • Goulletquer P, Héral M (1997) Marine molluscan production trends in France: from fisheries to aquaculture. NOAA Technical Report NMFS, vol 129, pp 137–164

    Google Scholar 

  • Gourtay C, Pignet P, Mingant C, Ratiskol D, Suquet M (2016) Setting of a protocol for short-term storage of great scallop (Pecten maximus) sperm. SEB, Brighton, June 2016. https://doi.org/10.13140/RG.2.2.15920.97283

  • Grangeré K, Ménesguen A, Lefebvre S, Bacher C, Pouvreau S (2009) Modelling the influence of environmental factors on the physiological status of the Pacific oyster Crassostrea gigas in an estuarine embayment: The Baie des Veys (France). J Sea Res 62(2–3):147–158. https://doi.org/10.1016/j.seares.2009.02.002

    Article  Google Scholar 

  • Guo X, Hedgecock D, Hershberger WK, Cooper K, Allen SK Jr (1998) Genetic determinants of protandric sex in the Pacific oyster, Crassostrea gigas (Thunberg). Evolution 52(2):394–402

    PubMed  Google Scholar 

  • Gwo JC (2000) Cryoconservation of aquatic invertebrate semen: a review. Aquacult Res 31:259–271

    Google Scholar 

  • Gwo JC, Yang WT, Sheu YT, Cheng HY (2002) Spermatozoan morphology of four species of bivalve (Heterodonta, veneridae) from Taiwan. Tissue Cell 34(1):39–43. https://doi.org/10.1054/tice.2001.0222

    Article  CAS  PubMed  Google Scholar 

  • Gwo JC, Wu CY, Chang WS, Cheng HY (2003) Evaluation of damage in Pacific oyster (Crassostrea gigas) spermatooa before and after cryopreservation using comet assay. Cryo Letters 24:171–180

    PubMed  Google Scholar 

  • Haelters J, Kerckhof F (2009) Background document Ostrea edulis and Ostrea edulis beds. OSPAR Commission, pp 21

    Google Scholar 

  • Hassan MM, Qin JG, Li X (2015) Sperm cryopreservation in oysters: a review of its current status and potentials for future application in aquaculture. Aquaculture 438:24–32

    CAS  Google Scholar 

  • Hassan MM, Li X, Liu Y, Qin JG (2017a) Sperm cryopreservation in the spermcasting Australian flat oyster Ostrea angasi by a programmable freezing method. Cryobiology 76:119–124

    PubMed  Google Scholar 

  • Hassan MM, Li X, Qin JG (2017b) Improvement of post-thaw sperm survivals using liquid nitrogen vapor in a spermcasting oyster Ostrea angasi. Cryobiology 78:1–7

    CAS  PubMed  Google Scholar 

  • Helm MM, Bourne N, Lovatelli A (2004) Hatchery culture of bivalves. A practical manual. FAO, Fisheries Technical Paper N°471, Rome, p 200

    Google Scholar 

  • Heres P, Rodriguez-Riveiro R, Troncoso J, Paredes E (2019) Toxicity tests of cryoprotecting agents for Mytilus galloprovincialis (Lamark, 1819) early developmental stages. Cryobiology 86:40. https://doi.org/10.1016/j.cryobiol.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  • Hirai S, Kishimoto T, Kadan AL, Kanatani H, Koide SS (1988) Induction of spawning and oocyte maturation by 5-hydroxytryptamine in the surf clam. J Exp Zool 245:318–321. https://doi.org/10.1002/jez.1402450312

    Article  CAS  Google Scholar 

  • Ho HC, Suarez SS (2003) Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod 68:1590–1596. https://doi.org/10.1095/biolreprod.102.011320

    Article  CAS  PubMed  Google Scholar 

  • Howard DR, Trantow CM, Thaler CD (2004) Motility of a biflagellate sperm: waveform analysis and cyclic nucleotide activation. Cell Motil Cytoskeleton 59:120–130. https://doi.org/10.1002/cm.20027

    Article  CAS  PubMed  Google Scholar 

  • Howarth LM, Stewart BD (2014) The dredge fishery for scallops in the United Kingdom (UK): effects on marine ecosystems and proposals for future management. Report to the Sustainable Inshore Fisheries Trust. Marine Ecosystem Management Report no. 5, University of York, pp 54

    Google Scholar 

  • Horváth Ā, Bubalo A, Čučević A, Bartulović V, Kotrik L, Urbányi B, Glamuzina B (2012) Cryopreservation of sperm and larvae of of the European flat oyster (Ostrea edulis). J Appl Ichthyol 28:948–951

    Google Scholar 

  • Hui B, Vonau V, Moriceau J, Tetumu R, Vanaa V, Demoy-Schneider M, Suquet M, Le Moullac G (2011) Hatchery-sclae trials using cryopreserved spermatozoa of black-lip pearl oyster, Pinctada margaritifera. Aquat Living Resour 24:219–223

    Google Scholar 

  • Humphreys J, Harris MRC, Herbert RJH, Farrell P, Jensen A, Cragg SM (2015) Introduction, dispersal and naturalization of the Manila clam Ruditapes philippinarum in British estuaries, 1980–2010. J Mar Biol Assoc U K 95(6):1163–1172. https://doi.org/10.1017/S0025315415000132

    Article  Google Scholar 

  • Huo Z, Li Y, Zhang X, Yan X, Yang F (2017) Growth improvement of shell length in the orange strain of Manila clam, Ruditapes philippinarum. J World Aquacult Society 48(6):860–866. https://doi.org/10.1111/jwas.12392

    Article  Google Scholar 

  • Hwang JJ (2007) Reproductive cycles of the pearl oysters, Pinctada fucata (Gould) and Pinctada margaritifera (Linnaeus) (Bivalvia: Pteriidae) in southwestern Taiwan waters. J Mar Sci Technol 15(2):67–75

    Google Scholar 

  • Hwang SW, Chen HP (1973) Fertility of male oyster gametes after freeze-thawing. Chin Am J Commun Rural Reconstr Fish Ser 15:1–5

    Google Scholar 

  • Ieropoli S, Masullo P, Santo M, Sansone G (2004) Effects of extender composition, cooling rate and freezing on the fertilization viability of spermatozoa of the Pacific oyster (Crassostrea gigas). Cryobiology 49:250–257

    CAS  PubMed  Google Scholar 

  • Inaba K (2007) Molecular basis of sperm flagellar axonemes: structural and evolutionary aspects. Ann N Y Acad Sci 1101:506–526. https://doi.org/10.1196/annals.1389.017

    Article  CAS  PubMed  Google Scholar 

  • Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) Summary for policymarkers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-policy platform on Biodiversity and Ecosystem Services. Advance unedited version, 6 May 2019, pp 39

    Google Scholar 

  • Jaziri H (1990) Variations génétiques et structuration biogéographique chez un bivalve marin: l’huître plate Ostrea edulis L. PhD dissertation, University of Montpellier, France

    Google Scholar 

  • Jensen A, Humphreys J, Caldow R, Cesar C (2005) The Manila clam in Poole harbour. In: Humphreys J, May V (eds) The ecology of Poole harbour, vol 13, pp 163–173

    Google Scholar 

  • Jha M, Côté J, Hoeh WR, Blier PU, Stewart DT (2007) Sperm motility in Mytilus edulis in relation to mitochondrial DNA polymorphisms : implications for the evolution of doubly uniparental inheritance in bivalves. Evolution 62:99–106

    PubMed  Google Scholar 

  • Jiménez-Trejo F, Tapia-Rodriguez M, Cerbon M, Kuhn DM, Manjarrez-Gutiérrez G, Mendoza-Rodriguez CA, Picazo O (2012) Evidence of 5-HT components in human sperm: implications for protein tyrosine phosphorylation and the physiology of motility. Reproduction 144:677–685. https://doi.org/10.1530/REP-12-0145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones GG, Sanford CL and Jones BL (1993) Manila clams: Hatchery and Nursery Methods Innovative Aquaculture Products Ltd and Science Council of British Columbia, Skerry Bay, Lasqueti Island, Victoria, BC, Canada, VOR 2JO, pp 73

    Google Scholar 

  • Joubert C, Linard C, Le Moullac G, Soyez C, Saulnier D, Teaniniuraitemoana V, Ky CL, Gueguen Y (2014) Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera. PLoS One 9(8):e103944. https://doi.org/10.1371/journal.pone.0103944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam AL, Koide SS (1990) Stimulation of Spisula sperm motility by 5-hydroxytryptamine analogs invertebrate. Reprod Dev 17:33–37. https://doi.org/10.1080/07924259.1990.9672085

    Article  CAS  Google Scholar 

  • Kim JH, Chung JS, Lee KY (2013) Ultrastructural characteristics of the testis, spermatogenesis and taxonomic values of sperm morphology in male Ruditapes philippinarum in Western Korea. Dev Reprod 17:121–132. https://doi.org/10.12717/DR.2013.17.2.121

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi K, Kawamura K, Furuita H, Komaru A (1998) Spermatogenesis of the freshwater clam Corbicula aff. fluminea Mueller (Bivalvia: Corbiculidae). J Shellfish Res 17:185–189

    Google Scholar 

  • Korringa P (1947) Relations between the moon and periodicity in the breeding of marine animals. Ecol Monogr 17:347–381

    Google Scholar 

  • Korukura H, Namba K, Ishikawa T (1990) Lesions of spermatozoa by cryopreservation in oyster Crassostrea gigas. Nippon Suisan Gakkaishi 56:1803–1806

    Google Scholar 

  • Kraemer LR, Swanson C, Galloway M, Kraemer R (1986) Biological basis of behavior in Corbicula fluminea. II. Functional morphology of reproduction and development and review of evidence for self-fertilization. In: Proceedings of the second international Corbicula symposium. Am Malacol Bull, p 193–201

    Google Scholar 

  • Kuroda Y, Kaneko S, Yoshimura Y, Nozawa S, Mikoshiba K (1999) Are there inositol 1,4,5-triphosphate (IP3) receptors in human sperm? Life Sci 65:135–143. https://doi.org/10.1016/S0024-3205(99)00230-1

    Article  CAS  PubMed  Google Scholar 

  • Ky CL, Lau C, Sham Koua M, Lo C (2015) Growth performance comparison of Pinctada margaritifera juveniles produced by thermal shock or gonad scarification spawning procedures. J Shellfish Res 34(3):811–817. https://doi.org/10.2983/035.034.0310

    Article  Google Scholar 

  • Laing ISD, Utting SD, Kilada RWS (1987) Interactive effect of diet and temperature on the growth of juvenile clams. J Exp Mar Biol Ecol 113:23–28

    Google Scholar 

  • Laing ISD, Utting SD (1994) The physiologuy and biochemistry of diploid and triploid clams. J Exp Mar Biol Ecol 184:159–169

    Google Scholar 

  • Laing ISD, Lees D, Page DJ, Henshilwood K (2004) Research on shellfish cultivation, vol 122. CEFAS, Lowestoft, p 68

    Google Scholar 

  • Lannan JE (1971) Experimental self-fertilization of the pacific oyster, Crassostrea gigas, utilizing cryopreserved sperm. Genetics 68:599–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lapègue S, Beaumont A, Boudry P, Goulletquer P (2006) European flat oyster - Ostrea edulis. In: Crosetti D, Lapègue S, Olesen SI, Svaasand T (eds).Genetic effects of domestication, culture and breeding of fish and shellfish, and their impacts on wild populations. Genimpact project: evaluation of genetic impact of aquaculture activities on native populations. A European network. WP1 workshop “genetics of domestication, breeding and enhancement of performance of fish and shellfish”, Viterbo, Italy, 12–17th June, 2006, pp 6

    Google Scholar 

  • Lee JS, Park JS, Shin YK, Yeon Gyu Lee YG, Park JJ (2013) Sequential hermaphroditism in Manila clam Ruditapes philippinarum (Bivalvia: Veneridae). Invertebrate Reprod Dev 57(3):185–188. https://doi.org/10.1080/07924259.2012.717109

    Article  Google Scholar 

  • Le Pennec M (2003) The pelagic life of the pectinid Pecten maximus-a review. ICES J Mar Sci 60(2):211–223. https://doi.org/10.1016/S1054-3139(02)00270-9

    Article  Google Scholar 

  • Le Pennec M, Anastas M, Bichet H, Buestel D, Cochard JC, Cochennec-Loreau N, Coeroli M, Conte E, Correia P, Fougerouse-Tsing A, Langy S, Le Moullac G, Lo C, Peltzer L, Pham A (2010) Huître perlière et perle de Tahiti. Université de la Polynésie Française, pp 204

    Google Scholar 

  • Li Q, Osada M, Kashihara M, Hirohashi K, Kijima A (2000a) Effects of ultraviolet irradiation on genetical inactivation and morphological structure of sperm of the Japanese scallop, Patinopecten yessoensis. Aquaculture 186:233–242. https://doi.org/10.1016/S0044-8486(99)00384-1

    Article  Google Scholar 

  • Li C, Li J, Xue QZ (2000b) Cryopreservation of the spermatozoa of Chlamys (Azumapecten) farreri. Mar Fish Res 21:57–62

    Google Scholar 

  • Liu Y, Li X, Robinson N, Qin JG (2015) Cryoconservation in marine mollusk: a review. Aquacult Int 23:1505–1524

    CAS  Google Scholar 

  • Liu Y, Liu S, Liu B, Li X (2018) Cryoconservation of strip spawned sperm using programmable freezing technique in the blue mussel, Mytilus galloprovincialis. J Oceanol Limnol 36(6):2351–2357

    CAS  Google Scholar 

  • Loosanoff VL (1962) Gametogenesis and spawning of the European oyster, O. edulis, in waters of Maine. Biol Bull 122(1):86–94

    Google Scholar 

  • Loosanoff VL, Davis H (1950) Rearing of bivalve molluscs. Adv Mar Biol 1:1–136

    Google Scholar 

  • Lyons L, Jerry DR, Southgate PC (2005) Cryopreservation of black-lip pearl oyster (Pinctada margaritifera, l.) spermatozoa: effects of cryoprotectants on spermatozoa motility. J Shellfish Res 24:1187–1190. https://doi.org/10.2983/0730-8000(2005)24[1187:COBPOP]2.0.CO.2

    Article  Google Scholar 

  • Mackie GL (1984) Bivalves. In: Tompa AS, Verdonk NH, van den Biggelaar JAM (eds) The Mollusca, Reproduction, vol 7. New York, Academic, pp 351–418

    Google Scholar 

  • Mann R (1979) The effect of temperature on growth, physiology and gametogenesis in the Manila clam Tapes Philippinarum (Adam & Reeve, 1850). J Exp Mar Biol Ecol 38:121–133

    CAS  Google Scholar 

  • Mason J (1983) Scallop: an queen fisheries in the British isles. Fishing New Books, Farnham

    Google Scholar 

  • Matsutani T, Nomura T (1982) Induction of spawning by serotonin in the scallop Patinopecten yessoensis (Jay). Mar Biol Lett 3:353–358

    CAS  Google Scholar 

  • Matsutani T, Nomura T (1987) In vitro effects of serotonin and prostaglandins in release of eggs from the ovary of the scallop Patinopecten yessoensis. Gen Comp Endocrinol 67:111–118

    CAS  PubMed  Google Scholar 

  • Meizel S, Turner KO (1983) Serotonin or its agonist 5-methoxytryptamine can stimulate hamster sperm acrosome reactions in a more direct manner than catecholamines. J Exp Zool 226:171–174. https://doi.org/10.1002/jez.1402260120

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Bao Z, Wang Z, Wang S, Hu J, Hu X, Huang X (2012) Growth and reproductive performance of triploid Yesso scallops (Patinopecten yessoensis) induced by hypotonic shock. J Shellfish Res 31(4):1113–1122. https://doi.org/10.2983/035.031.0422

    Article  Google Scholar 

  • Mita M, Nakamura M (1993) Phosphatidylcholine is an endogenous substrate for energy metabolism in spermatozoa of sea urchins of the order Echinoidea. Zool Sci 10:73–83

    CAS  Google Scholar 

  • Morisawa M (2008) Adaptation and strategy for fertilization in the sperm of teleost fishes. J Appl Ichthyol 24:362–370. https://doi.org/10.1111/j.1439-0426.2008.01126.x

    Article  CAS  Google Scholar 

  • Morse MP, Zardus JD (1997) Bivalvia. In: Harrison FW, Kohn AJ (eds) Microscopic anatomy of invertebrates, vol 6A. Wiley, Mollusca II, New York, pp 7–118

    Google Scholar 

  • Moura P, Vasconcelos P, Pereira F, Chainho P (2018) Reproductive cycle of the Manila clam (Ruditapes philippinarum): an intensively harvested invasive species in the Tagus Estuary (Portugal). J Mar Biol Assoc U K 98(7):1645–1657. https://doi.org/10.1017/S0025315417001382

    Article  Google Scholar 

  • Nakajima A, Morita M, Takemura A, Kamimura S, Okuno M (2005) Increase in intracellular pH induces phosphorylation of axonemal proteins for flagellar motility activation in starfish sperm. J Exp Biol 208:4411–4418. https://doi.org/10.1242/jeb.01906

    Article  CAS  PubMed  Google Scholar 

  • O’Foighil D (1989) Role of spermatozeugmata in the spawning ecology of the brooding oyster Ostrea edulis. Gamete Res 24:219–228. https://doi.org/10.1002/mrd.1120240209

    Article  Google Scholar 

  • Ohta H, Kawamoto T, Isowa K, Aoki H, Hayashi M, Narita T, Komaru A (2007) Motility of spermatozoa obtained from testes of Japanese pearl oyster Pinctada fucata martensii. Fish Sci 73:107–111. https://doi.org/10.1111/j.1444-2906.2007.01308.x

    Article  CAS  Google Scholar 

  • Paniagua-Chávez CG, Jenkins J, Segovia M, Tiersch TR (2006) Assessment of gamete quality for the eastern oyster (Crassostrea virginica) by use of fluorescent dyes. Cryobiology 53(1):128–138

    PubMed  Google Scholar 

  • Paredes E (2015) Exploring the evolution of marine invertebrate cryopreservation-landmarks, state of the art and future lines of research. Cryobiology 71(2):198–209. https://doi.org/10.1016/j.cryobiol.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  • Parisi E, De Prisco P, Capasso A, del Prete M (1984) Serotonin and sperm motility. Cell Biol Int Rep 8:95. https://doi.org/10.1016/0309-1651(84)90075-4

    Article  CAS  PubMed  Google Scholar 

  • Pouvreau S (2017) Underwater images of the last native oysters beds in Brittany (France) IFREMER. https://image.ifremer.fr/data/00377/48842/

  • Pouvreau S, Tiapari J, Gangnery A, Lagarde F, Garnier M, Teissier H, Haumani G, Buestel D, Bodoy A (2000a) Growth of the black-lip pearl oyster, Pinctada margaritifera, in suspended culture under hydrobiological conditions of Takapoto Lagoon (French Polynesia). Aquaculture 184:133–154

    Google Scholar 

  • Pouvreau S, Gangnery A, Tiapari J, Lagarde F, Garnier M, Bodoy A (2000b) Gametogenic cycleand reproductive effort of the tropical black-lip pearl oyster, Pinctada margaritifera (Bivalvia: Pteridae), cultivated in Takapoto atoll (French Polynesia). Aquat Living Resour 13:37–48

    Google Scholar 

  • Pouvreau S, Prasil V (2001) Growth of the black-lip pearl oyster, Pinctada margaritifera, at nine culture sites of French Polynesia synthesis of several sampling designs conducted between 1994 and 1999. Aquat Living Resour 14:155–163

    Google Scholar 

  • Riesco MF, Félix F, Matias D, Joaquim S, Suquet M, Cabrita E (2017) First study in cryopreserved Crassostrea angulata sperm. Gen Comp Endocrinol 245:108–115. https://doi.org/10.1016/j.ygcen.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  • Ruiz C, Abad M, Sedano F, Garcia-Martin LO, Sanchez Lopez JL (1992) Influence of seasonal environmental changes on the gamete production and biochemical composition of Crassostrea gigas (Thunberg) in suspended culture in El Grove, Galicia, Spain. J Exp Mar Biol Ecol 155:249–262

    CAS  Google Scholar 

  • Sakurai I, Seto M, Makiguchi N, Ogata T (2000) Tolerance of the Japanese scallop, Patinopecten yessoensis, to low concentrations of dissolved oxygen and salinity. Aquacult Sci 48(1):137–138. https://doi.org/10.11233/aquaculturesci1953.48.137

    Article  Google Scholar 

  • Sanchez D, Labarca P, Darszon A (2001) Sea urchin sperm cation-selective channels directly modulated by cAMP. FEBS Lett 503:111–115. https://doi.org/10.1016/S0014-5793(01)02713-2

    Article  CAS  PubMed  Google Scholar 

  • Sastry AN (1979) Pelecypoda (excluding Ostreidae). In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates, Molluscs: Pelecypods and lesser classes, vol V. Academic, New York, pp 113–292

    Google Scholar 

  • Scarlato OA (1981) Bivalves of temperate waters of the Northwestern part of the Pacific ocean. Nauka Press, Leningrad, p 408

    Google Scholar 

  • Shpigel M (1989) Gametogenesis of the European flat oyster (Ostrea edulis) and Pacific oyster (Crassostrea gigas) in fann water in Israel. Aquaculture 80:343–349

    Google Scholar 

  • Silina AV (2018) Sex change in scallop Patinopecten yessoensis: response to population composition. PeerJ 6:e5240. https://doi.org/10.7717/peerj.5240

    Article  PubMed  PubMed Central  Google Scholar 

  • Sims NA (1994) Growth of wild and cultured black-lip pearl oysters Pinctada margaritifera (L.) (Pteriidae Bivalvia) in the Cook islands. Aquaculture 122:181–191

    Google Scholar 

  • Slater JW (2005) Spawning of king scallops, Pecten maximus (L.) in Mulroy Bay and the relationship with spatfall intensity. J Shellfish Res 24:951–958. https://doi.org/10.2983/0730-8000(2005)24[951:SOKSPM]2.0.CO

    Article  Google Scholar 

  • Smith JF, Pugh PA, Tervit HR, Roberts RD, Janke AR, Kaspar HF, Adams SL (2001) Crypreservation of shellfish sperm, eggs and embryos. Proc NZ Soc Anim Prod 61:31–34

    Google Scholar 

  • Stanley CA (1967) The commercial scallop Pecten maximus in Northern irish waters. PhD thesis, Queen’s University of Ireland, Belfast, pp 111

    Google Scholar 

  • Stefano GB, Catapane J, Aiello E (1976) Dopaminergic agents: influence on serotonin in the molluscan nervous system. Science 194:539–541

    CAS  PubMed  Google Scholar 

  • Spencer BE (2008) Molluscan shellfish farming. Wiley, Hoboken, p 296

    Google Scholar 

  • Soyez C, Huvet A, Gueguen Y, Lo C, Le Moullac G (2011) Determination of gender in the pearl oyster Pinctada margaritifera. J Shellfish Res 30(2):231–240

    Google Scholar 

  • Staeger WH (1974) Cryobiological investigations of the gametes of the pacific oyster, Crassostrea gigas. Department of Fisheries and Wildlife. Oregon Stae University, Corvallis

    Google Scholar 

  • Suquet M, Dreanno C, Fauvel C, Cosson J, Billard R (2000) Cryoconservation of sperm marine fish. Aquac Res 31:231–243

    Google Scholar 

  • Suquet M, Labbé C, Brizard R, Donval A, Le Coz JR, Quéré C, Haffray P (2010) Changes in motility, ATP content, morphology and fertilization capacity during the movement phase of tetraploid Pacific oyster (Crassostrea gigas) sperm. Theriogenology 74:111–117

    CAS  PubMed  Google Scholar 

  • Suquet M, Cosson J, Donval A, Labbé C, Boulais M, Haffray P, Bernard I, Fauvel C (2012) Marathon versus sprint racers: an adaptation of sperm characteristics to the reproductive strategy of Pacific oyster, turbot and seabass. J Appl Ichthyol 28:956–960

    Google Scholar 

  • Suquet M, Quéré C, Maingant C, Lebrun L, Ratiskol D, Miner P, Cosson J (2013) Effect of sampling location, release technique and time after activation on the movement characteristics of scallop (Pecten maximus) sperm. Aquat Living Resour 26:215–220. https://doi.org/10.1051/alr/2013048

    Article  Google Scholar 

  • Suquet M, Gourtay C, Donval A, Le Goïc N, Quéré C, Malo F, Le Grand J, Ratiskol D, Maingant C, Fauvel C (2016) The quality of great scallop (Pecten maximus) sperm after thawing. Gen Comp Endocrinol 229:127–131

    CAS  PubMed  Google Scholar 

  • Suquet M, Quéau I, Le Grand J, Ratiskol D, Pouvreau S (2017) Caractéristiques biologiques des gamètes et larves d’huître plate européenne (Ostrea edulis): données préliminaires. Rapport interne IFREMER/PFOM/PLI, pp 21

    Google Scholar 

  • Suquet M, Pouvreau S, Queau I, Boulais M, Le Grand J, Ratiskol D, Cosson J (2018) Biological characteristics of sperm in European flat oyster (Ostrea edulis). Aquat Living Resour 31:20. https://doi.org/10.1051/alr/2018008

    Article  CAS  Google Scholar 

  • Tanabe T, Yuan Y, Nakamura S, Itoh N, Takahashi KG, Osada M (2010) The role in spawning of a putative serotonin receptor isolated from the germ and ciliary cells of the gonoduct in the gonad of the Japanese scallop, Patinopecten yessoensis. Gen Comp Endocrinol 166:620–627. https://doi.org/10.1016/j.ygcen.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  • Thielley M, Weppe M, Herbaut C (1993) Ultrastructural study of gametogenesis in the French Polynesian black pearl oyster Pinctada margaritifera (Mollusca Bivalvia) I-spermatogenesis. J Shellfish Res 12:41–47

    Google Scholar 

  • Tiersch TR, Yang H, Jenkins JA, Dong Q (2007) Sperm cryopreservation in fish and shellfish. In: Roldan ERS, Gomendio M (eds) Spermatology. Nottingham University Press, Nottingham, SRF supplement 65. pp 493–508

    Google Scholar 

  • Tranter DJ (1958) Reproduction in Australian pearl oysters (Lamellibranchia). IV. Pinctada margaritifera (Linnaeus). Aust J Mar Freshwater Res 9:509–525

    Google Scholar 

  • Treen N, Itoh N, Miura H, Kikuchi I, Ueda T, Takahashi KG, Ubuka T, Yamamoto K, Sharp PJ, Tsutsui K, Osada M (2012) Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction. Gen Comp Endocrinol 176:167–172. https://doi.org/10.1016/j.ygcen.2012.01.008

    Article  CAS  PubMed  Google Scholar 

  • Ubertini M, Lagarde F, Mortreux S, Le Gall P, Chiantella C, Fiandrino A, Bernard I, Pouvreau S, d’Orbcastel ER (2017) Gametogenesis, spawning behavior and larval abundance of the Pacific oyster Crassostrea gigas in the Thau lagoon: evidence of an environment-dependent strategy. Aquaculture 473:51–61

    Google Scholar 

  • Uddin J, Park K, Kang DH, Choi KSA (2007) Comparative reproductive biology of Yezo scallop, Patinopecten yessoensis, under two different culture systems on the east coast of Korea. Aquaculture 265(1):139–147. https://doi.org/10.1016/j.aquaculture.2007.01.047

    Article  Google Scholar 

  • Vanderhost G, Dott H, Samuels J, Genade A (1985) Short-term and long-term storage of viable oyster sperm. S Afr J Sci 81:404–405

    Google Scholar 

  • Van Dyk M (2011) Pinctada margaritifera black lipped pearl oyster. Invertebrates of the Coral Sea. https://www.gbri.org.au. Accessed 20 July 2019

  • Van Houcke J, Medina I, Maehre HK, Cornet J, Cardinal M, Linssen J, Luten J (2017) The effect of algae diets (Skeletonema costatum and Rhodomonas baltica) on the biochemical composition and sensory characteristics of Pacific cupped oysters (Crassostrea gigas) during land-based refinement. Food Res Int 100(1):151–160. https://doi.org/10.1016/j.foodres.2017.06.041

    Article  CAS  PubMed  Google Scholar 

  • Velasco LA, Barros J, Acosta E (2007) Spawning induction and early development of the Carribbean scallops Argopecten nucleus and Nodipecten nodosus. Aquaculture 266:153–165

    Google Scholar 

  • Vélez A, Alifa E, Azuaje O (1990) Induction of spawning by temperature and serotonin in the hermaphroditic tropical scallop, Pecten ziczac. Aquaculture 84:307–213

    Google Scholar 

  • Vitiello V, Carlino PA, Del Prete F, Langellotti AL, Sansone G (2011) Effects of cooling and freezing on the motility of Ostrea edulis (L., 1758) spermatozoa after thawing. Cryobiology 63:118–124

    CAS  PubMed  Google Scholar 

  • Wada KT, Temkin I (2008) Taxonomy and phylogeny. In: Southgate PC, Lucas JS (eds) The pearl oyster. Elsevier Press, Oxford, pp 37–76

    Google Scholar 

  • Wang Q, He M (2014) Molecular characterization and analysis of a putative 5-HT receptor involved in reproduction process of the pearl oyster Pinctada fucata. Gen Comp Endocrinol 204:71–79. https://doi.org/10.1016/j.ygcen.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  • Wilson-Leedy JG, Ingermann RL (2007) Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology 67:661–672. https://doi.org/10.1016/j.theriogenology.2006.10.003

    Article  PubMed  Google Scholar 

  • Yamamoto G (1950) Ecological note of the spawning cycle of the scallop Pecten yessoensis (Jay). Sci Rep Tôhoku University (Ser 4 Biol) 18:477–481

    Google Scholar 

  • Yamamoto G (1951a) Induction of spawning in the scallop Pecten yessoensis (Jay). Sci Rep Tôhoku University (Ser 4 Biol) 19(1):7–10

    Google Scholar 

  • Yamamoto G (1951b) Ecological study on the spawning cycle of the scallop Pecten yessoensis in Mutsu Bay. Bull Japan Soc Fish 17:53–56

    Google Scholar 

  • Yamamoto G (1952) Further study on the ecology of spawning in the scallop in relation to lunar phases, temperature and plankton. Sci Rep Tôhoku University (Ser 4 Biol) 19:247–254

    Google Scholar 

  • Yamamoto G (1964) Studies on the propagation of the scallop, Patinopecten yessoensis (Jay) in Mutsu Bay. Suisan Zoyosko-ku Sosho 6:1–77

    Google Scholar 

  • Yang PM, Yang AG, Liu ZH, Zhou LQ (2008) Ultrastructure and cryodamage studies of Patinopecten yessoensis sperm by electron microscopy. Marine Fisheries Research

    Google Scholar 

  • Yang PM, Yang AG, Liu ZH, Zhou LQ (2007) Cryopreservation of Patinopecten yessoensis sperm and its application to hybridization. J Shanghai Fish Univ 16:351–356

    Google Scholar 

  • Yankson K, Moyse J (1991) Cryopreservation of the spermatozoa of Crassostrea tulipa and three other oysters. Aquaculture 97:259–267

    Google Scholar 

  • Young RJ, Laing JC (1990) Biogenic amine binding sites in rabbit spermatozoa. Biochem Int 21:781–787

    CAS  PubMed  Google Scholar 

  • Zhang G, Yan X (2006) A new three-phase culture method for Manila clam, Ruditapes philippinarum, farming in northern China. Aquaculture 258(1–4):452–461. https://doi.org/10.1016/j.aquaculture.2006.04.046

    Article  Google Scholar 

Download references

Acknowledgements

Marina Demoy-Schneider work was supported by the French Ministère des Outremers and the research program “La cryo-conservation des spermatozoïdes de l’huître perlière Pinctada margaritifera, un atout pour une perliculture durable et la sauvegarde de sa biodiversité.” Jacky Cosson work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (CENAKVA: CZ.1.05/2.1.00/01.0024 and CENAKVA II: LO1205 under the NPU I program, Biodiverzita: CZ.02.1.01/0.0/0.0/16 025/0007370), by the Grant Agency of the University of South Bohemia in Ceske Budejovice (125/2016/Z) and a grant from European Union’s Horizon 2020 research and innovation program (No 652831 AQUAEXCEL2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demoy-Schneider Marina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marina, DS., Nelly, S., Marc, S., Jacky, C. (2020). State of the Art in Cryopreservation of Bivalve Spermatozoa. In: Betsy, J., Kumar, S. (eds) Cryopreservation of Fish Gametes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4025-7_11

Download citation

Publish with us

Policies and ethics