Skip to main content

Epithelial Serous Ovarian Cancer: Patterns of Peritoneal Dissemination and their Clinical Implications

  • Chapter
  • First Online:
Pathology of Peritoneal Metastases
  • 440 Accesses

Abstract

Epithelial ovarian cancer is the only cancer in which peritoneal involvement is not metastatic but loco-regional disease and ascites with positive peritoneal cytology can be present in stage I disease. Epithelial serous ovarian cancers (ESOCs) may be considered the prototype cancers for such peritoneal spread and differ clinically and biologically from other histological subtypes. Whereas pathways of peritoneal dissemination in ovarian cancer have been studied in great detail, there is limited information about the pattern of disease distribution in the peritoneal cavity and the sequence in which various regions are involved. Similarly, such information about response to systemic chemotherapy is also limited. This information can influence the extent of peritoneal resection that is performed. While all the current research is focused on developing targeted therapies, histopathological prognostic markers like response to systemic chemotherapy have not been utilized to guide treatment decisions.

This chapter reviews the pathways and patterns of peritoneal dissemination in epithelial serous ovarian cancer (ESOC), disease distribution in the peritoneal cavity and patterns of response to systemic chemotherapy and their implication on clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet. 2009;374:1371–82. https://doi.org/10.1016/S0140-6736(09)61338-6.

    Article  CAS  PubMed  Google Scholar 

  2. Bhatt A, Glehen O. The role of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (hipec) in ovarian cancer: a review. Indian J Surg Oncol. 2016;7(2):188–97. https://doi.org/10.1007/s13193-016-0501-9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yonemura Y, Endo Y, Obata T, Sasaki T. Recent advances in the treatment of peritoneal dissemination of gastrointestinal cancers by nucleoside antimetabolites. Cancer Sci. 2007;98:11–8.

    CAS  PubMed  Google Scholar 

  4. Bhatt A, Sinukumar S, Mehta S, Damodaran D, Zaveri S, Kammar P, et al. Patterns of pathological response to neoadjuvant chemotherapy and its clinical implications in patients undergoing interval cytoreductive surgery for advanced serous epithelial ovarian cancer—a study by the Indian Network for Development of Peritoneal Surface Oncology (INDEPSO). Eur J Surg Oncol. 2019;45(4):666–71. https://doi.org/10.1016/j.ejso.2019.01.009. Epub 9 Jan 2019.

    Article  PubMed  Google Scholar 

  5. Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol. 2002;20(5):1248–59. https://doi.org/10.1200/JCO.20.5.1248.

    Article  PubMed  Google Scholar 

  6. Kurman RJ, Carcangiu ML, Herrington S, Young RH. WHO classification of tumours of female reproductive organs. 4th ed. Lyon: IARC Press; 2014. p. 11–86.

    Google Scholar 

  7. Prat J. Ovarian carcinoma: five distinct disease with different origins, genetic alterations, and clinicopathological features. Virchows Arch. 2012;460:237–49.

    PubMed  Google Scholar 

  8. Kurman RJ, Shih IM. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010;34:433–43.

    PubMed  PubMed Central  Google Scholar 

  9. Lalwani N, Prasad SR, Vikram R, Shanbhogue AK, Huettner PC, Fasih N. Histologic, molecular, and cytogenetic features of ovarian cancers: implications for diagnosis and treatment. Radiographics. 2011;31:625–46.

    PubMed  Google Scholar 

  10. Gilks CB, Prat J. Ovarian carcinoma pathology and genetics: recent advances. Hum Pathol. 2009;40:1213–23.

    CAS  PubMed  Google Scholar 

  11. Bowtell DD. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. 2010;10:803–8.

    CAS  PubMed  Google Scholar 

  12. Mitchell DG, Hill MC, Hill S, Zaloudek C. Serous carcinoma of the ovary: CT identification of metastatic calcified implants. Radiology. 1986;158:649–52.

    CAS  PubMed  Google Scholar 

  13. Kim HJ, Kim JK, Cho KS. CT features of serous surface papillary carcinoma of the ovary. AJR Am J Roentgenol. 2004;183:1721–4.

    PubMed  Google Scholar 

  14. Tanaka YO, Okada S, Satoh T, Matsumoto K, Oki A, Nishida M, et al. Ovarian serous surface papillary borderline tumors form sea anemone-like masses. J Magn Reson Imaging. 2011;33:633–40.

    PubMed  Google Scholar 

  15. Tanaka YO, Okada S, Satoh T, Matsumoto K, Oki A, Saida T, Yoshikawa H, Minami M. Differentiation of epithelial ovarian cancer subtypes by use of imaging and clinical data: a detailed analysis. Cancer Imaging. 2016;16:3. https://doi.org/10.1186/s40644-016-0061-9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177:1053–64. https://doi.org/10.2353/ajpath.2010.100105.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Serov SF, Scully RE, Sobin LH. International histological classification of tumors, No. 9. Histologic typing of ovarian tumors. Geneva: World Health Organization; 1973. p. 1–7.

    Google Scholar 

  18. Tavasolli FA, Devilee P. World Health Organization classification of tumors. Tumors of the breast and the female genital organs. Lyon: IARC Press, WHO; 2003. p. 8–12.

    Google Scholar 

  19. Kobel M, Kalloger SE, Carrick J, Huntsman D, Asad H, Oliva E, et al. A limited panel of immunomarkers can reliably distinguish between clear cell and high-grade serous carcinoma. Am J Surg Pathol. 2009;33:14–21.

    PubMed  Google Scholar 

  20. DeLair D, Oliva E, Kobel M, Macias A, Gilks CB, Soslow RA. Morphologic spectrum of immunohistochemically characterized clear cell carcinoma of the ovary: a study of 155 cases. Am J Surg Pathol. 2011;35:36–44.

    PubMed  Google Scholar 

  21. Tsuchiya A, Sakamoto M, Yasuda J, et al. Expression profiling in ovarian clear cell carcinoma: identification of hepatocyte nuclear factor 1-beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am J Pathol. 2003;163:2503–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Han G, Gilks CH, Leung S, Ewaniwich CA, Irving J, Longacre TA, et al. Mixed ovarian epithelial carcinomas with clear cell and serous components are variants of high-grade serous carcinoma: an interobserver correlative and immunohistochemical study of 32 cases. Am J Surg Pathol. 2008;32:955–64.

    PubMed  Google Scholar 

  23. Gilks CB, Ionescu DN, Kalloger SE, Kobel M, Irving J, Clarke B, et al. Tumor cell type can be reproducibly diagnosed and is of independent prognostic significance in patients with maximally debulked ovarian carcinoma. Hum Pathol. 2008;39:1239–51.

    CAS  PubMed  Google Scholar 

  24. Yamaguchi K, Mandai M, Oura T, Matsumura N, Hamanishi J, Baba T, et al. Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic process. Oncogene. 2010;29:1741–52.

    CAS  PubMed  Google Scholar 

  25. del Carmen MG, Birrer M, Schorge JO. Clear cell carcinoma of the ovary: a review of the literature. Gynecol Oncol. 2012;126(3):481–90. https://doi.org/10.1016/j.ygyno.2012.04.021. Epub 21 Apr 2012.

    Article  PubMed  Google Scholar 

  26. Sampson JA. Endometrial carcinoma of the ovary, arising in endometrial tissue in that organ. Arch Surg. 1925;10:1–72.

    Google Scholar 

  27. Tanaka YO, Okada S, Yagi T, Satoh T, Oki A, Tsunoda H, et al. MRI of endometriotic cysts in association with ovarian carcinoma. AJR Am J Roentgenol. 2010;194:355–61.

    PubMed  Google Scholar 

  28. Kobayashi H, Sumimoto K, Moniwa N, Imai M, Takakura K, Kuromaki T, et al. Risk of developing ovarian cancer among women with ovarian endometrioma: a cohort study in Shizuoka, Japan. Int J Gynecol Cancer. 2007;17:37–43.

    CAS  PubMed  Google Scholar 

  29. Kobel M, Kalloger SE, Huntsman DG, Santos JL, Swenerton KD, Seidman JD, et al. Differences in tumor type in low-stage versus high-stage ovarian carcinomas. Int J Gynecol Pathol. 2010;29:203–11.

    PubMed  Google Scholar 

  30. Choi HJ, Lee JH, Seok Lee J, Choi JI, Kang S, Lee S, et al. CT findings of clear cell carcinoma of the ovary. J Comput Assist Tomogr. 2006;30:875–9.

    PubMed  Google Scholar 

  31. Manabe T, Hirose Y, Kiryuu T, Koudo H, Hoshi H. Magnetic resonance imaging of endometrial cancer and clear cell cancer. J Comput Assist Tomogr. 2007;31:229–35.

    PubMed  Google Scholar 

  32. Sugiyama K, Takehara Y. Magnetic resonance findings of clear-cell adenocarcinofibroma of the ovary. Acta Radiol. 2007;48:704–6.

    CAS  PubMed  Google Scholar 

  33. Prat J, FIGO Committee on Gynecologic Oncology. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet. 2014;124:1–5.

    PubMed  Google Scholar 

  34. Onda T, Yoshikawa H, Yasugi T, Mishima M, Nakagawa S, Yamada M, et al. Patients with ovarian carcinoma upstaged to stage III after systematic lymphadenctomy have similar survival to stage I/II patients and superior survival to other stage III patients. Cancer. 1998;83:1555–60.

    CAS  PubMed  Google Scholar 

  35. Kanazawa K, Suzuki T, Tokashiki M. The validity and significance of substage IIIC by node involvement in epithelial ovarian cancer: impact of nodal metastasis on patient survival. Gynecol Oncol. 1999;73:237–41.

    CAS  PubMed  Google Scholar 

  36. Panici PB, Maggioni A, Hacker N, Landoni F, Ackermann S, Campagnutta E, et al. Systematic aortic and pelvic lymphadenectomy versus resection of bulky nodes only in optimally debulked advanced ovarian cancer: a randomized clinical trial. J Natl Cancer Inst. 2005;97:560–6.

    PubMed  Google Scholar 

  37. Cliby WA, Aletti GD, Wilson TO, Podratz KC. Is it justified to classify patients to stage IIIC epithelial ovarian cancer based on nodal involvement only? Gynecol Oncol. 2006;103:797–801.

    PubMed  Google Scholar 

  38. Ferrandina G, Scambia G, Legge F, Petrillo M, Salutari V. Ovarian cancer patients with “node-positive-only” stage IIIC disease have a more favorable outcome than stage IIIA/B. Gynecol Oncol. 2007;107:154–6.

    CAS  PubMed  Google Scholar 

  39. Baek SJ, Park JY, Kim DY, Kim JH, Kim YM, Kim YT, et al. Stage IIIC epithelial ovarian cancer classified solely by lymph node metastasis has a more favorable prognosis than other types of stage IIIC epithelial ovarian cancer. J Gynecol Oncol. 2008;19:223–8.

    PubMed  PubMed Central  Google Scholar 

  40. Suh DH, Kim TH, Kim JW, Kim SY, Kim HS, Lee TS, et al. Improvements to the FIGO staging for ovarian cancer: reconsideration of lymphatic spread and intraoperative tumor rupture. J Gynecol Oncol. 2013;24(4):352–8. https://doi.org/10.3802/jgo.2013.24.4.352.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Seidman JD, Horkayne-Szakaly I, Haiba M, Boice CR, Kurman RJ, Ronnett BM. The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol. 2004;23(1):41–4.

    PubMed  Google Scholar 

  42. Sampson JA. Implantation peritoneal carcinomatosis of ovarian origin. Am J Pathol. 1931;7:423–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Murphy EM, Sexton R, Moran BJ. Early results of surgery in 123 patients with pseudomyxoma peritonei from a perforated appendiceal neoplasm. Dis Colon Rectum. 2007;50:37–42.

    PubMed  Google Scholar 

  44. Kostić Z, Cuk V, Bokun R, Ignjatović D, Usaj-Knezević S, Ignjatović M. Detection of free cancer cells in peritoneal cavity in patients surgically treated for gastric adenocarcinoma. Vojnosanit Pregl. 2006;63:349–56.

    PubMed  Google Scholar 

  45. Meyers MA. Distribution of intra-abdominal malignant seeding: dependency on dynamics of flow of ascitic fluid. Am J Roentgenol Radium Ther Nucl Med. 1973;119:198–206.

    CAS  PubMed  Google Scholar 

  46. Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal peritoneal carcinomatosis: role of the peritoneum. World J Gastroenterol. 2016;22(34):7692–707. https://doi.org/10.3748/wjg.v22.i34.7692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shimotsuma M, Shields JW, Simpson-Morgan MW, et al. Morpho-physiological function and role of omental milky spots as omentum associated lymphoid tissue (OALT) in the peritoneal cavity. Lymphology. 1993;26:90–101.

    CAS  PubMed  Google Scholar 

  48. Yonemura Y, Kawamura T, Bandou E, Tsukiyama G, Endou Y, Miura M. The natural history of free cancer cells in the peritoneal cavity. In: Gonzalez-Moreno S, editor. Advances in peritoneal surface oncology. Berlin: Springer-Verlag Berlin Heidelberg; 2007. p. 11–23.

    Google Scholar 

  49. Pradeep S, Kim SW, Wu SY, Nishimura M, Chaluvally-Raghavan P, Miyake T, et al. Hematogenous metastasis of ovarian cancer: rethinking mode of spread. Cancer Cell. 2014;26(1):77–91. https://doi.org/10.1016/j.ccr.2014.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barbolina MV. Molecular mechanisms regulating organ-specific metastases in epithelial ovarian carcinoma. Cancers (Basel). 2018;10(11):444. https://doi.org/10.3390/cancers10110444.

    Article  CAS  Google Scholar 

  51. Moss NM, Barbolina MV, Liu Y, Sun L, Munshi HG, Stack MS. Ovarian cancer cell detachment and multicellular aggregate formation are regulated by membrane type 1 matrix metalloproteinase: a potential role in I.p. metastatic dissemination. Cancer Res. 2009;69:7121–9. https://doi.org/10.1158/0008-5472.CAN-08-4151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Steinkamp MP, Winner KK, Davies S, Muller C, Zhang Y, Hoffman RM, Shirinifard A, Moses M, Jiang Y, Wilson BS. Ovarian tumour attachment, invasion, and vascularization reflect unique microenvironments in the peritoneum: insights from xenograft and mathematical models. Front Oncol. 2013;3:97. https://doi.org/10.3389/fonc.2013.00097.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nakamura K, Sawada K, Kinose Y, Yoshimura A, Toda A, Nakatsuka E, Hashimoto K, Mabuchi S, Morishige KI, Kurachi H, et al. Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol Cancer Res. 2017;15:78–92. https://doi.org/10.1158/1541-7786.MCR-16-0191.

    Article  CAS  PubMed  Google Scholar 

  54. Ren J, Xiao YJ, Singh LS, Zhao X, Zhao Z, Feng L, Rose TM, Prestwich GD, Xu Y. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res. 2006;66:3006–14. https://doi.org/10.1158/0008-5472.CAN-05-129.

    Article  CAS  PubMed  Google Scholar 

  55. Ellerbroek SM, Wu YI, Overall CM, Stack MS. Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J Biol Chem. 2001;276:24833–42. https://doi.org/10.1074/jbc.M005631200.

    Article  CAS  PubMed  Google Scholar 

  56. Moser TL, Pizzo SV, Bafetti LM, Fishman DA, Stack MS. Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the alpha2beta1 integrin. Int J Cancer. 1996;67:695–701. https://doi.org/10.1002/(SICI)1097-0215(19960904)67:5<695::AID-IJC18>3.0.CO;2-4.

    Article  CAS  PubMed  Google Scholar 

  57. Sodek KL, Ringuette MJ, Brown TJ. MT1-MMP is the critical determinant of matrix degradation and invasion by ovarian cancer cells. Br J Cancer. 2007;97:358–67. https://doi.org/10.1038/sj.bjc.6603863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barbolina MV, Adley BP, Ariztia EV, Liu Y, Stack MS. Microenvironmental regulation of membrane type 1 matrix metalloproteinase activity in ovarian carcinoma cells via collagen-induced EGR1 expression. J Biol Chem. 2007;282:4924–31. https://doi.org/10.1074/jbc.M608428200.

    Article  CAS  PubMed  Google Scholar 

  59. Barbolina MV, Liu Y, Gurler H, Kim M, Kajdacsy-Balla AA, Rooper L, Shepard J, Weiss M, Shea LD, Penzes P, et al. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein. J Biol Chem. 2013;288:141–51. https://doi.org/10.1074/jbc.M112.431411.

    Article  CAS  PubMed  Google Scholar 

  60. Moss NM, Liu Y, Johnson JJ, Debiase P, Jones J, Hudson LG, Munshi HG, Stack MS. Epidermal growth factor receptor-mediated membrane type 1 matrix metalloproteinase endocytosis regulates the transition between invasive versus expansive growth of ovarian carcinoma cells in three-dimensional collagen. Mol Cancer Res. 2009;7:809–20. https://doi.org/10.1158/1541-7786.MCR-08-0571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kusamura S, Baratti D, Zaffaroni N, Villa R, Laterza B, Balestra MR, et al. Pathophysiology and biology of peritoneal carcinomatosis. World J Gastrointest Oncol. 2010;2(1):12–8.

    PubMed  PubMed Central  Google Scholar 

  62. Sugarbaker PH. Surgical management of carcinomatosis from colorectal cancer. Clin Colon Rectal Surg. 2005;18(3):190–203. https://doi.org/10.1055/s-2005-916280.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sugarbaker PH. Observations concerning cancer spread within the peritoneal cavity and concepts supporting an ordered pathophysiology. In: Sugarbaker PH, editor. Peritoneal carcinomatosis: principles of management. Boston, MA: Kluwer Academic Publisher; 1995. p. 80–99.

    Google Scholar 

  64. Bhatt A, Yonemura Y, Benzerdjeb N, Mehta S, Mishra S, Parikh L, Kammar P, et al. Pathological assessment of cytoreductive surgery specimens and its unexplored prognostic potential—a prospective multi-centric study. Eur J Surg Oncol. 2019;45:2398. https://doi.org/10.1016/j.ejso.2019.07.019.

    Article  PubMed  Google Scholar 

  65. Bjorge L, Junnikkala S, Kristoffersen EK, et al. Resistance of ovarian teratocarcinoma cell spheroids to complement-mediated lysis. Br J Cancer. 1997;75:1247–55.

    CAS  PubMed  Google Scholar 

  66. Burleson KM, Casey RC, Skubitz KM, et al. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol. 2004;93:170–81.

    CAS  PubMed  Google Scholar 

  67. Burleson KM, Hansen LK, Skubitz AP. Ovarian carcinoma spheroids disaggregate on type I collagen and invade live human mesothelial cell monolayers. Clin Exp Metastasis. 2004;21:685–97.

    CAS  PubMed  Google Scholar 

  68. Tan DS, Agarwal R, Kaye SB. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 2006;7(11):925–34.

    PubMed  Google Scholar 

  69. Kim J, Coffey D, Chad C, Yu Z, Hawkins S, Matzuk M. High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci. 2012;109(10):3921–6. https://doi.org/10.1073/pnas.1117135109.

    Article  PubMed  Google Scholar 

  70. Sehouli J, Senyuva F, Fotopoulou C, Neumann U, Denkert C, Werner L, Gülten OO. Intra-abdominal tumor dissemination pattern and surgical outcome in 214 patients with primary ovarian cancer. J Surg Oncol. 2009;99(7):424–7. https://doi.org/10.1002/jso.21288.

    Article  PubMed  Google Scholar 

  71. Miller MJ, McDole JR, Newberry RD. Microanatomy of the intestinal lymphatic system. Ann N Y Acad Sci. 2010;1207(Suppl 1):E21–8. https://doi.org/10.1111/j.1749-6632.2010.05708.x.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sugarbaker PH. Pseudomyxoma peritonei. A cancer whose biology is characterized by a redistribution phenomenon. Ann Surg. 1994;219(2):109–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Böhm S, Faruqi A, Said I, Lockley M, Brockbank E, Jeyarajah A, et al. Chemotherapy response score: development and validation of a system to quantify histopathologic response to neoadjuvant chemotherapy in tubo-ovarian high-grade serous carcinoma. J Clin Oncol. 2015;33(22):2457–63. https://doi.org/10.1200/JCO.2014.60.521.

    Article  PubMed  Google Scholar 

  74. Lee JY, Chung YS, Na K, Kim HM, Park CK, Nam EJ, et al. External validation of chemotherapy response score system for histopathological assessment of tumor regression after neoadjuvant chemotherapy in tubo-ovarian high-grade serous carcinoma. J Gynecol Oncol. 2017;28(6):e73. https://doi.org/10.3802/jgo.2017.28.e73.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rajkumar S, Polson A, Nath R, Lane G, Sayaneh A, Jake A, et al. Prognostic implications of histological tumor regression (Böhm’s score) in patients receiving neoadjuvant chemotherapy for high grade serous tubal & ovarian carcinoma. Gynecol Oncol. 2018;151(2):264–8.

    PubMed  Google Scholar 

  76. McCluggage WG, Judge MJ, Clarke BA, Davidson B, Gilks CB, Hollema H, Ledermann JA, Matias-Guiu X, Mikami Y, Stewart CJ, Vang R, Hirschowitz L. International collaboration on cancer reporting. Data set for reporting of ovary, fallopian tube and primary peritoneal carcinoma: recommendations from the International Collaboration on Cancer Reporting (ICCR). Mod Pathol. 2015;28(8):1101–22. https://doi.org/10.1038/modpathol.2015.77.

    Article  PubMed  Google Scholar 

  77. Ovary, Fallopian Tube and Primary Peritoneal Carcinoma Histopathology Reporting Guide. http://www.iccr-cancer.org/getattachment/Datasets/Published-Datasets/Female-Reproductive-Organs/Carcinoma-of-the-ovary-Fallopian-Tube-Primary-Peri/ICCR-Ovary-FT-PPS-hyperlinked-guide.pdf. Accessed 8th April, 2020.

  78. Santoro A, Angelico G, Piermattei A, Inzani F, Valente M, Arciuolo D, Spadola S, Mulè A, Zorzato P, Fagotti A, Scambia G, Zannoni GF. Pathological chemotherapy response score in patients affected by high grade serous ovarian carcinoma: the prognostic role of omental and ovarian residual disease. Front Oncol. 2019;9:778. https://doi.org/10.3389/fonc.2019.00778.

    Article  PubMed  PubMed Central  Google Scholar 

  79. van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, de Hingh IHJT, van der Velden J, Arts HJ, Massuger LFAG, Aalbers AGJ, Verwaal VJ, Kieffer JM, van de Vijver KK, van Tinteren H, Aaronson NK, Sonke GS. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378:230–40.

    PubMed  Google Scholar 

  80. Lim MC, Song YJ, Seo SS, Yoo CW, Kang S, Park SY. Residual cancer stem cells after interval cytoreductive surgery following neoadjuvant chemotherapy could result in poor treatment outcomes for ovarian cancer. Onkologie. 2010;33(6):324–30. https://doi.org/10.1159/000313823. Epub 14 May 2010.

    Article  PubMed  Google Scholar 

  81. Hynninen J, Lavonius M, Oksa S, et al. Is perioperative visual estimation of intra-abdominal tumor spread reliable in ovarian cancer surgery after neoadjuvant chemotherapy? Gynecol Oncol. 2013;128:229–32.

    PubMed  Google Scholar 

  82. Sinukumar S, Rajan F, Mehta S, Damodaran D, Zaveri S, Kammar P, et al. A comparison of outcomes following total and selective peritonectomy performed at the time of interval cytoreductive surgery for advanced serous epithelial ovarian, fallopian tube and primary peritoneal cancer—a study by INDEPSO. Eur J Surg Oncol. 2019. pii: S0748-7983(19)30304-X. https://doi.org/10.1016/j.ejso.2019.02.031.

  83. Sugarbaker PH. Colorectal cancer: prevention and management of metastatic disease. Biomed Res Int. 2014;11:782890. https://doi.org/10.1155/2014/782890.

    Article  Google Scholar 

  84. Sugarbaker PH, Sammartino P, Tentes AA. Proactive management of peritoneal metastases from colorectal cancer: the next logical step toward optimal locoregional control. Colorectal Cancer. 2012;1:115–23.

    Google Scholar 

  85. Havelaar IJ, Sugarbaker PH, Vermess M, Miller DL. Rate of growth of intraabdominal metastases from colorectal cancer. Cancer. 1984;54(1):163–71.

    CAS  PubMed  Google Scholar 

  86. Joyce JA, Pollard JW. Microenvironment regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    CAS  PubMed  Google Scholar 

  87. Papademetriou K, Ardavanis A, Kountourakis P. Neoadjuvant therapy for locally advanced breast cancer: focus on chemotherapy and biological targeted treatments’ armamentarium. J Thoracic Dis. 2010;2(3):160–70. https://doi.org/10.3978/j.issn.2072-1439.2010.02.03.

    Article  CAS  Google Scholar 

  88. Eisenhauer EA. Optimal assessment of response in ovarian cancer. Ann Oncol. 2011;22(Suppl_8):viii49–51. https://doi.org/10.1093/annonc/mdr467.

    Article  PubMed  Google Scholar 

  89. Biacchi D, Accarpio F, Ansaloni L, Macrì A, Ciardi A, Federici O, Spagnoli A, Cavaliere D, Vaira M, Sapienza P, Sammartino P. Upfront debulking surgery versus interval debulking surgery for advanced tubo-ovarian high-grade serous carcinoma and diffuse peritoneal metastases treated with peritonectomy procedures plus HIPEC. J Surg Oncol. 2019;120:1208. https://doi.org/10.1002/jso.25703. [Epub ahead of print].

    Article  PubMed  Google Scholar 

  90. Bhatt A, Sinukumar S, Rajan F, Damodaran D, Ray M, Zaveri S, et al. Impact of radicality versus timing of surgery in patients with advanced ovarian cancer (stage III C) undergoing CRS and HIPEC—a retrospective study by INDEPSO. Indian J Surg Oncol. 2019;10(Suppl 1):57. https://doi.org/10.1007/s13193-019-00875-z.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sugarbaker PH. Peritonectomy procedures. Ann Surg. 1995;221(1):29–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. du Bois A, Vergote I, Ferron G, Reuss A, Meier W, Greggi S, et al. Randomized controlled phase III study evaluating the impact of secondary cytoreductive surgery in recurrent ovarian cancer: AGO DESKTOP III/ENGOT ov20. J Clin Oncol. 2017;35. (abstract 5501).

    Google Scholar 

  93. Classe JM, Glehen O, Decullier E, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for first relapse of ovarian cancer. Anticancer Res. 2015;35(9):4997–5005.

    CAS  PubMed  Google Scholar 

  94. Amate P, Huchon C, Dessapt AL, Bensaid C, Medioni J, Le Frère Belda MA, Bats AS, Lécuru FR. Ovarian cancer: sites of recurrence. Int J Gynecol Cancer. 2013;23(9):1590–6.

    PubMed  Google Scholar 

  95. Harter P, Sehouli J, Lorusso D, et al. A randomized trial of lymphadenectomy in patients with advanced ovarian neoplasms. N Engl J Med. 2019;380:822–32.

    PubMed  Google Scholar 

  96. Pereira A, Pérez-Medina T, Magrina JF, Magtibay PM, Rodríguez-Tapia A, de León J, et al. Correlation between the extent of intraperitoneal disease and nodal metastasis in node-positive ovarian cancer patients. Eur J Surg Oncol. 2014;40(8):917–24.

    CAS  PubMed  Google Scholar 

  97. Kammar P, Bhatt A, Anam J, Waghoo S, Pandey J, Mehta S. Correlation between pelvic peritoneal disease and nodal metastasis in advanced OvarianCancer:can intraoperative findings define the need for systematic nodal dissection? Indian J Surg Oncol. 2019;10(Suppl 1):84–90. https://doi.org/10.1007/s13193-019-00881-1. Epub 7 Feb 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Di Giorgio A, Cardi M, Biacchi D, Sibio S, Accarpio F, Ciardi A, et al. Depth of colorectal-wall invasion and lymph-node involvement as major outcome factors influencing surgical strategy in patients with advanced and recurrent ovarian cancer with diffuse peritoneal metastases. World J Surg Oncol. 2013;11:64.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Glehen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, A., Parikh, L., Mishra, S., Glehen, O. (2020). Epithelial Serous Ovarian Cancer: Patterns of Peritoneal Dissemination and their Clinical Implications. In: Glehen, O., Bhatt, A. (eds) Pathology of Peritoneal Metastases. Springer, Singapore. https://doi.org/10.1007/978-981-15-3773-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3773-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3772-1

  • Online ISBN: 978-981-15-3773-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics