Skip to main content

Tuberculosis

  • Chapter
  • First Online:
Chronic Lung Diseases

Abstract

Tuberculosis (TB) is one of the lethal diseases that affect millions of people around the world. The primary concern associated with this endemic ailment is an elevated level of resistance. World Health Organisation (WHO) has taken steps to reduce the incidence of TB at an accelerated rate under the purview of ending the TB epidemic by 2030. To achieve this goal, there are hurdles that need to be addressed, which are not only limited to TB diagnosis, treatment, and prevention but also linked to dealing with social and economic determinants in close collaboration with diverse sectors in the healthcare domain. In this scenario, this chapter focuses on the epidemiology of TB, primary causes and symptoms of TB, pathophysiological process of TB along with the involvement of cells and transcriptional factors, current treatment regimen with its drawbacks, and future treatment options. This chapter represents an up-to-date overview of these disease conditions and its therapy in global perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

Antiretroviral therapy

ATP:

Adenosine triphosphate

BCG:

Bacillus Calmette–Guerin

DIM:

Dimycocerosate phthiocerol;

DOT:

Directly observed therapy

DOTS:

Directly observed treatment, short-course

HIV:

Human immunodeficiency virus

ILC:

Innate lymphoid cells

LAM:

Lipoarabinomannan

LTBI:

Latent tuberculosis infection

MAIT:

Mucosa-associated invariant T

Man-LAM:

Mannose capped lipoarabinomannan

MDR:

Multidrug resistance

MIC:

Minimum inhibitory concentration

Mtb :

Mycobacterium tuberculosis

NAA:

Nucleic acid amplification

PIM:

Phosphatidylinositol mannoside

PLGA:

Poly lactide-co-glycolide

RD-1:

Region of difference-1

RR:

Rifampicin resistant

SL:

Sulfated glycolipid

TB:

Tuberculosis

TDM:

Trehalose dimycolates

TST:

Tuberculosis skin test

USFDA:

United States Food and Drug Administration

WHO:

World Health Organization

XDR:

Extremely drug resistance

References

  1. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45:1176–1182

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Ehrt S, Schnappinger D (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11:1170–1178

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Briffotaux J, Liu S, Gicquel B (2019) Genome-wide transcriptional responses of mycobacterium to antibiotics. Front Microbiol 10:249. https://doi.org/10.3389/fmicb.2019.00249

    Article  PubMed  PubMed Central  Google Scholar 

  4. WHO (2019) Global tuberculosis report 2019. WHO, Geneva

    Google Scholar 

  5. Hayman J (1984) Mycobacterium ulcerans: an infection from Jurassic time? Lancet 2:1015–1016

    PubMed  CAS  Google Scholar 

  6. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, Supply P, Vincent V (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:e5

    PubMed  PubMed Central  Google Scholar 

  7. Cave AJE (1939) The evidence for the incidence of tuberculosis in ancient Egypt. Br J Tubercul 33:142–152

    Google Scholar 

  8. Brown L (1941) Radiology: the story of clinical pulmonary tuberculosis. The Williams and Wilkins, Baltimore, MD

    Google Scholar 

  9. Daniel TM (2000) The origins and precolonial epidemiology of tuberculosis in the Americas: can we figure them out? Int J Tuberc Lung Dis 4:395–400

    PubMed  CAS  Google Scholar 

  10. Salo WL, Aufderheide AC, Buikstra J, Holcomb TA (1994) Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A 91:2091–2094

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Allison MJ, Mendoza D, Pezzia A (1973) Documentation of a case of tuberculosis in Pre-Columbian America. Am Rev Respir Dis 107:985–991

    PubMed  CAS  Google Scholar 

  12. Glaziou P, Floyd K, Raviglione MC (2018) Global epidemiology of tuberculosis. Semin Respir Crit Care Med 39:271–285

    PubMed  Google Scholar 

  13. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Saeed BW (2006) Malignant tuberculosis. J Ayub Med Coll Abbottabad 18:1–2

    PubMed  Google Scholar 

  15. Bloom BR, Murray CJL (1992) Tuberculosis: commentary on a reemergent killer. Science 257:1055–1064

    PubMed  CAS  Google Scholar 

  16. Barberis I, Bragazzi NL, Galluzzo L, Martini M (2017) The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg 58:E9–E12

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Gradmann C (2001) Robert Koch and the pressures of scientific research: tuberculosis and tuberculin. Med Hist 45:1–32

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Daniel TM (2011) Hermann Brehmer and the origins of tuberculosis sanatoria. Int J Tuberc Lung Dis 15:161–162

    PubMed  CAS  Google Scholar 

  19. Veron LJ, Blanc LJ, Suchi M, Raviglione MC (2004) DOTS expansion: will we reach the 2005 targets? Int J Tuberc Lung Dis 8:139–146

    PubMed  CAS  Google Scholar 

  20. Maher D, Blanc L, Raviglione M (2004) WHO policies for tuberculosis control. Lancet 363:1911

    PubMed  Google Scholar 

  21. WHO (2018) Global tuberculosis report 2018. WHO, Geneva

    Google Scholar 

  22. CDC (n.d.) Self-study modules on tuberculosis. Centers for Disease Control and Prevention website. http://www.cdc.gov/tb/education/ssmodules/. Updated 11 May 2016. Accessed 14 Jun 2016

  23. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    PubMed  CAS  Google Scholar 

  24. Lee RB, Li W, Chatterjee D, Lee RE (2005) Rapid structural characterization of the arabinogalactan and lipoarabinomannan in live mycobacterial cells using 2D and 3D HR-MAS NMR: structural changes in the arabinan due to ethambutol treatment and gene mutation are observed. Glycobiology 15:139–151

    PubMed  CAS  Google Scholar 

  25. Knechel NA (2009) Tuberculosis: pathophysiology, clinical features, and diagnosis. Crit Care Nurse 29:34–43

    PubMed  Google Scholar 

  26. CDC (2009) Interactive core curriculum on tuberculosis. Centers for Disease Control and Prevention. Available from http://www.cdc.gov/tb/webcourses/CoreCurr/TB_Course/Menu/frameset_internet.htm

  27. Jensen PA, Lambert LA, Iademarco MF, Ridzon R, Centers for Disease Control and Prevention (2005) Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005. MMWR Recommend Rep 54:1–141

    Google Scholar 

  28. Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362:887–899

    PubMed  Google Scholar 

  29. Paton NI, Chua YK, Earnest A, Chee CB (2004) Randomized controlled trial of nutritional supplementation in patients with newly diagnosed tuberculosis and wasting. Am J Clin Nutr 80:450–465

    Google Scholar 

  30. Ddungu H, Johnson JL, Smieja M, Mayanja-Kizza H (2006) Digital clubbing in tuberculosis—relationship to HIV infection, extent of disease and hypoalbuminemia. BMC Infect Dis 6:1–7

    Google Scholar 

  31. Elder NC (1992) Extrapulmonary tuberculosis. Arch Fam Med 1:91–98

    PubMed  CAS  Google Scholar 

  32. Ehtesham SE, Grover S (2019) Mycobacterium tuberculosis: molecular infection biology, pathogenesis, diagnostics and new interventions. Springer Nature Singapore Pte Ltd., New Delhi

    Google Scholar 

  33. Wise GJ, Marella VK (2003) Genitourinary manifestations of tuberculosis. Urol Clin North Am 30:111–121

    PubMed  Google Scholar 

  34. Pigrau-Serrallach C, Rodriguez-Pardo D (2013) Bone and joint tuberculosis. Eur Spine J 22:S556–S566

    Google Scholar 

  35. Harney M, Hone S, Timon C, Donnelly M (2000) Laryngeal tuberculosis: an important diagnosis. J Laryngol Otol 114:878–880

    PubMed  CAS  Google Scholar 

  36. Ruiz-Manzano J, Blanquer R, Calpe JL, Caminero JA, Cayla J, Dominguez JA, Garcia JM, Vidal R (2008) Diagnosis and treatment of tuberculosis. Arch Bronconeumol 44:551–566

    PubMed  Google Scholar 

  37. Wang JY, Hsueh PR, Wang SK, I-Shiow J, Li-Na L, Yuang-Shuang L, Pan-Chyr Y, Kwen-Tay L (2007) Disseminated tuberculosis: a 10-year experience in a medical center. Medicine 86:39–46

    PubMed  Google Scholar 

  38. Jauregui-Amezaga A, Turon F, Ordás I, Gallego M, Feu F, Ricart E, Panés J (2013) Risk of developing tuberculosis under anti-TNF treatment despite latent infection screening. J Crohn Colit 7:208–212

    Google Scholar 

  39. Skinner HA (1961) The origin of medical terms, 2nd edn. The Williams and Wilkins Company, Baltimore, MD

    Google Scholar 

  40. Wain H (1958) The story behind the word. Charles C. Thomas, Chicago, IL

    Google Scholar 

  41. Purdy GE, Russell DG (2007) Lysosomal ubiquitin and the demise of Mycobacterium tuberculosis. Cell Microbiol 9:2768–2774

    PubMed  CAS  Google Scholar 

  42. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, Sacchettini J, Fortune SM, Flynn JL (2014) Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 20:75–79

    PubMed  CAS  Google Scholar 

  43. Antonelli LR, Gigliotti Rothfuchs A, Goncalves R, Roffe E, Cheever AW, Bafica A, Salazar AM, Feng CG, Sher A (2010) Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Investig 120:1674–1682

    PubMed  CAS  Google Scholar 

  44. Pai M, Denkinger CM, Kik SV, Rangaka MX, Zwerling A, Oxlade O, Metcalfe JZ, Cattamanchi A, Dowdy DW, Dheda K, Banaei N (2014) Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev 27:3–20

    PubMed  PubMed Central  Google Scholar 

  45. Arend SM, van Meijgaarden KE, de Boer K, de Palou EC, van Soolingen D, Ottenhoff TH, van Dissel JT (2002) Tuberculin skin testing and in vitro T cell responses to ESAT‑6 and culture filtrate protein 10 after infection with Mycobacterium marinum or M. kansasii. J Infect Dis 186:1797–1807

    PubMed  CAS  Google Scholar 

  46. Wang J, McIntosh F, Radomski N, Dewar K, Simeone R, Enninga J, Brosch R, Rocha EP, Veyrier FJ, Behr MA (2015) Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol Evol 7:856–870

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA, Prideaux B, Daudelin IB, Chen PY, Booty MG, Kim JH, Eum SY, Via LE, Behar SM, Barry CE, Mann M, Dartois V, Rubin EJ (2016) Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med 22:531–538

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Rich AR (1951) The pathogenesis of tuberculosis, 2nd edn. Charles C. Thomas, Chicago, IL

    Google Scholar 

  49. Zumla A, James GD (1996) Granulomatous infections: etiology and classification. Clin Infect Dis 72:146–158

    Google Scholar 

  50. Welin A, Raffetseder J, Eklund D, Stendahl O, Lerm M (2011) Importance of phagosomal functionality for growth restriction of Mycobacterium tuberculosis in primary human macrophages. J Innate Immun 3:508–518

    PubMed  PubMed Central  Google Scholar 

  51. Li W, Xie J (2011) Role of mycobacteria effectors in phagosome maturation blockage and new drug targets discovery. J Cell Biochem 112:2688–2693

    PubMed  CAS  Google Scholar 

  52. Mishra AK, Driessen NN, Appelmelk BJ, Besra GS (2011) Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction. FEMS Microbiol Rev 35:1126–1157

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Indrigo J, Hunter RL Jr, Actor JK (2003) Cord factor trehalose 6,6-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149:2049–2059

    PubMed  CAS  Google Scholar 

  54. Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA, Gicquel B, Daffe M, Guilhot C (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 76:19845–19854

    Google Scholar 

  55. Kaplan MH, Armstrong D, Rosen P (1974) Tuberculosis complicating neoplastic disease: a review of 201 cases. Cancer 33:850–858

    PubMed  CAS  Google Scholar 

  56. Ghon A (1916) The primary lung focus of tuberculosis in children [Translation by King DB]. Churchill, London

    Google Scholar 

  57. Salyer WR, Salyer DC, Baker RD (1974) Primary complex of cryptococcus and pulmonary lymph nodes. J Infect Dis 130:74–77

    PubMed  CAS  Google Scholar 

  58. Hunter RL (2018) The pathogenesis of tuberculosis: the early infiltrate of post-primary (adult pulmonary) tuberculosis: a distinct disease entity. Front Immunol 9:2108

    PubMed  PubMed Central  Google Scholar 

  59. Scriba TJ, Penn-Nicholson A, Shankar S, Hraha T, Thompson EG, Sterling D, Nemes E, Darboe F, Suliman S, Amon LM, Mahomed H, Erasmus M, Whatney W, Johnson JL, Boom WH, Hatherill M, Valvo J, De Groote MA, Ochsner UA, Aderem A, Hanekom WA, Zak DE (2017) Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease. PLoS Pathog 13:e1006687

    PubMed  PubMed Central  Google Scholar 

  60. Ziemele B, Ranka R, Ozere I (2017) Pediatric and adolescent tuberculosis in Latvia, 2011-2014: case detection, diagnosis and treatment. Int J Tuberc Lung Dis 21:637–645

    PubMed  CAS  Google Scholar 

  61. Esmail H, Lai RP, Lesosky M, Wilkinson KA, Graham CM, Coussens AK, Oni T, Warwick JM, Said-Hartley Q, Koegelenberg CF, Walzl G, Flynn JL, Young DB, Barry Iii CE, O’Garra A, Wilkinson RJ (2016) Characterization of progressive HIV-associated tuberculosis using 2-deoxy2-[18F] fluoro-D-glucose positron emission and computed tomography. Nat Med 22:1090–1093

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Medlar EM (1955) The behavior of pulmonary tuberculosis lesion: a pathological study. Am Rev Tubercul 71:1–244

    CAS  Google Scholar 

  63. Sharma SK, Mohan A (2011) Tuberculosis, 2nd edn. Jaypee Brothers Medical Publishers (P) LTD, New Delhi

    Google Scholar 

  64. Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23:327–333

    PubMed  CAS  Google Scholar 

  65. Kato A, Schleimer RP (2007) Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr Opin Immunol 19:711–720

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Stanke F (2015) The contribution of the airway epithelial cell to host defense. Mediators Inflamm 2015:463016

    PubMed  PubMed Central  Google Scholar 

  67. Kleinnijenhuis J, Oosting M, Joosten LAB, Netea MG, Van Crevel R (2011) Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011:405310. https://doi.org/10.1155/2011/405310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mayer AK, Muehmer M, Mages J, Gueinzius K, Hess C, Heeg K, Bals R, Lang R, Dalpke AH (2007) Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J Immunol 178:3134–3142

    PubMed  CAS  Google Scholar 

  69. Scordo JM, Knoell DL, Torrelles JB (2016) Alveolar epithelial cells in Mycobacterium tuberculosis infection: active players or innocent bystanders. J Innate Immun 8:3–14

    PubMed  CAS  Google Scholar 

  70. Gomez MI, Prince A (2008) Airway epithelial cell signaling in response to bacterial pathogens. Pediatr Pulmonol 43:11–19

    PubMed  Google Scholar 

  71. Cooper AM, Khader SA (2008) The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. J Immunol 226:191–204

    CAS  Google Scholar 

  72. Lee HM, Shin DM, Jo EK (2009) Mycobacterium tuberculosis induces the production of tumor necrosis factor-α, interleukin-6, and CXCL8 in pulmonary epithelial cells through reactive oxygen species-dependent mitogen-activated protein kinase activation. J Bacteriol Virol 39:1–10

    Google Scholar 

  73. Lin Y, Zhang M, Barnes PF (1998) Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 66:1121–1126

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Nakanaga T, Nadel JA, Ueki IF, Koff JL, Shao MX (2007) Regulation of interleukin-8 via an airway epithelial signaling cascade. Am J Physiol Lung Cell Mol Physiol 292:1289–1296

    Google Scholar 

  75. Sharma M, Sharma S, Roy S, Varma S, Bose M (2007) Pulmonary epithelial cells are a source of interferon-gamma in response to Mycobacterium tuberculosis infection. Immunol Cell Biol 85:229–237

    PubMed  CAS  Google Scholar 

  76. Peters W, Ernst JD (2003) Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes Infect 5:151–158

    PubMed  CAS  Google Scholar 

  77. Harriff MJ, Cansler ME, Toren KG, Canfield ET, Kwak S, Gold MC, Lewinsohn DM (2014) Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8+ T cells. PLoS One 9:e97515

    PubMed  PubMed Central  Google Scholar 

  78. Gupta N, Kumar R, Agrawal B (2018) New players in immunity to tuberculosis: the host microbiome, lung epithelium, and innate immune cells. Front Immunol 9:709. https://doi.org/10.3389/fimmu.2018.0070

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lasco TM, Turner OC, Cassone L, Sugawara I, Yamada H, McMurray DN, Orme LM (2004) Rapid accumulation of eosinophils in lung lesions in guinea pigs infected with Mycobacterium tuberculosis. Infect Immun 2:1147–1149

    Google Scholar 

  80. Appelberg R (2007) Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol 2:87–92

    Google Scholar 

  81. Topham NJ, Hewitt EW (2009) Natural killer cell cytotoxicity: how do they pull the trigger? Immunology 1:7–15

    Google Scholar 

  82. Yoon SR, Kim T-D, Choi I (2015) Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 2:e141

    Google Scholar 

  83. Cheent K, Khakoo SI (2009) Natural killer cells: integrating diversity with function. Immunology 4:449–457

    Google Scholar 

  84. Esin S, Batoni G, Counoupas C, Stringaro A, Brancatisano FL, Colone M, Maisetta G, Florio W, Arancia G, Campa M (2008) Direct binding of human NK cell natural cytotoxicity receptor NKp44 to the surfaces of mycobacteria and other bacteria. Infect Immun 4:1719–1727

    Google Scholar 

  85. Guerra C, Johal K, Morris D, Moreno S, Alvarado O, Gray D, Tanzil M, Pearce D, Venketaraman V (2012) Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp Immunol 1:142–152

    Google Scholar 

  86. Roy S, Barnes P, Garg A, Wu S, Cosman D, Vankayalapati R (2008) NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J Immunol 1:1729–1736

    Google Scholar 

  87. Kulprannet M, Sukwit S, Sumransuro K, Chuenchitra T (2007) Cytokine production in NK and NKT cells from Mycobacterium tuberculosis infected patients. Southeast Asian J Trop Med Public Health 2:370–375

    Google Scholar 

  88. Bozzano F, Costa P, Passalacqua G, Dodi F, Ravera S, Pagano G, Canonica GW, Moretta L, De Maria A (2009) Functionally relevant decreases in activatory receptor expression on NK cells are associated with pulmonary tuberculosis in vivo and persist after successful treatment. Int Immunol 7:779–791

    Google Scholar 

  89. Marcenaro E, Ferranti B, Falco M, Moretta L, Moretta A (2008) Human NK cells directly recognize Mycobacterium bovis via TLR2 and acquire the ability to kill monocyte-derived DC. Int Immunol 9:1155–1167

    Google Scholar 

  90. Kumar V, Delovitch TL (2014) Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 3:321–336

    Google Scholar 

  91. Brennan P, Brigl M, Brenner M (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2:101–117

    Google Scholar 

  92. Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM (2008) Innate invariant NKT cells recognize Mycobacterium tuberculosis–infected macrophages, produce interferon-γ, and kill intracellular bacteria. PLoS Pathog 12:e1000239

    Google Scholar 

  93. Kee SJ, Kwon YS, Park YW, Cho YN, Lee SJ, Kim TJ, Lee SS, Jang HC, Shin MG, Shin JH, Suh SP, Ryang DW (2012) Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 80:2100–2108

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Wu C, Li Z, Fu X, Yu S, Lao S, Yang B (2015) Antigen-specific human NKT cells from tuberculosis patients produce IL-21 to help B cells for the production of immunoglobulins. Oncotarget 30:28633–28645

    Google Scholar 

  95. Li Z, Yang B, Zhang Y, Ma J, Chen X, Lao S, Li B, Wu C (2014) Mycobacterium tuberculosis-specific memory NKT cells in patients with tuberculous pleurisy. J Clin Immunol 8:979–990

    Google Scholar 

  96. Liu H, Komai-Koma M, Xu D, Liew FY (2006) Toll-like receptor 2 signaling modulates the functions of CD4+CD25+ regulatory T cells. Proc Natl Acad Sci U S A 103:7048–7053

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, Kou Z, Wang Q, Jiang L, Estep J, Hunt R, Clagett M, Sehgal PK, Li Y, Zeng X, Morita CT, Brenner MB, Letvin NL, Chen ZW (2002) Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infection. Science 5563:2255–2258

    Google Scholar 

  98. Dieli F, Ivanyi J, Marsh P, Williams A, Naylor I, Sireci G, Caccamo N, Di Sano C, Salerno A (2003) Characterization of lung γδ T cells following intranasal infection with Mycobacterium bovis bacillus Calmette-Guérin. J Immunol 1:463–469

    Google Scholar 

  99. Gold MC, Napier RJ, Lewinsohn DM (2015) MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 264:154–166

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Howson LJ, Salio M, Cerundolo V (2015) MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases. Front Immunol 6:303

    PubMed  PubMed Central  Google Scholar 

  101. Chua WJ, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH (2012) Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect Immun 80:3256–3267

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Jiang J, Yang B, An H, Wang X, Liu Y, Cao Z, Zhai F, Wang R, Cao Y, Cheng X (2016) Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response. J Infect 3:338–352

    Google Scholar 

  103. Cella M, Miller H, Song C (2014) Beyond NK cells: the expanding universe of innate lymphoid cells. Front Immunol 5:282

    PubMed  PubMed Central  Google Scholar 

  104. Spits H, Cupedo T (2012) Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 30:647–675

    PubMed  CAS  Google Scholar 

  105. Wellmann A (2015) The modulation of innate lymphoid cells in tuberculosis and HIV co-infection. Paper presented at TB and Co­morbidities. Keystone Symposium on Host Response in Tuberculosis. Santa Fe, NM, USA

    Google Scholar 

  106. Randall PJ, Hsu NJ, Quesniaux V, Ryffel B, Jacobs M (2015) Mycobacterium tuberculosis infection of the ‘Non-classical immune cell’. Immunol Cell Biol 93:789. https://doi.org/10.1038/icb.2015.43

    Article  PubMed  CAS  Google Scholar 

  107. Raad I, Hachem R, Leeds N, Sawaya R, Salem Z, Atweh S (1996) Use of adjunctive treatment with interferon-gamma in an immunocompromised patient who had refractory multidrug-resistant tuberculosis of the brain. Clin Infect Dis 22:572–574

    PubMed  CAS  Google Scholar 

  108. Johnson JL, Nunn AJ, Fourie PB, Ormerod LP, Mugerwa RD, Mwinga A, Chintu C, Ngwira B, Onyebujoh P, Zumla A (2004) Effect of Mycobacterium vaccae (SRL172) immunotherapy on radiographic healing in tuberculosis. Int J Tuberc Lung Dis 8:1348–1354

    PubMed  CAS  Google Scholar 

  109. Strieter RM, Remick DG, Ward PA, Spengler RN, Lynch JP, Larrick J, Kunkel SL (1988) Cellular and molecular regulation of tumor necrosis factor-alpha production by pentoxifylline. Biochem Biochem Biophys Res Commun 155:1230–1236

    PubMed  CAS  Google Scholar 

  110. Bosho HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279:40174–40184

    Google Scholar 

  111. Waddell SJ, Stabler RA, Laing K, Kremer L, Reynolds RC, Besra GS (2004) The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis 84:263–274

    PubMed  Google Scholar 

  112. Manjunatha U, Boshoff HI, Barry CE (2009) The mechanism of action of PA-824: novel insights from transcriptional profiling. Communicat Integrat Biol 2:215–218

    CAS  Google Scholar 

  113. Liang J, Zeng F, Guo A, Liu L, Guo N, Li L, Jin J, Wu X, Liu M, Zhao D, Li Y, Jin Q, Yu L (2011) Microarray analysis of the chelerythrine-induced transcriptome of Mycobacterium tuberculosis. Curr Microbiol 62:1200–1208

    PubMed  CAS  Google Scholar 

  114. Lee YV, Wahab HA, Choong YS (2015) Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: a summary. Biomed Res Int 2015:20

    Google Scholar 

  115. Fu LM, Shinnick YM (2007) Genome-wide exploration of the drug action of capreomycin on Mycobacterium tuberculosis using Affymetrix oligonucleotide GeneChips. J Infect 54:277–284

    PubMed  Google Scholar 

  116. Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, Via LE, Goldfeder LC, Kang E, Jin B, Park H, Kwak H, Kim H, Jeon HS, Jeong I, Joh JS, Chen RY, Olivier KN, Shaw PA, Follmann D, Song SD, Lee JK, Lee D, Kim CT, Dartois V, Park SK, Cho SN, Barry CE (2012) Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 367:1508–1518

    PubMed  CAS  Google Scholar 

  117. Liang J, Tang X, Guo N, Zhang K, Guo A, Wu X, Wang X, Guan Z, Liu L, Shen F, Xing M, Liu L, Li L, Yu L (2012) Genome-wide expression profiling of the response to linezolid in Mycobacterium tuberculosis. Curr Microbiol 64:530–538

    PubMed  CAS  Google Scholar 

  118. Habib Z, Xu W, Jamal M, Rehman K, Chen X, Dai J, Fu ZF, Chen X, Cao G (2017) Adaptive gene profiling of Mycobacterium tuberculosis during sub-lethal kanamycin exposure. Microb Pathog 112:243–253

    PubMed  CAS  Google Scholar 

  119. Fishbein S, van Wyk N, Warren RM, Sampson SL (2015) Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 96:901–916

    PubMed  CAS  Google Scholar 

  120. Sivaramakrishnan S, de Montellano PR (2013) The DosS-DosT/DosR mycobacterial sensor system. Biosensing 3:259–282

    CAS  Google Scholar 

  121. Provvedi R, Boldrin F, Falciani F, Palu G, Manganelli R (2009) Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology 155:1093–1102

    PubMed  CAS  Google Scholar 

  122. Drumm JE, Mi K, Bilder P, Sun M, Lim J, Bielefeldt-Ohmann H, Basaraba R, So M, Zhu G, Tufariello JM, Izzo AA, Orme IM, Almo SC, Leyh TS, Chan J (2009) Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-binding: requirement for establishing chronic persistent infection. PLoS Pathog 5:e1000460

    PubMed  PubMed Central  Google Scholar 

  123. Soetaert K, Rens C, Wang XM, De Bruyn J, Laneelle MA, Laval F, Lemassu A, Daffe M, Bifani P, Fontaine V, Philippe L (2015) Increased vancomycin susceptibility in mycobacteria: a new approach to identify synergistic activity against multidrug-resistant mycobacteria. Antimicrob Agents Chemother 59:5057–5060

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Morris RP, Nguyen L, Gatfield J, Visconti K, Nguyen K, Schnappinger D, Ehrt S, Liu Y, Heifets L, Pieters J, Schoolnik G, Thompson CJ (2005) Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 102:12200–12205

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Geiman DE, Raghunand TR, Agarwal N, Bishai WR (2006) Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob Agents Chemother 50:2836–2841

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Flores AR, Parsons LM, Pavelka MSJ (2005) Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Microbiology 151:521–532

    PubMed  CAS  Google Scholar 

  127. Espositoa S, Bianchinia S, Blasib F (2015) Bedaquiline and delamanid in tuberculosis. Expert Opin Pharmacother 16:2319–2330

    Google Scholar 

  128. Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227

    PubMed  CAS  Google Scholar 

  129. Koul A, Vranckx L, Dhar N, Göhlmann HW, Özdemir E, Neefs JM, Schulz M, Lu P, Mørtz E, McKinney JD, Andries K, Bald D (2014) Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun 5:3369

    PubMed  PubMed Central  Google Scholar 

  130. Peterson EJR, Ma S, Sherman DR, Baliga NS (2016) Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat Microbiol 1:16078

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Foo CS, Lupien A, Kienle M, Vocat A, Benjak A, Sommer R, Lamprecht DA, Steyn AJC, Pethe K, Piton J, Altmann KH, Cole ST (2018) Arylvinylpiperazine amides, a new class of potent inhibitors targeting QcrB of Mycobacterium tuberculosis. MBio 9:e01276-18

    PubMed  PubMed Central  Google Scholar 

  132. Penuelas-Urquides K, Gonzalez-Escalante L, Villarreal-Trevino L, Silva-Ramirez B, Gutierrez-Fuentes DJ, Mojica-Espinosa R, Rangel-Escareno C, Uribe-Figueroa L, Molina-Salinas GM, Davila-Velderrain J, Castorena-Torres F, Bermudez de Leon M, Said-Fernandez S (2013) Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis. Curr Microbiol 67:362–371

    PubMed  CAS  Google Scholar 

  133. Yu G, Cui Z, Sun X, Peng J, Jiang J, Wu W, Huang W, Chu K, Zhang L, Ge B, Li Y (2015) Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance. Tuberculosis 95:303–314

    PubMed  Google Scholar 

  134. Gonzalez-Escalante L, Penuelas-Urquides K, Said-Fernandez S, Silva-Ramirez B, Bermudez De Leon M (2015) Differential expression of putative drug resistance genes in Mycobacterium tuberculosis clinical isolates. FEMS Microbiol Lett 362:fnv194

    PubMed  Google Scholar 

  135. Chatterjee A, Saranath D, Bhatter P, Mistry N (2013) Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance. PLoS One 8:e54717

    PubMed  PubMed Central  CAS  Google Scholar 

  136. De Welzen L, Eldholm V, Maharaj K, Manson AL, Earl AM, Pym AS (2017) Whole-transcriptome and genome analysis of extensively drug resistant Mycobacterium tuberculosis clinical isolates identifies downregulation of ethA as a mechanism of ethionamide resistance. Antimicrob Agents Chemother 61:e01461–e01417

    PubMed  PubMed Central  Google Scholar 

  137. Nebenzahl-Guimaraes H, Jacobson KR, Farhat MR, Murray MB (2014) Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 69:331–342

    PubMed  CAS  Google Scholar 

  138. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, Starks AM, Niemann S, Alland D, Hanna D, Aviles E, Perkins MD, Dolinger DL (2015) Integration of published information into a resistance-associated mutation database for Mycobacterium tuberculosis. J Infect Dis 211:S50–S57

    PubMed  PubMed Central  Google Scholar 

  139. Pankhurst LJ, Del Ojo Elias C, Votintseva AA, Walker TM, Cole K, Davies J, Fermont JM, Gascoyne-Binzi DM, Kohl TA, Kong C, Lemaitre N, Niemann S, Paul J, Rogers TR, Roycroft E, Smith EG, Supply P, Tang P, Wilcox MH, Wordsworth S, Wyllie D, Xu L, Crook DW (2016) Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med 4:49–58

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, Iqbal Z, Feuerriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CLC, Bowden R, Drobniewski FA, Allix-Béguec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TEA (2015) Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 15:1193–1202

    PubMed  PubMed Central  CAS  Google Scholar 

  141. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Dominguez J, Boettger EC, Cirillo D, Cobelens F, Eisenach KD, Gagneux S, Hillemann D, Horsburgh R, Molina-Moya B, Niemann S, Tortoli E, Whitelaw A, Lange C (2016) Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement. Int J Tuberc Lung Dis 20:24–42

    PubMed  CAS  Google Scholar 

  143. Fine PE, Carneiro IA, Milstien JB, Clements CJ (1999) Issues relating to the use of BCG in immunization programs: a discussion document. Department of Vaccines and Biologicals, World Health Organization, Geneva

    Google Scholar 

  144. Luca S, Mihaescu T (2013) History of BCG vaccine. J Clin Med 8:53–58

    Google Scholar 

  145. WHO (2014) Guidance for national tuberculosis programmes on the management of tuberculosis in children. Available from http://apps.who.int/iris/bitstream/10665/112360/1/9789241548748_eng.pdf. Accessed Jun 2017

  146. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, Rodrigues LC, Smith PG, Lipman M, Whiting PF, Sterne JA (2014) Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis 58:470–480

    PubMed  Google Scholar 

  147. Roy A, Eisenhut M, Harris RJ, Rodrigues LC, Sridhar S, Habermann S, Snell L, Mangtani P, Adetifa I, Lalvani A, Abubakar I (2014) Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. Br Med J 349:g4643

    CAS  Google Scholar 

  148. Trunz BB, Fine P, Dye C (2006) Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367:1173–1180

    PubMed  Google Scholar 

  149. Barreto ML, Pereiraa SM, Pilger D, Cruzc AA, Cunha SS, Sant’Annae C, Ichiharaa MY, Genser B, Rodrigues LC (2011) Evidence of an effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: second report of the BCG-REVAC cluster-randomised trial. Vaccine 29:4875–4877

    PubMed  Google Scholar 

  150. Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne JA, Fine PE, Smith PG, Lipman M, Elliman D, Watson JM, Drumright LN, Whiting PF, Vynnycky E, Rodrigues LC (2013) Systematic review and meta-analysis of the current evidence on the duration of protection by Bacillus Calmette–Guerin vaccination against tuberculosis. Health Technol Assess 17:1–372

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Zwerling A, Behr MA, Verma A, Brewer TF, Menzies D, Pai M (2011) The BCG World Atlas: a database of global BCG vaccination policies and practices. PLoS Med 8:e1001012

    PubMed  PubMed Central  Google Scholar 

  152. Ellis RD, Hatherill M, Tait D, Snowden M, Churchyard G, Hanekom W, Evans T, Ginsberg AM (2015) Innovative clinical trial designs to rationalize TB vaccine development. Tuberculosis 95:352–357

    PubMed  CAS  Google Scholar 

  153. Pai M, Behr MA, Dowdy DW, Dheda K, Divangahi M, Boehme CC, Ginsberg A, Swaminathan S, Spigelman S, Getahun H, Menzies D, Raviglione M (2016) Tuberculosis. Nat Rev Dis Primers 2:1–23

    Google Scholar 

  154. Knight GM, Griffiths UK, Sumner T, Laurence YV, Gheorghe A, Vassall A, Glaziou P, White RG (2014) Impact and cost-effectiveness of new tuberculosis vaccines in low- and middle-income countries. Proceedings of the National Academy of Sciences of the United States of America. J Infect Dis 111:15520–15525

    CAS  Google Scholar 

  155. WHO (2015) Global tuberculosis report 2015. WHO, Geneva

    Google Scholar 

  156. World Health Organization (2014) Guidelines on the management of latent tuberculosis infection. WHO, Geneva

    Google Scholar 

  157. Keam SJ (2019) Pretomanid: first approval. Drugs 79:1797–1803

    PubMed  Google Scholar 

  158. Arbex MA, Varella MD, Siqueira HR, Mello FA (2010) Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. Part 2: Second-line drugs. J Bras Pneumol 36:641–656

    PubMed  Google Scholar 

  159. Lincoln EM, Sewell BH (1963) Tuberculosis in children. McGraw-Hill, New York, NY, pp 19–83

    Google Scholar 

  160. Semete B, Kalombo L, Katata L, Chelule P, Booysen L, Lemmer Y, Naidoo S, Ramalapa B, Hayeshi R, Swai HS (2012) Potential of improving the treatment of tuberculosis through nanomedicine. Mol Cryst Liq Cryst 556:317–330

    CAS  Google Scholar 

  161. Furin J, Cox H, Pai M (2019) Tuberculosis. Lancet 393:1642–1656

    PubMed  Google Scholar 

  162. Landry J, Menzies D (2008) Preventive chemotherapy. Where has it got us? Where to go next? Int J Tuberc Lung Dis 12:1352–1364

    PubMed  CAS  Google Scholar 

  163. Volmink J, Garner P (2007) Directly observed therapy for treating tuberculosis. Cochrane Database Syst Rev 4:CD003343

    Google Scholar 

  164. Dheda K, Barry CE, Maartens G (2016) Tuberculosis. Lancet 387:1211–1126

    PubMed  Google Scholar 

  165. Calligaro GL, Moodley L, Symons G, Dheda K (2014) The medical and surgical treatment of drug-resistant tuberculosis. J Thorac Dis 6:186–195

    PubMed  PubMed Central  Google Scholar 

  166. World Health Organization (2016) The shorter MDR-TB regimen. WHO, Geneva. Available from http://www.who.int/tb/Short_MDR_ regimen_factsheet.pdf

    Google Scholar 

  167. Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C (2012) Totally drug resistant tuberculosis in India. Clin Infect Dis 54:579–581

    PubMed  Google Scholar 

  168. Udwadia ZF (2012) MDR, XDR, TDR tuberculosis: ominous progression. Thorax 67:286–288

    PubMed  Google Scholar 

  169. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186

    PubMed  CAS  Google Scholar 

  170. Jensen PA, Zhu Z, Van-Opijnen T (2017) Antibiotics disrupt coordination between transcriptional and phenotypic stress responses in pathogenic bacteria. Cell Rep 20:1705–1716

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Wright GD (2016) Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol 24:928

    PubMed  CAS  Google Scholar 

  172. Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE (2016) Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother 71:17–26

    PubMed  CAS  Google Scholar 

  173. Vora A, Patel S, Patel K (2016) Role of risorine in the treatment of drug - susceptible pulmonary tuberculosis: a pilot study. J Assoc Physicians India 64:20–24

    PubMed  Google Scholar 

  174. Dorman SE, Johnson JL, Goldberg S, Muzanye G, Padayatchi N, Bozeman L, Heilig CM, Bernardo J, Choudhri S, Grosset JH, Guy E, Guyadeen P, Leus MC, Maltas G, Menzies D, Nuermberger EL, Villarino M, Vernon A, Chaisson RE (2009) Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J Respir Crit Care Med 180:273–280

    PubMed  CAS  Google Scholar 

  175. Jindani A, Harrison TS, Nunn AJ, Phillips PP, Churchyard GJ, Charalambous S, Hatherill M, Geldenhuys H, McIlleron HM, Zvada SP, Jindani A, Harrison TS, Nunn AJ, Phillips PP, Churchyard GJ, Charalambous S, Hatherill M, Geldenhuys H, McIlleron HM, Zvada SP (2014) High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med 371:1599–1608

    PubMed  PubMed Central  Google Scholar 

  176. Cox E, Laessig K (2014) FDA approval of bedaquiline — the benefit–risk balance for drug-resistant tuberculosis. N Engl J Med 371:689–691

    PubMed  CAS  Google Scholar 

  177. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, Shimokawa Y, Komatsu M (2006) OPC-67683, a nitro-dihydroimidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3:e466

    PubMed  PubMed Central  Google Scholar 

  178. Suthar AB, Lawn SD, del Amo J, Getahun H, Dye C, Sculier D, Sterling TR, Chaisson RE, Williams BG, Harries AD, Granich RM (2012) Antiretroviral therapy for prevention of tuberculosis in adults with HIV: a systematic review and meta-analysis. PLoS Med 9:e1001270

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Lawn SD, Harries AD, Meintjes G, Getahun H, Havlir DV, Wood R (2012) Reducing deaths from tuberculosis in antiretroviral treatment programmes in sub-Saharan Africa. AIDS 26:2121–2133

    PubMed  CAS  Google Scholar 

  180. Tsara V, Serasli E, Christaki P (2009) Problems in diagnosis and treatment of tuberculosis infection. Hippokratia 13:20–22

    PubMed  PubMed Central  CAS  Google Scholar 

  181. Nema V (2012) Tuberculosis diagnostics: challenges and opportunities. Lung India 29:259–266

    PubMed  PubMed Central  Google Scholar 

  182. Lalvani A (2007) Diagnosing tuberculosis infection in the 21st century. Chest 131:1898–1906

    PubMed  Google Scholar 

  183. Richeldi L (2006) An update on the diagnosis of tuberculosis infection. Am J Respir Crit Care Med 174:736–742

    PubMed  Google Scholar 

  184. Nahid P, Pai M, Hopewell P (2006) Advances in the diagnosis and treatment of tuberculosis. Proc Am Thorac Soc 3:103–110

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Dinnes J, Deeks J, Kunst H, Gibson A, Cummins E, Waugh N, Drobniewski F, Lalvani A (2007) A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol Assess 11:1–196

    PubMed  CAS  Google Scholar 

  186. Menzies D, Pai M, Comstock G (2007) Meta-analysis: new test for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann Intern Med 146:340–356

    PubMed  Google Scholar 

  187. Pherson PM, Houben RMGJ, Glynn JR, Corbettc EL, Kranzer K (2014) Pre-treatment loss to follow-up in tuberculosis patients in low- and lower-middle-income countries and high-burden countries: a systematic review and meta-analysis. Bull World Health Organ 92:126. Article ID: BLT.13.124800

    Google Scholar 

  188. Oliveira SM, Altmayer S, Zanon M, Sidney-Filho LA, Moreira ALS, Dalcin PT, Garcez A, Hochhegger B, Moreira JS, Watte G (2018) Predictors of noncompliance to pulmonary tuberculosis treatment: an insight from South America. PLoS One 13:e0202593

    Google Scholar 

  189. Babiarz KS, Suen S, Goldhaber-Fiebert JD (2014) Tuberculosis treatment discontinuation and symptom persistence: an observational study of Bihar, India’s public care system covering >100,000,000 inhabitants. BMC Public Health 14:418

    PubMed  PubMed Central  Google Scholar 

  190. Iftikhar S, Sarwar MR (2017) Potential disadvantages associated with treatment of active tuberculosis using fixed-dose combination: a review of literature. J Bas Clin Pharm 8:S131–S136

    Google Scholar 

  191. Mukherjee T, Boshoff H (2011) Nitroimidazoles for the treatment of TB: past, present and future. Future Med Chem 3:1427–1454

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Requena-Méndez A (2012) Pharmacokinetics of rifampin in Peruvian tuberculosis patients with and without comorbid diabetes or HIV. Antimicrob Agents Chemother 56:2357–2363

    PubMed  PubMed Central  Google Scholar 

  193. Tostmann A (2013) Pharmacokinetics of first-line tuberculosis drugs in Tanzanian patients. Antimicrob Agents Chemother 57:3208–3213

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Panchagnula R (2003) In vitro evaluation of food effect on the bioavailability of rifampicin from antituberculosis fixed dose combination formulations. Farmacoterapia 58:1099–1103

    CAS  Google Scholar 

  195. Hawn TR (2014) Tuberculosis vaccines and prevention of infection. Microbiol Mol Biol Rev 78:650–671

    PubMed  PubMed Central  Google Scholar 

  196. Suryanto A (2008) Is there an increased risk of TB relapse in patients treated with fixed-dose combination drugs in Indonesia? Int J Tuberc Lung Dis 12:174–179

    PubMed  CAS  Google Scholar 

  197. Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, Peloquin CA, Gordin FM, Nunes D, Strader DB, Bernardo J, Venkataramanan R (2006) An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med 174:935–952

    PubMed  CAS  Google Scholar 

  198. Sutrisna EM (2015) Autoinduction properties of rifampicin on javanese tuberculosis with variant type cyp3a4∗1g. Asian J Pharm Clin Res 8:21–23

    CAS  Google Scholar 

  199. Sharma A, Magotra A, Bhatt S, Dogra A, Wazir P, Satti NK, Singh G, Bhusari SS, Nandi U (2018) Potential herb-drug interaction of a flavone glycoside from Cuminum cyminum: possible pathway for bioenhancement of rifampicin. Ind J Trad Knowl 17:776–782

    Google Scholar 

  200. Du Toit LC, Pillay V, Danckwerts MP (2006) Tuberculosis chemotherapy: current drug delivery approaches. Respir Res 7:118

    PubMed  PubMed Central  Google Scholar 

  201. Sachin BS, Sharma SC, Sethi S, Tasduq SA, Tikoo MK, Tikoo AK, Satti NK, Gupta BD, Suri KA, Johri RK, Qazi GN (2007) Herbal modulation of drug bioavailability: enhancement of rifampicin levels in plasma by herbal products and a flavonoid glycoside derived from Cuminum cyminum. Phytother Res 21:157–163

    PubMed  CAS  Google Scholar 

  202. Svensson EM, Murray S, Karlsson MO, Dooley KE (2015) Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother 70:1106–1114

    PubMed  CAS  Google Scholar 

  203. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    PubMed  CAS  Google Scholar 

  204. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    PubMed  Google Scholar 

  205. Yang CS, Shin DM, Kim KH, Lee ZW, Lee CH, Park SG, Bae YS, Jo EK (2009) NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J Immunol 182:3696–3705

    PubMed  CAS  Google Scholar 

  206. Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK (2009) Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6:231–243

    PubMed  CAS  Google Scholar 

  207. Liu PT, Modlin RL (2008) Human macrophage host defense against Mycobacterium tuberculosis. Curr Opin Immunol 20:371–376

    PubMed  CAS  Google Scholar 

  208. Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K, Mollenkopf HJ, Ziegler A, Kaufmann SH (2007) Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med 85:613–662

    PubMed  CAS  Google Scholar 

  209. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    PubMed  CAS  Google Scholar 

  210. Zhu LM, Liu CH, Chen P, Dai AG, Li CX, Xiao K (2011) Multidrug-resistant tuberculosis is associated with low plasma concentrations of human neutrophil peptides 1–3. Int J Tuberc Lung Dis 15:369–374

    PubMed  Google Scholar 

  211. Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y, Yoshida S, Nishida Y, Nakatani H, Takao K, Kishigami C, Nishimatsu S, Sekine Y, Inoue Y, Matsumoto M, McMurray DN, De la Cruz EC, Tan EV, Abalos RM, Burgos JA, Saunderson P, Sakatani M (2011) Novel therapeutic vaccine: granulysin and new DNA vaccine against tuberculosis. Hum Vaccin Immunother 7:S60–S67

    Google Scholar 

  212. Nemeth E, Ganz T (2009) The role of hepcidin in iron metabolism. Acta Haematol 122:78–86

    PubMed  PubMed Central  CAS  Google Scholar 

  213. Yang H, Chen H, Liu Z, Ma H, Qin L, Jin RL, Zheng R, Feng Y, Cui Z, Wang J, Liu J, Hu Z (2013) A novel B-cell epitope identified within Mycobacterium tuberculosis CFP10/ESAT-6 protein. PLoS One 8:e52848

    PubMed  PubMed Central  CAS  Google Scholar 

  214. Alonso S, Pethe K, Russell DG, Purdy GE (2007) Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proc Natl Acad Sci U S A 104:6031–6036

    PubMed  PubMed Central  CAS  Google Scholar 

  215. Foss MH, Powers KM, Purdy GE (2012) Structural and functional characterization of mycobactericidal ubiquitin-derived peptides in model and bacterial membranes. Biochemistry 51:9922–9929

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Chung HJ, Montville TJ, Chikindas ML (2000) Nisin depletes ATP and proton motive force in mycobacteria. Lett Appl Microbiol 31:416–420

    PubMed  CAS  Google Scholar 

  217. Carroll J, Draper LA, O’Connor PM, Coffey A, Hill C, Ross RP, Cotter PD, O’Mahony J (2010) Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. Int J Antimicrob Agents 36:132–136

    PubMed  CAS  Google Scholar 

  218. Bagley MC, Dale JW, Merritt EA, Xiong X (2005) Thiopeptide antibiotics. Chem Rev 105:685–714

    PubMed  CAS  Google Scholar 

  219. Koyama N, Kojima S, Nonaka K, Masuma R, Matsumoto M, Omura S, Tomoda H (2010) Calpinactam, a new anti-mycobacterial agent, produced by Mortierella alpina FKI-4905. J Antibiot 63:183–186

    PubMed  CAS  Google Scholar 

  220. Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR Jr, Kobayashi M (2010) Tri-choderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663

    PubMed  CAS  Google Scholar 

  221. Haritakun R, Sappan M, Suvannakad R, Tasanathai K, Isaka M (2010) An antimycobacterial cyclodepsipeptide from the entomopathogenic fungus Ophiocordyceps communis BCC 16475. J Nat Prod 73:75–78

    PubMed  CAS  Google Scholar 

  222. Aarti C, Khusro A (2013) Snake venom as Anticancer agent- current perspective. Int J Pure Appl Biosci 1:24–29

    Google Scholar 

  223. Xie JP, Yue J, Xiong YL, Wang WY, Yu SQ, Wang HH (2003) In vitro activities of small peptides from snake venom against clinical isolates of drug-resistant Mycobacterium tuberculosis. Int J Antimicrob Agents 22:172–174

    PubMed  CAS  Google Scholar 

  224. Bhunia SK, Sarkar M, Dey S, Bhakta A, Gomes A, Giri B (2015) In vitro activity screening of snake venom against multi drug resistant tuberculosis. Int J Trop Dis 4:1–4

    Google Scholar 

  225. Rodriguez A, Villegas E, Montoya-Rosales A, Rivas-Santiago B, Corzo G (2014) Characterization of antibacterial and hemolytic activity of synthetic Pandinin 2 variants and their inhibition against Mycobacterium tuberculosis. PLoS One 9:e101742

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Nandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, S., Gour, A., Singh, G., Nandi, U. (2020). Tuberculosis. In: Rayees, S., Din, I., Singh, G., Malik, F. (eds) Chronic Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-3734-9_5

Download citation

Publish with us

Policies and ethics