Skip to main content

Recent Advances in Development of Antimicrobial Textiles

  • Chapter
  • First Online:
Advances in Functional Finishing of Textiles

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

Cellulosic textiles mostly facilitate the growth of microorganism due to their larger surface area and capability to hold moisture, which is responsible for several devastating effects not only to consumer but also to the textile itself. Health related consciousness and hygienic perception of products stimulated the intensive research to mitigate the pathogenic effects and development of microbe free materials. Textile researchers have also been paying rigorous attention for developing different antibacterial agents to fulfill the increased demands of ecofriendly antibacterial textiles. The main emphasis of this chapter was to give an overview of advancements in development of different organic and inorganic antibacterial agents, their inclusion during fiber formation or at textile finishing stage, mode of action of different antibacterial agents, durability and the environmental impact of leaching and bound antibacterial textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Textiles Intelligence LTD (2013) Antimicrobial fibres, fabrics and apparel: innovative weapons against infection. Peform Appa Mark 47:25–57

    Google Scholar 

  2. Zhou C-E, Kan C, Matinlinna J, Tsoi J (2017) Regenerable antibacterial cotton fabric by plasma treatment with dimethylhydantoin: antibacterial activity against S. aureus. Coatings 7(1):11

    Google Scholar 

  3. Windler L, Height M, Nowack B (2013) Comparative evaluation of antimicrobials for textile applications. Environ Int 53:62–73

    Google Scholar 

  4. Kyung Wha O, Young Joo N (2014) Antimicrobial activity of cotton fabric treated with extracts from the lotus plant. Text Res J 84(15):1650–1660

    Google Scholar 

  5. Morais DS, Guedes RM, Lopes MA (2016) Antimicrobial approaches for textiles: from research to market. Materials 9(6):498

    Google Scholar 

  6. Ibrahim NA (2015) Nanomaterials for antibacterial textiles. In: Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases. Academic Press, pp 191–216

    Google Scholar 

  7. Jothi D (2009) Experimental study on antimicrobial activity of cotton fabric treated with Aloe gel extract from Aloe vera plant for controlling the Staphylococcus aureus (bacterium). Afr J Microbiol Res 3(5):228–232

    Google Scholar 

  8. Saraswathi R, Krishnan P, Dilip C (2010) Antimicrobial activity of cotton and silk fabric with herbal extract by micro encapsulation. Asian Pac J Trop Med 3(2):128–132

    Article  Google Scholar 

  9. Saif MJ, Zia KM, Rehman F, Ahmad MN, Kiran S, Gulzar T (2015) An eco-friendly, permanent, and non-leaching antimicrobial coating on cotton fabrics. J Text Inst 106:907–911

    Google Scholar 

  10. Javid A, Raza ZA, Hussain T, Rehman A (2014) Chitosan microencapsulation of various essential oils to enhance the functional properties of cotton fabric. J Microencapsul 2048:1–8

    Google Scholar 

  11. Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z (2013) Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater interfaces 5(9):3867–3874

    Google Scholar 

  12. Javid A, Kumar M, Yoon S, Lee JH, Han JG (2017) Size-controlled growth and antibacterial mechanism for Cu: C nanocomposite thin films. Phys Chem Chem Phys 19(1):237–244

    Article  CAS  Google Scholar 

  13. Ashraf M, Campagne C, Perwuelz A, Champagne P, Leriche A, Courtois C (2013) Development of superhydrophilic and superhydrophobic polyester fabric by growing Zinc Oxide nanorods. J Colloid Interface Sci 394(1):545–553

    Article  CAS  PubMed  Google Scholar 

  14. Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Skorobogatiy M, Khademhosseini A, Yun SH (2016) Nanotechnology in Textiles. ACS Nano 10(3):3042–3068

    Article  CAS  PubMed  Google Scholar 

  15. Gebbharadt LD, Bachtold JG (1955) Proceedings of the society for experimental biology and medicine, vol 88. Blackwell Science

    Google Scholar 

  16. Qian L, Sun G (2003) Durable and regenerable antimicrobial textiles: synthesis and applications of 3-methylol-2,2,5,5-tetramethylimidazolidin-4-one (MTMIO). J Appl Polym Sci 89(9):2418–2425

    Article  CAS  Google Scholar 

  17. Curteza A (2011) Sustainable textiles. Radar 2(1):19–21

    Article  Google Scholar 

  18. Dring I (2003) Antimicrobial, rot proofing and hygiene finishes. In: Textile finishing. Society of Dyers and Colourists, Bradford, pp 351–371

    Google Scholar 

  19. Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers (Basel) 4(4):46–71

    Article  CAS  Google Scholar 

  20. Shahidi S, Wiener J (2012) Antibacterial agents in textile industry. In: Antimicrobial agents, pp. 387–406

    Google Scholar 

  21. Sawan SP, Shalon T, Subramanyam S, Yurkovetskiy A (1996) Contact-killing non-leaching antimicrobial materials. US5849311A

    Google Scholar 

  22. Karthik S, Suriyaprabha R, Vinoth M, Srither SR, Manivasakan P, Rajendran V, Valiyaveettil S (2017) Larvicidal, super hydrophobic and antibacterial properties of herbal nanoparticles from: Acalypha indica for biomedical applications. RSC Adv 7(66):41763–41770

    Article  CAS  Google Scholar 

  23. Mamillapalli V (2016) Nanoparticles for herbal extracts. Asian J Pharm 10(2 Supplement):S54–S60

    Google Scholar 

  24. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  25. Ahmed H, Rajendran R, Balakumar C (2012) Nanoherbal coating of cotton fabric to enhance antimicrobial durability. Appl Chem 45(2012):7840–7843

    Google Scholar 

  26. Chandrasekar S, Vijayakumar S, Rajendran R (2014) Application of chitosan and herbal nanocomposites to develop antibacterial medical textile. Biomed Aging Pathol 4(1):59–64

    Article  CAS  Google Scholar 

  27. Singh MN, Hemant KSY,  Ram M, Shivakumar HG (2010) Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci 5(2):65–77

    Google Scholar 

  28. Gupta A, Dey B (2013) Microencapsulation for controlled drug delivery: a comprehensive review. Sunsari Tech Coll J 1(1):48–54

    Article  Google Scholar 

  29. Nagavarma BVN, Yadav HKS, Ayaz A, Vasudha LS, Shivakumar HG (2012) Different techniques for preparation of polymeric nanoparticles—a review. Asian J Pharm Clin Res 5:16–23

    CAS  Google Scholar 

  30. Fievez V, Garinot M, Schneider Y, Préat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Controlled Rel 116(1):1–27

    Google Scholar 

  31. Oliveira FR, Fernandes M, Carneiro N, Pedro Souto A (2013) Functionalization of wool fabric with phase-change materials microcapsules after plasma surface modification. J Appl Polym Sci 128(5):2638–2647

    Google Scholar 

  32. Rehman A, Javed A, Raza ZA, Hussain T (2014) Chitosan micro capsulation of various essential oils to enhance the functional properties of cotton fabric. J Microencapsul 31:461–468

    Google Scholar 

  33. Hayashi MA, Bizerra FC, Da Silva PI (2013) Antimicrobial compounds from natural sources. Front Microbiol 4:195

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sivakumar V, Vijaeeswarri J, Anna JL (2011) Effective natural dye extraction from different plant materials using ultrasound. Ind Crops Prod 33(1):116–122

    Article  CAS  Google Scholar 

  35. Syamili E, Elayarajah B, Rajendran R, Venkatraja B, Kumar PA (2012) Antibacterial cotton finish using green tea leaf extracts interacted with copper. Asian J Text 2(1):6–16

    Google Scholar 

  36. Straccia MC, Romano I, Oliva A, Santagata G, Laurienzo P (2014) Crosslinker effects on functional properties of alginate/N-succinylChitosan based hydrogels. Carbohydr Polym 108(1):321–330

    Article  CAS  PubMed  Google Scholar 

  37. Rode C, Zieger M, Wyrwa R, Thein S, Wiegand C, Weiser M, Ludwig A, Wehner D, Hipler U (2015) Antibacterial zinc oxide nanoparticle coating of polyester fabrics. J Text Sci Technol 1(August):65–74

    Article  Google Scholar 

  38. Ali SW, Purwar R, Joshi M, Rajendran S (2014) Antibacterial properties of aloe vera gel-finished cotton fabric. Cellulose 21(3):2063–2072

    Article  CAS  Google Scholar 

  39. Joshi M, Ali SW, Rajendran S (2007) Antibacterial finishing of polyester/cotton blend fabrics using Neem (Azadirachta indica): a natural bioactive agent. J Appl Polym Sci 106(2):793–800

    Article  CAS  Google Scholar 

  40. Nadiger VG, Shukla SR (2017) Antibacterial properties of silk fabric treated with aloe vera and silver nanoparticles. J Text Inst 108(3):385–396

    Article  CAS  Google Scholar 

  41. Pinho E, Magalhães L, Henriques M, Oliveira R (2011) Antimicrobial activity assessment of textiles: standard methods comparison. Ann Microbiol 61(3):493–498

    Article  CAS  Google Scholar 

  42. Schindler WD, Hauser PJ (2004) Chemical finishing of textiles. CRC, The Textile Institute, Manchester

    Google Scholar 

  43. Hui F, Debiemme-Chouvy C (2013) Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromol 14(3):585–601

    Article  CAS  Google Scholar 

  44. Li R, Hu P, Ren X, Worley SD, Huang TS (2013) Antimicrobial N-halamine modified Chitosan films. Carbohydr Polym 92(1):534–539

    Article  CAS  PubMed  Google Scholar 

  45. Liang J, Wu R, Wang JW, Barnes K, Worley SD, Cho U, Lee J, Broughton RM, Huang TS (2007) N-halamine biocidal coatings. J Ind Microbiol Biotechnol 34(2):157–163

    Article  CAS  PubMed  Google Scholar 

  46. Ren T, Dormitorio TV, Qiao M, Huang T-S, Weese J (2018) N-halamine incorporated antimicrobial nonwoven fabrics for use against avian influenza virus. Vet Microbiol 218:78–83

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Ren X, Liang J (2015) Antibacterial modification of cellulosic materials. BioResources 10(1):1964–1985

    Google Scholar 

  48. Liang J, Chen Y, Ren X, Wu R, Barnes K, Worley SD, Broughton RM, Cho U, Kocer H, Huang TS (2007) Fabric treated with antimicrobial N-halamine epoxides. Ind Eng Chem Res 46(20):6425–6429

    Article  CAS  Google Scholar 

  49. Demir B, Cerkez I, Worley SD, Broughton RM, Huang TS (2015) N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS Appl Mater Interfaces 7(3):1752–1757

    Article  CAS  PubMed  Google Scholar 

  50. Cheng X, Li R, Du J, Sheng J, Ma K, Ren X, Huang TS (2015) Antimicrobial activity of hydrophobic cotton coated with N-halamine. Polym Adv Technol 26(1):99–103

    Article  CAS  Google Scholar 

  51. Xue Y, Xiao H, Zhang Y (2015) Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci 16(2):3626–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu P, Sun G (2004) Antimicrobial finishing of wool fabrics using quaternary ammonium salts. J Appl Polym Sci 93(3):1037–1041

    Article  CAS  Google Scholar 

  53. Riaz S, Ashraf M, Hussain T, Hussain MT (2019) Modification of silica nanoparticles to develop highly durable superhydrophobic and antibacterial cotton fabrics. Cellulose 26(8):5159–5175

    Article  CAS  Google Scholar 

  54. Aslanidou D, Karapanagiotis I (2018) Superhydrophobic, superoleophobic and antimicrobial coatings for the protection of silk textiles. Coatings 8(3):101

    Google Scholar 

  55. Berendjchi A, Khajavi R, Yazdanshenas ME (2011) Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Res Lett 6(1):594

    Google Scholar 

  56. Aiba S (1992) Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated Chitosans. Int J Macromol 14:225–228

    Article  CAS  Google Scholar 

  57. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Google Scholar 

  58. Tolimate A, Desrieres J, Rhazia M (2003) Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer (Guildf) 44:7939–7952

    Article  CAS  Google Scholar 

  59. Goy RC, de Britto D, Assis OBG (2009) A review of the antimicrobial activity of Chitosan. Polímeros 19(3):241–247

    Article  CAS  Google Scholar 

  60. Huang KS, Wu WJ, Chen JB, Lian HS (2008) Application of low-molecular-weight chitosan in durable press finishing. Carbohydr Polym 73(2):254–260

    Article  CAS  Google Scholar 

  61. Abdel-Halim ES, Abdel-Mohdy FA, Al-Deyab SS, El-Newehy MH (2010) Chitosan and monochlorotriazinyl-β-cyclodextrin finishes improve antistatic properties of cotton/polyester blend and polyester fabrics. Carbohydr Polym 82(1):202–208

    Article  CAS  Google Scholar 

  62. Moses JJ, Venkataraman VK (2016) Study of chemical treated cotton fabric for functional finishes using chitosan. J Text Apparel Technol Manag 10(1):1–17

    Google Scholar 

  63. Zhang Z, Chen L, Ji J, Huang Y, Chen D (2003) Antibacterial properties of cotton fabrics treated with chitosan. Text Res J 73(12):1103–1106

    Article  CAS  Google Scholar 

  64. Şahan G, Demir A (2016) A green application of nano sized Chitosan in textile finishing. TEKSTİL ve KONFEKSİYON 26(4):414–420

    Google Scholar 

  65. Scacchetti FAP, Pinto E, Soares GMB (2017) Preparation and characterization of cotton fabrics with antimicrobial properties through the application of chitosan/silver-zeolite film. Procedia Eng 200:276–282

    Article  CAS  Google Scholar 

  66. Perelshtein I, Ruderman E, Perkas N, Tzanov T, Beddow J, Joyce E, Mason TJ, Blanes M, Mollá K, Patlolla A, Frenkel AI, Gedanken A (2013) Chitosan and chitosan-ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J Mater Chem B 1(14):1968–1976

    Article  CAS  PubMed  Google Scholar 

  67. Regös J, Hitz HR (1974) Investigations on the mode of action of triclosan, a broad spectrum antimicrobial agent. Zentralbl Bakteriol Orig A 226(3):390–401

    PubMed  Google Scholar 

  68. Orhan M, Kut D, Gunesoglu C (2009) Improving the antibacterial activity of cotton fabrics finished with triclosan by the use of 1,2,3,4-butanetetracarboxylic acid and citric acid. J Appl Polym Sci 111(3):1344–1352

    Article  CAS  Google Scholar 

  69. Orhan M, Kut D, Gunesoglu C (2007) Use of triclosan as antibacterial agent in textiles. Indian J Fibre Text Res 32(1):114–118

    CAS  Google Scholar 

  70. Ranganath AS, Sarkar AK (2014) Evaluation of durability to laundering of triclosan and chitosan on a textile substrate. J Text 2014:1–5

    Article  CAS  Google Scholar 

  71. Kari C, Nagy Z, Kovacs P, Hernadi F (2009) Mechanism of the growth inhibitory effect of cysteine on Escherichia coli. J Gen Microbiol 68(3):349–356

    Article  Google Scholar 

  72. Caldeira E, Piskin E, Granadeiro L, Silva F, Gouveia IC (2013) Biofunctionalization of cellulosic fibres with l-cysteine: assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiella pneumoniae. J Biotechnol 168(4):426–435

    Article  CAS  PubMed  Google Scholar 

  73. Xu Q, Duan P, Zhang Y, Fu F, Liu X (2018) Double protect copper nanoparticles loaded on L-cysteine modified cotton fabric with durable antibacterial properties. Fibers Polym 19(11):2324–2334

    Article  CAS  Google Scholar 

  74. Perni S, Hakala V, Prokopovich P (2013) Biogenic synthesis of antimicrobial silver nanoparticles capped with L-cysteine. Colloids Surf A Physicochem Eng Asp 460:219–224

    Article  CAS  Google Scholar 

  75. Xu QB, Gu JY, Zhao Y, Ke XT, Liu XD (2017) Antibacterial cotton fabric with enhanced durability prepared using L-cysteine and silver nanoparticles. Fibers Polym 18(11):2204–2211

    Article  CAS  Google Scholar 

  76. Gouveia IC, Sá D, Henriques M (2012) Functionalization of wool with L-cysteine: process characterization and assessment of antimicrobial activity and cytotoxicity. J Appl Polym Sci 124(2):1352–1358

    Article  CAS  Google Scholar 

  77. Kelleher SM, Habimana O, Lawler J, Reilly BO’, Daniels S, Casey E, Cowley A (2015) Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Appl Mater Interfaces, acsami.5b08309

    Google Scholar 

  78. Bazaka K, Jacob MV, Chrzanowski W, Ostrikov K (2015) Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Adv 5(60):48739–48759

    Article  CAS  Google Scholar 

  79. Kim SS, Park JE, Lee J (2011) Properties and antimicrobial efficacy of cellulose fiber coated with silver nanoparticles and 3-mercaptopropyltrimethoxysilane (3-MPTMS). J Appl Polym Sci 119(4):2261–2267

    Article  CAS  Google Scholar 

  80. Liston EM, Martinu L, Wertheimer MR (1993) Plasma surface modification of polymers for improved adhesion: a critical review. J Adhes Sci Technol 7(10):1091–1127

    Article  CAS  Google Scholar 

  81. Xu W, Liu X (2003) Surface modification of polyester fabric by corona discharge irradiation. Eur Polym J 39(1):199–202

    Article  CAS  Google Scholar 

  82. Vertommen MAME, Nierstrasz VA, van der Veer M, Warmoeskerken MMCG (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120(4):376–386

    Article  CAS  PubMed  Google Scholar 

  83. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    Article  CAS  Google Scholar 

  84. Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromol 10(9):2714–2717

    Article  CAS  Google Scholar 

  85. Gray JE, Norton PR, Alnouno R, Marolda CL, Valvano MA, Griffiths K (2003) Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials 24(16):2759–2765

    Article  CAS  PubMed  Google Scholar 

  86. Zhang G, Liu Y, Gao X, Chen Y (2014) Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles. Nanoscale Res Lett 9(1):216

    Google Scholar 

  87. Maria LCS, Santos ALC, Oliveira PC, Valle ASS, Barud HS, Messaddeq Y, Ribeiro SJL (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros 20(1):72–77

    Article  CAS  Google Scholar 

  88. Tam KH, Djurišić AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC, Au DWT (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516(18):6167–6174

    Google Scholar 

  89. Yazdanshenas ME, Shateri-Khalilabad M (2012) In situ synthesis of silver nanoparticles on alkali-treated cotton fabrics. J Ind Text 42(4):459–474

    Article  CAS  Google Scholar 

  90. Duan Y, Jia J, Wang S, Yan W, Jin L, Wang Z (2007) Preparation of antimicrobial poly(ε-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106(2):1208–1214

    Article  CAS  Google Scholar 

  91. Rangari VK, Mohammad GM, Jeelani S, Hundley A, Vig K, Singh SR, Pillai S (2010) Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their nylon-6 polymer nanocomposite fibers for antimicrobial applications. Nanotechnology 21(9):095102

    Google Scholar 

  92. Ji JH, Jung JH, Kim SS, Yoon J-U, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19(10):857–871

    Article  CAS  PubMed  Google Scholar 

  93. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852

    Article  CAS  PubMed  Google Scholar 

  94. Shateri Khalil-Abad M, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16(6):1147–1157

    Google Scholar 

  95. Yeo SY, Jeong SH (2003) Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym Int 52(7):1053–1057

    Article  CAS  Google Scholar 

  96. Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem Eng Asp 289(1–3):105–109

    Article  CAS  Google Scholar 

  97. Kelly FM, Johnston JH (2011) Colored and functional silver nanoparticle-wool fiber composites. ACS Appl Mater Interfaces 3(4):1083–1092

    Article  CAS  PubMed  Google Scholar 

  98. Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83(2):438–446

    Article  CAS  Google Scholar 

  99. Perelshtein I, Applerot G, Perkas N, Grinblat J, Gedanken A (2012) A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles. Chem Eur J 18(15):4575–4582

    Article  CAS  PubMed  Google Scholar 

  100. Montazer M, Seifollahzadeh S (2011) Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem Photobiol 87(4):877–883

    Article  CAS  PubMed  Google Scholar 

  101. Sivakumar PM, Balaji S, Prabhawathi V, Neelakandan R, Manoharan PT, Doble M (2010) Effective antibacterial adhesive coating on cotton fabric using ZnO nanorods and chalcone. Carbohydr Polym 79(3):717–723

    Article  CAS  Google Scholar 

  102. Appierot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19(6):842–852

    Article  CAS  Google Scholar 

  103. Braydich-Stolle L (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419

    Article  CAS  PubMed  Google Scholar 

  104. El-Nahhal IM, Zourab SM, Kodeh FS, Semane M, Genois I, Babonneau F (2012) Nano-structured copper oxide-cotton fibers: synthesis, characterization and applications. Int Nano Lett 2(1):14

    Article  Google Scholar 

  105. Castro C, Sanjines R, Pulgarin C, Osorio P, Giraldo SA, Kiwi J (2010) Structure–reactivity relations for DC-magnetron sputtered Cu-layers during E. coli inactivation in the dark and under light. J Photochem Photobiol A Chem 216(2–3):295–302

    Article  CAS  Google Scholar 

  106. Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113(2):757–766

    Article  CAS  Google Scholar 

  107. Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D (2015) Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater 2015:1–9

    Google Scholar 

  108. Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R (2011) Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 49(3):247–254

    Article  CAS  PubMed  Google Scholar 

  109. Dastjerdi R, Mojtahedi MRM, Shoshtari AM, Khosroshahi A (2010) Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. J Text Inst 101(3):204–213

    Article  CAS  Google Scholar 

  110. Daoud WA, Xin JH, Zhang Y-H (2005) Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf Sci 599(1–3):69–75

    Article  CAS  Google Scholar 

  111. Kiwi J, Rtimi S, Pulgarin C (2013) Cu, Cu/TiO2 thin films sputtered by up to date methods on non-thermal thin resistant substrates leading to bacterial inactivation. Microb Pathog Strateg Combat Them Sci Technol Educ 74–82

    Google Scholar 

  112. Hebeish AA, Abdelhady MM, Youssef AM (2013) TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohydr Polym 91(2):549–559

    Article  CAS  PubMed  Google Scholar 

  113. Shi L, Zhao Y, Zhang X, Su H, Tan T (2008) Antibacterial and anti-mildew behavior of chitosan/nano-TiO2 composite emulsion. Korean J Chem Eng 25(6):1434–1438

    Article  CAS  Google Scholar 

  114. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90(21):2139021–2139023

    Article  CAS  PubMed  Google Scholar 

  115. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028

    Article  CAS  PubMed  Google Scholar 

  116. Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M, O’Neill AJ, York DW (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanoparticle Res 12(5):1625–1636

    Article  CAS  Google Scholar 

  117. Ashraf M, Dumont F, Campagne C, Champagne P, Perwuelz A, Leriche A, Chihib N-E (2014) Development of antibacterial polyester fabric by growth of ZnO nanorods. J Eng Fiber Fabr 9(1):15–22

    CAS  Google Scholar 

  118. Hatamie A, Khan A, Golabi M, Turner APF, Beni V, Mak WC, Sadollahkhani A, Alnoor H, Zargar B, Bano S, Nur O, Willander M (2015) Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 31(39):10913–10921

    Article  CAS  PubMed  Google Scholar 

  119. Agrawal DP (2002) Medicinal properties of neem: new findings, pp 1–5

    Google Scholar 

  120. Mao LMJW (2008) Durable freshness through antimicrobial finishes. Ext Mag 30(4):13–16

    Google Scholar 

  121. AbdElhady MM (2012) Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem 2012:1–6

    Article  CAS  Google Scholar 

  122. Shafei AE, Abou-Okeil A (2011) ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydr Polym 83(2):920–925

    Google Scholar 

  123. Petkova P, Francesko A, Fernandes MM, Mendoza E, Perelshtein I, Gedanken A, Tzanov T (2014) Sonochemical coating of textiles with hybrid ZnO/Chitosan antimicrobial nanoparticles. ACS Appl Mater Interfaces 6(2):1164–1172

    Article  CAS  PubMed  Google Scholar 

  124. Buşilă M, Muşat V, Textor T, Mahltig B (2015) Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/Chitosan biocomposites. RSC Adv 5(28):21562–21571

    Article  CAS  Google Scholar 

  125. Alviano D, Alviano C (2009) Plant extracts: search for new alternatives to treat microbial diseases. Curr Pharm Biotechnol 10(1):106–121

    Article  CAS  PubMed  Google Scholar 

  126. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Handique PJ (2013) Antibacterial properties of leaf extracts of Strobilanthes cusia (Nees) Kuntze, a rare ethno-medicinal plant of Manipur, India. Int J PharmTech Res 5(3):1281–1285

    Google Scholar 

  128. Shelton RM (1991) Aloe vera: its chemical and therapeutic properties. Int J Dermatol 30(10):679–683

    Google Scholar 

  129. Day MJ (2008) Immunomodulatory therapy. In: Small animal clinical pharmacology. W.B. Saunders, pp 270–286

    Google Scholar 

  130. Ibrahim W, Sarwar Z, Abid S, Munir U, Azeem A (2017) Aloe vera leaf gel extract for antibacterial and softness properties of cotton. J Text Sci Eng 07(03):1–6

    Google Scholar 

  131. Ammayappan L, Jeyakodi Moses J (2009) Study of antimicrobial activity of aloe vera, Chitosan, and curcumin on cotton, wool, and rabbit hair. Fibers Polym 10(2):161–166

    Google Scholar 

  132. Vastrad JV, Byadgi SA (2018) Eco-friendly antimicrobial finishing of cotton fabric using plant extracts. Int J Curr Microbiol Appl Sci 7(2):284–292

    Article  CAS  Google Scholar 

  133. Ayyoob M, Khurshid MF, Asad M, Shah SNH (2015) Assessment of eco-friendly natural antimicrobial textile finish extracted from aloe vera and Neem plants. Fibres Text East Eur 23(6):120–123

    Google Scholar 

  134. Hein NT, Hnin SS, Htay DH (2008) A study on the effect of antimicrobial agent from aloe vera gel on bleached cotton fabric. Certif J 4(2):7–11

    Google Scholar 

  135. Mitchell MJ, Smith SL, Johnson S, Morgan ED (2002) Effects of the Neem tree compounds azadirachtin, salannin, nimbin, and 6-desacetylnimbin on ecdysone 20-monooxygenase activity. Arch Insect Biochem Physiol 35(12):199–209

    Article  Google Scholar 

  136. Joshi M, Ali SW, Purwar R, Rajendran S (2009) Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J Fibre Text Res 34(3):295–304

    CAS  Google Scholar 

  137. Ganesan P, Vardhini KJ (2015) Herbal treated microbial resistant fabrics for healthcare textiles. Indian J Nat Prod Resour 6(3):227–230

    CAS  Google Scholar 

  138. Purwar R, Mishra P, Joshi M (2008) Antibacterial finishing of cotton textiles using Neem extract. AATCC Rev 8(2):36–43

    CAS  Google Scholar 

  139. Rajendran R, Radhai R, Balakumar C, Ahamed HAM, Vigneswaran C, Vaideki K (2018) Synthesis and characterization of neem chitosan nanocomposites for development of antimicrobial cotton textiles. J Eng Fiber Fabr 7(1):155892501200700

    Google Scholar 

  140. Sayed U (2017) Application of essential oils for finishing of textile substrates. J Text Eng Fash Technol 1(2):42–47

    Google Scholar 

  141. Khurshid MF, Ayyoob M, Asad M (2015) Assessment of eco-friendly natural antimicrobial textile finish extracted from aloe vera and neem plants. Fibres Text East Europe 6(114):120–123

    Google Scholar 

  142. Patel BH (2009) Dyeing and antimicrobial finishing of polyurethane fibre with neem leaves extract. Man-Made Text India 52(4):112–116

    CAS  Google Scholar 

  143. Inprasit T, Motina K, Pisitsak P, Chitichotpanya P (2018) Dyeability and antibacterial finishing of hemp fabric using natural bioactive neem extract. Fibers Polym 19(10):2121–2126

    Article  CAS  Google Scholar 

  144. Patel MH, Pratibha D (2014) Grafting of medical textile using neem leaf extract for production of antimicrobial textile. Res J Recent Sci 3(IVC-2014):24–29

    Google Scholar 

  145. Rajput A, Ramachandran M, Gotmare VD, Raichurkar PP (2017) Recent bioactive materials for development of eco-friendly dippers: an overview. J Pharm Sci Res 9(10):1844–1848

    Google Scholar 

  146. Thangamani K, Periasamy R (2017) Study on antimicrobial activity of cotton, bamboo, and soybean fabrics with herbal finishing. Int Res J Pharm 8(5):115–119

    Article  CAS  Google Scholar 

  147. Ravindra KB, Murugesh Babu K (2016) Study of antimicrobial properties of fabrics treated with Ocimum sanctum L. (tulsi) extract as a natural active agent. J Nat Fibers 13(5):619–627

    Google Scholar 

  148. El-Shafei A, El-Bisi MK, Zaghloul S, Refai R (2017) Herbal textile finishes—natural antibacterial finishes for cotton fabric. Egypt J Chem 60(2):161–180

    Google Scholar 

  149. Prasad S, Aggarwal BB (2011) Turmeric, the golden spice: from traditional medicine to modern medicine. CRC Press/Taylor & Francis

    Google Scholar 

  150. Nasri H, Sahinfard N, Rafieian M, Rafieian S, Shirzad M, Rafieian-Kopaei M (2014) Turmeric: A spice with multifunctional medicinal properties. J HerbMed Pharmacol J 3(1):5–8

    Google Scholar 

  151. Mirjalili M, Karimi L (2013) Antibacterial dyeing of polyamide using turmeric as a natural dye. Autex Res J 13(2):51–56

    Article  CAS  Google Scholar 

  152. Reddy N, Han S, Zhao Y, Yang Y (2013) Antimicrobial activity of cotton fabrics treated with curcumin. J Appl Polym Sci 127(4):2698–2702

    Article  CAS  Google Scholar 

  153. Ghoreishian SM, Maleknia L, Mirzapour H, Norouzi M (2013) Antibacterial properties and color fastness of silk fabric dyed with turmeric extract. Fibers Polym 14(2):201–207

    Article  CAS  Google Scholar 

  154. Al Sarhan TM, Salem AA (2018) Turmeric dyeing and chitosan/titanium dioxide nanoparticle colloid finishing of cotton fabric. Indian J Fibre Text Res (IJFTR)

    Google Scholar 

  155. Gotmare VD, Kole SS, Athawale RB (2018) Sustainable approach for development of antimicrobial textile material using nanoemulsion for wound care applications. Fash Text 5(1):25

    Article  Google Scholar 

  156. Sharma Y, Dua D, Srivastava N (2016) Antibacterial activity, phytochemical screening and antioxidant activity of stem of nicotiana tabacum. Int J Pharm Sci Res 7(3):1156–1167

    CAS  Google Scholar 

  157. Ru QM, Wang LJ, Li WM, Wang JL, Ding YT (2012) In vitro antioxidant properties of flavonoids and polysaccharides extract from tobacco (Nicotiana tabacum L.) leaves. Molecules 17(9):11281–11291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Duangsri P, Juntarapun K, Satirapipathkul C (2012) The tobacco leaf extract and antibacterial activity in textile. In: RMUTP international conference: textiles & fashion, pp 3–8

    Google Scholar 

  159. Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19(1):50–62

    Google Scholar 

  160. Kunicka-Styczyńska A, Sikora M, Kalemba D (2009) Antimicrobial activity of lavender, tea tree and lemon oils in cosmetic preservative systems. J Appl Microbiol 107(6):1903–1911

    Article  PubMed  CAS  Google Scholar 

  161. Pohlmann M, Paese K, Frank LA, Guterres SS (2018) Production, characterization and application of nanotechnology-based vegetable multi-component theospheres in nonwovens: a women’s intimate hygiene approach. Text Res J 88(20):2292–2302

    Article  CAS  Google Scholar 

  162. Cerempei A, Guguianu E, Muresan EI, Horhogea C, Rîmbu C, Borhan O (2015) Antimicrobial controlled release systems for the knitted cotton fabrics based on natural substances. Fibers Polym 16(8):1688–1695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir Ashraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riaz, S., Ashraf, M. (2020). Recent Advances in Development of Antimicrobial Textiles. In: Shahid, M., Adivarekar, R. (eds) Advances in Functional Finishing of Textiles. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3669-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3669-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3668-7

  • Online ISBN: 978-981-15-3669-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics