Skip to main content

Insights into Phosphorus-Containing Flame Retardants and Their Textile Applications

  • Chapter
  • First Online:
Advances in Functional Finishing of Textiles

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

In recent years, flame retardants (FRs) focused on eco-friendliness, eco-viable and durable, are in great social demand and one of the most growing area of research interest on account of increased awareness towards environmental concerns. In this regard, strategies are considered onto FRs for textiles as well as other substrates with their applicability and selectivity. Phosphorus-based FRs provide a foundation for the directed design of nontoxic FRs mainly because of its versatility, for example, it can act in both the condensed and gas phase, as an additive or as a reactive component, in various oxidization states, and in synergy with numerous adjuvant elements. Various P-moieties make valuable contribution and combinations including elemental, inorganic salts and organophosphorus compounds. This chapter highlights general insight into phosphorus-based flame retardants for polymeric systems with future R&D opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392

    Article  CAS  Google Scholar 

  2. Horrocks AR (1986) Flame-retardant finishing of textiles. Rev Prog Color Relat Top 16(1):62. https://doi.org/10.1111/j.1478-4408.1986.tb03745.x

    Article  CAS  Google Scholar 

  3. Liu W, Chen L, Wang YZ (2012) A novel phosphorus-containing flame retardant for the formaldehyde-free treatment of cotton fabrics. Polym Degrad Stabi 97(12):2487–2491

    Article  CAS  Google Scholar 

  4. Gaan S, Salimova V, Rupper P, Ritter A, Schmid H (2011) Flame retardant functional textiles. In: Pan N, Sun G (eds) Functional textiles for improved performance, protection and health. Woodhead Publishing, Cambridge, UK, pp 98–130

    Google Scholar 

  5. Bocchini S, Camino G (2010) Chapter 4 halogen-containing flame retardants. In: Wilkie CA, Morgan AB (eds) Fire retardancy of polymeric materials, 2 edn. CRC Press, Florida, USA

    Google Scholar 

  6. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27(8):1661–1712

    Article  CAS  Google Scholar 

  7. Yusuf M (2018) A review on flame retardant textile finishing: current and future trends. Curr Smart Mater 3(2):99–108

    Article  Google Scholar 

  8. Söderström G, Marklund S (2002) PBCDD and PBCDF from incineration of waste-containing brominated flame retardants. Environ Sci Technol 36(9):1959–1964

    Article  Google Scholar 

  9. de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46(5):583–624

    Article  Google Scholar 

  10. https://ec.europa.eu/environment/chemicals/reach/reach_en.htm. Retrieved on 20 Sept 2019

  11. Shaw S (2010) Halogenated flame retardants: do the fire safety benefits justify the risks? Rev Environ Health 25(4):261–306

    Article  CAS  Google Scholar 

  12. Ülker OC, Ulker O (2019) Toxicity of formaldehyde, polybrominated diphenyl ethers (PBDEs) and phthalates in engineered wood products (EWPs) from the perspective of the green approach to materials: a review. BioResour 14(3):7465–7493

    Google Scholar 

  13. Castellano A, Colleoni C, Iacono G, Mezzi A, Plutino MR, Malucelli G, Rosace G (2019) Synthesis and characterization of a phosphorous/nitrogen based sol-gel coating as a novel halogen-and formaldehyde-free flame retardant finishing for cotton fabric. Polym Degrad Stab 162:148–159

    Article  CAS  Google Scholar 

  14. Wang Y, Su Q, Wang H, Zhao X, Liang S (2019) Molded environment-friendly flame-retardant foaming material with high strength based on corn starch modified by crosslinking and grafting. J Appl Polym Sci 136(11):47193

    Article  Google Scholar 

  15. Hull TR, Law RJ, Bergman Å (2014) Environmental drivers for replacement of halogenated flame retardants. In: Papaspyrides CD, Kiliaris P (eds) Polymer green flame retardants. Elsevier, Oxford, UK, pp 119–179

    Google Scholar 

  16. Green J (1992) A review of phosphorus-containing flame retardants. J Fire Sci 10(6):470–487

    Article  CAS  Google Scholar 

  17. Morgan AB, Gilman JW (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mat 37(4):259–279

    Article  CAS  Google Scholar 

  18. Holleman A, Wiberg N (1985) “XV 2.1.3”. Lehrbuch der Anorganischen Chemie (33rd edn). de Gruyter (ed.). ISBN 3-11-012641-9

    Google Scholar 

  19. Weil ED, Levchik SV (2017) Phosphorus flame retardants. Kirk-Othmer Encycl Chem Technol 2:1–34

    Google Scholar 

  20. Granzow A (1978) Flame retardation by phosphorus compounds. Acc Chem Res 11:177–183

    Article  CAS  Google Scholar 

  21. Peters EN (1979) Flame‐retardant thermoplastics. I. Polyethylene–red phosphorus. J Appl Polym Sci 24(6):1457–1464

    Google Scholar 

  22. Yeh JT, Hsieh SH, Cheng YC, Yang MJ, Chen KN (1998) Combustion and smoke emission properties of poly (ethylene terephthalate) filled with phosphorous and metallic oxides. Polym Degrad Stab 61(3):399–407

    Article  CAS  Google Scholar 

  23. Levchik GF, Vorobyova SA, Gorbarenko VV, Levchik SV, Weil ED (2000) Some mechanistic aspects of the fire retardant action of red phosphorus in aliphatic nylons. J Fire Sci 18(3):172–182

    Article  CAS  Google Scholar 

  24. Levchik SV, Weil ED (2000) Combustion and fire retardancy of aliphatic nylons. Polym Int 49(10):1033–1073

    Article  CAS  Google Scholar 

  25. Wang Z, Qu B, Fan W, Huang P (2001) Combustion characteristics of halogen‐free flame‐retarded polyethylene containing magnesium hydroxide and some synergists. J Appl Polym Sci 81(1):206–214

    Google Scholar 

  26. Liu Y, Wang Q (2006) Preparation of microencapsulated red phosphorus through melamine cyanurate self-assembly and its performance in flame retardant polyamide 6. Polym Eng Sci 46(11):1548–1553

    Article  CAS  Google Scholar 

  27. Wu Q, Lü J, Qu B (2003) Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins. Polym Int 52(8):1326–1331

    Article  CAS  Google Scholar 

  28. Xie R, Qu B (2001) Thermo-oxidative degradation behaviors of expandable graphite-based intumescent halogen-free flame retardant LLDPE blends. Polym Degrad Stab 71(3):395–402

    Article  CAS  Google Scholar 

  29. Tan Y, Shao ZB, Yu LX, Long JW, Qi M, Chen L, Wang YZ (2016) Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property. Polym Chem 7(17):3003–3012

    Article  CAS  Google Scholar 

  30. Pantelaki I, Voutsa D (2019) Organophosphate flame retardants (OPFRs): a review on analytical methods and occurrence in wastewater and aquatic environment. Sci Total Environ 649:247–263

    Article  CAS  Google Scholar 

  31. Salmeia K, Gaan S, Malucelli G (2016) Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polym 8(9):319

    Article  Google Scholar 

  32. Keglevich G, Grün A, Bálint E, Kiss NZ, Bagi P, Tőke L (2017) Green chemical syntheses and applications within organophosphorus chemistry. Struct Chem 28(2):431–443

    Article  CAS  Google Scholar 

  33. Camino G, Costa L (1988) Performance and mechanisms of fire retardants in polymers-a review. Polym Degrad Stab 20(3–4):271–294

    Article  CAS  Google Scholar 

  34. Wendels S, Chavez T, Bonnet M, Salmeia K, Gaan S (2017) Recent developments in organophosphorus flame retardants containing P–C bond and their applications. Materials 10(7):784(1–32)

    Google Scholar 

  35. Gupta RC (2006) Classification and uses of organophosphates and carbamates. In: Gupta RC (ed) Toxicology of organophosphate and carbamate compounds. Academic Press, Burlington, pp 5–24

    Chapter  Google Scholar 

  36. AbouDonia M, Abou-Donia MB, Salama M, Elgamal M, Elkholi I, Wang Q (2016) Organophosphorus flame retardants (OPFR): neurotoxicity. J Environ Health Sci 2(1). https://doi.org/10.15436/2378-6841.16.022

  37. Benin V, Gardelle B, Morgan AB (2014) Heat release of polyurethanes containing potential flame retardants based on boron and phosphorus chemistries. Polym Degrad Stab 106:108–121

    Article  CAS  Google Scholar 

  38. Dumitrascu A, Howell BA (2011) Flame-retarding vinyl polymers using phosphorus-functionalized styrene monomers. Polym Degrad Stab 96:342–349

    Article  CAS  Google Scholar 

  39. Su WC, Sheng CS (2005) Method for preparing a biphenylphosphonate compound. U.S. Patent 20050101793

    Google Scholar 

  40. Finocchiaro P, Consiglio GA, Imbrogiano A, Failla S (2007) Synthesis and characterization of new organic phosphonates monomers as flame retardant additives for polymers. Phosphorus, Sulfur Silicon Relat Elem 182:1689–1701

    Article  CAS  Google Scholar 

  41. Ma J, Yang J, Huang Y, Ke C (2012) Aluminum-organophosphorus hybrid nanorods for simultaneously enhancing the flame retardancy and mechanical properties of epoxy resin. J Mater Chem 22:2007–2017

    Article  CAS  Google Scholar 

  42. Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR (2018) Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew Chemie Int Ed 57(33):10450–10467

    Article  CAS  Google Scholar 

  43. Carrington CD, Abou-Donia MB (1988) Triphenyl phosphite neurotoxicity in the hen: inhibition of neurotoxic esterase and a lack of prophylaxis by phenylmethylsulfonyl fluoride. Arch Toxicol 62(5):375–380

    Article  CAS  Google Scholar 

  44. Wolschke H, Sühring R, Xie Z (2015) Organophosphorus flame retardants and plasticizers in the aquatic environment: a case study of the Elbe River. Germany Environ Poll 206:488–493

    Article  CAS  Google Scholar 

  45. Demchuk OM, Jasinski R (2016) Organophosphorus ligands: Recent developments in design, synthesis, and application in environmentally benign catalysis. Phosphorus, Sulfur Silicon Relat Elem 191:245–253

    Article  CAS  Google Scholar 

  46. TFRS Fire Death Rate Trends: An International Perspective (2016) vol. 12(8). https://www.usfa.fema.gov/downloads/pdf/statistics/v12i8.pdf. Accessed 1 Sep 2019

  47. Fire Analysis and Research Statistical Reports (2014) NFPA. http://www.nfpa.org/News-and-Research/Fire-statistics-andreports/Fire-statistics/Fires-by-property-type/Residential/Home-structure-Fires. Accessed 1 Sep 2019

  48. Horrocks AR, Kandola BK, Davies PJ, Zhang S, Padbury SA (2005) Developments in flame retardant textiles—a review. Polym Degrad Stab 88:3–12

    Google Scholar 

  49. Lessan F, Montazer M, Moghadam MB (2011) A novel durable flame-retardant cotton fabric using sodium hypophosphite, nano-TiO2 and maleic acid. Thermochim Acta 520:48–54

    Article  CAS  Google Scholar 

  50. Gao WW, Zhang GX, Zhang FX (2015) Enhancement of flame retardancy of cotton fabrics by grafting, a novel organic phosphorous-based flame retardant. Cellulose 22(4):2787–2796

    Article  CAS  Google Scholar 

  51. Alongi J, Carletto RA, Bosco F, Carosio F, Di Blasio A, Cuttica F, Antonucci V, Giordano M, Malucelli G (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117

    Article  CAS  Google Scholar 

  52. Bosco F, Carletto RA, Alongi J, Marmo L, Di Blasio A, Malucelli G (2013) Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydr Polym 94(1):372–377

    Article  CAS  Google Scholar 

  53. Cheng XW, Guan JP, Kiekens P, Yang XH, Tang RC (2019) Preparation and evaluation of an eco-friendly, reactive, and phytic acid-based flame retardant for wool. React Func Polym 134:58–66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Yusuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yusuf, M. (2020). Insights into Phosphorus-Containing Flame Retardants and Their Textile Applications. In: Shahid, M., Adivarekar, R. (eds) Advances in Functional Finishing of Textiles. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3669-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3669-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3668-7

  • Online ISBN: 978-981-15-3669-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics