Skip to main content

Lilium: Conservation, Characterization, and Evaluation

  • Reference work entry
  • First Online:
Floriculture and Ornamental Plants

Abstract

Lilies are spectacular bulbous plants grown worldwide for cut flower and pot plant production. There are more than 110 species of Lilium which are divided into seven sections, and since species belonging to the same section have relatively high interspecific crossing abilities, interspecific hybridization is the prime method of lily breeding. The interspecific hybrids within the sections especially those within the sections Leucolirion, Archelirion, and Sinomartagon represent the most important breeding groups which are Longiflorum hybrids (L genome), Asiatic hybrids (A genome), and Oriental hybrids (O genome). Most of the natural lily species are diploid (2n = 24), but few species are triploid (2n = 3x = 36) that are sterile. Breeding of novel lily cultivars by either traditional cross or genetic engineering is possible only when valuable genetic resources are available. In recent years, lily habitats have been suffering serious destruction, and many wild species have become endangered. So, germplasm conservation is very important as a source of genetic variation for breeding and research and to prevent rare species from becoming extinct. Many in vivo and in vitro techniques have been employed to conserve Lilium germplasm, out of which cryopreservation, i.e., storage of living cells, tissues, or organs at extra low temperatures, usually that of liquid nitrogen (−196 °C), has been recognized as an ideal means for long-term storage of Lilium germplasm. The lily (Lilium longiflorum, Easter lily) genome size is 36 GB which is one of the largest among all plants, i.e., ~ 550x of Arabidopsis thaliana (135 Mb). Biotechnological tools like tissue culture, molecular markers, and recombinant DNA technology have played vital role for the development of Lilium cultivars with improved traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Nakano M, Nakatsuka A, Nakayama M, Koshioka M, Yamagishi M (2002) Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. Theor Appl Genet 105:1175–1182

    CAS  PubMed  Google Scholar 

  • Anderson NO, Younis A, Sun Y (2010) Intersimple sequence repeats distinguish genetic differences in Easter lily ‘Nellie White’ clonal ramets within and among bulb growers over years. J Am Soc Hortic Sci 135:445–455

    Google Scholar 

  • Azadi P, Otang NV, Chin DP, Nakamura I, Fujisawa M, Harada H, Misawa N, Mii M (2010) Metabolic engineering of Lilium x formolongi using multiple genes of the carotenoid biosynthesis pathway. Plant Biotechnol Rep 4:269–280

    Google Scholar 

  • Bakhshaie M, Khosravi S, Azadi P, Bagheri H, van Tuyl MJ (2016) Biotechnological advances in Lilium. Plant Cell Rep 35:1799–1826

    CAS  PubMed  Google Scholar 

  • Barba-Gonzalez R, Lim KB, Ramanna MS, Visser RGF, Van Tuyl JM (2005) Occurrence of 2n gametes in the F1 hybrids of Oriental x Asiatic lilies (Lilium): relevance to intergenomic recombination and backcrossing. Euphytica 143:67–73

    CAS  Google Scholar 

  • Barba-Gonzalez R, Miller CT, Ramanna MS, Van Tuyl JM (2006) Nitrous oxide (N2O) induces 2n gametes in sterile F1 hybrids between Oriental x Asiatic lily (Lilium) hybrids and leads to intergenomic recombination. Euphytica 148:303–309

    CAS  Google Scholar 

  • Bilz M (2011) Lilium jankae. The IUCN red list of threatened species 2011: e.T165213A5990909. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T165213A5990909.en

    Book  Google Scholar 

  • Biswas M, Nath U, Howlader J, Bagchi M, Natarajan S, Kayum MA, Kim HT, Park JI, Kang JG, Nou IS (2018) Exploration and exploitation of novel SSR markers for candidate transcription factor genes in Lilium species. Genes 9(2):97

    PubMed Central  Google Scholar 

  • Bouman H, Tiekstra A, Petutschnig E, Homan M, Schreurs R (2003) Cryo preser- vation of Lilium species and cultivars. Acta Hortic 612:147–154

    Google Scholar 

  • Chen H, Chen XL, Chen LQ, Lu XX (2007) Cryopreservation of shoot tips from in vitro plants of our flower of lily (Lilium L.) by vitrification method. J Plant Gene Res 2:170–173

    Google Scholar 

  • Chen MK, Lin IC, Yang CH (2008) Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiol 49:704–717

    CAS  PubMed  Google Scholar 

  • Chen XL, Li JH, Xin X, Zhang ZE, Xin PP, Lu XX (2011) Cryopreservation of in vitro-grown apical meristems of Lilium by droplet-vitrification. S Afr J Bot 77:397–403

    Google Scholar 

  • Comber HF (1949) A new classification of genus Lilium. Lily Yearb N Am Lily Soc 13:86–105

    Google Scholar 

  • Dhyani A, Nautiyal BP, Nautiyal MC (2018) Distribution, status and conservation of Lilium polyphyllum (Liliaceae), a critically endangered medicinal plant from India. Plant Biosyst 152(4):608–611

    Google Scholar 

  • Du Y, Heng-bin H, Zhong-xuan W, Chi W, Shuang L, Gui-xia J (2014) Investigation and evaluation of the genus Lilium resources native to China. Genet Resour Crop Evol 61:395–412

    Google Scholar 

  • Du YP, Bi Y, Yang FP, Zhang MF, Chen XQ, Xue J, Zhang XH (2017) Complete chloroplast genome sequences of Lilium: insights into evolutionary dynamics and phylogenetic analyses. Sci Rep 7(1):5751

    PubMed  PubMed Central  Google Scholar 

  • Gao YD, Harris AJ, He XJ (2015) Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization. BMC Evol Biol 15:147. https://doi.org/10.11826/s12862-015-0405-2

  • Gargano D (2015) Lilium pomponium. The IUCN red list of threatened species 2015: e.T190872A70290522. https://doi.org/10.2305/IUCN.UK.2015-1.RLTS.T190872A70290522.en

    Book  Google Scholar 

  • Gudeva KL, Trajkova F (2015) The effect of plant growth regulators on morphogenesis in tissue culture of some agricultural species. In: The 6th international scientific agricultural symposium, Agrosym, pp 238–244

    Google Scholar 

  • Hao H, Wu ZH, Chen G, Lin QL (2017) Geographical distribution and morphological diversification of Lilium fargesii. Acta Hortic 1171:349–356

    Google Scholar 

  • Hu Y, Ren J, Liu Y, Zhang M, Moe TS, Khan MS, Du Y, Zhang X (2020) Evaluating the genetic relationship of Lilium species/cultivars based on target region amplification polymorphism (TRAP). Genet Resour Crop Evol 67:503–513

    CAS  Google Scholar 

  • İkinci N (2014) Lilium ciliatum. The IUCN red list of threatened species 2014: e.T200273A2646311. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T200273A2646311.en

    Book  Google Scholar 

  • İkinci N, Oberprieler C, Güner A (2006) On the origin of European lilies: phylogenetic analysis of Lilium section Liriotypus (Liliaceae) using sequences of the nuclear ribosomal transcribed spacers. Willdenowia 36:647–656

    Google Scholar 

  • IPGRI (1995) Descriptors for capsicum (Capsicum spp.), IPGRI, ISBN 92-9043-216-0, Via delle Sette Chiese, 142, 00145 Rome, Italy

    Google Scholar 

  • Jeknic Z, Jeffrey T, Morre S, Sladana J, Subotic A, Chen THH (2014) Cloning and Functional Characterization of a Gene for Capsanthin-Capsorubin Synthase from Tiger Lily (Lilium lancifolium Thunb. ‘Splendens’). Plant Cell Physiol 53(11):1899–1912

    Google Scholar 

  • Kaviani B, Abadi DH, Torkashvand AM, Hoor SS (2009) Cryopreservation of seeds of lily (Lilium ledebourii (baker) bioss): use of sucrose and dehydration. Afr J Biotechnol 8:3809–3810

    CAS  Google Scholar 

  • Kawase D, Hayashi K, Takeuchi Y, Yumoto T (2010) Population genetic structure of Lilium japonicum and serpentine plant L. japonicum var. abeanum by using developed microsatellite markers. Plant BioSyst 144:29–37

    Google Scholar 

  • Khan N, Zhou S, Ramanna MS, Arens P, Herrera J, Visser RGF, Van Tuyl JM (2009) Potential for analytic breeding in allopolyploids: an illustration from Longiflorum x Asiatic hybrid lilies (Lilium). Euphytica 166:399–409

    Google Scholar 

  • Khan N, Barba-Gonzalez R, Ramanna MS, Arens P, Visser RGF, Van Tuyl JM (2010) Relevance of unilateral and bilateral sexual polyploidization in relation to intergenomic recombination and introgression in Lilium species hybrids. Euphytica 171:157–173

    Google Scholar 

  • Kim S, Mollet JC, Dong J, Zhang K, Park SY, Lord EM (2003) Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc Natl Acad Sci U S A 100:16125–16130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kyung HY, Choi YS, Lee JK, Hiramatsu M, Okubo H (2006) Geographic distribution and habitat differentiation in diploid and triploid Lilium lancifolium of South Korea. J Fac Agric Kyushu Univ 51(2):239–243

    Google Scholar 

  • Kumari S, Kim YS, Kanth BK, Jang JY, Lee GJ (2019) Genetic diversity assessment of lily genotypes native to Korea based on simple sequence repeat markers. J Plant Biotechnol 46(3):158–164

    Google Scholar 

  • Lansdown RV (2018) Lilium chalcedonicum. The IUCN red list of threatened species 2018: e.T13142534A18614450. https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T13142534A18614450.en

    Book  Google Scholar 

  • Li JW, Zhang XC, Wang MR, Bi WL, Faisal M, Jaime A, da Silva T, Volk GM, Wang QC (2019) Development, progress and future prospects in cryobiotechnology of Lilium spp. Plant Methods 15(125):1–12

    Google Scholar 

  • Liang ZX, Zhang JZ, Sun MY, Zhang YL, Zhang XH, Li H, Shi L (2018) Variation of Phenolic Compounds and Antioxidant Capacities in Different Organs of Lilium pumilum. Nat Prod Commun 13(6):717–722

    Google Scholar 

  • Lim KB, Chung JD, Van Kronenburg BCE, Ramanna MS, De Jong JH, Van Tuyl JM (2000) Introgression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chromosome Res 8:119–125

    CAS  PubMed  Google Scholar 

  • Lim KB, Barba-Gonzalez R, Zhou S, Ramanna MS, Van Tuyl JM (2007) Interspecific hybridization in lily (Lilium): taxonomic and commercial aspects of using species hybrids in breeding. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. Global Science Books, Ltd., Isleworth, pp 138–145

    Google Scholar 

  • Matsumoto T, Sakai A (1995) An approach to enhance dehydration tolerance of alginate-coated dried meristems cooled to – 196 °C. Cryo Letters 16:299–306

    Google Scholar 

  • McRae EA (1998) Oriental lily hybrids in lilies, a guide for growers and collectors. Timber Press, Portland, pp 239–257

    Google Scholar 

  • Mohajeri MR, Zare AG, Shahab M, Jari SK (2014) Seed germination of Lilium ledebourii (Baker) Boiss. after cryopreservation. J Rangeland Sci 4:279–285

    Google Scholar 

  • Nishikawa TK, Okazaki K, Nagamine T (2002) Phylogenetic relationships among Lilium auratum Lindley L. auratum var. platyphyllum Baker and L. rubellum Baker based on three spacer regions in chloroplast DNA. Breed Sci 52:207–213

    CAS  Google Scholar 

  • Pedapati A, Yadav SK, Tyagi V, Singh SP, Ranga SS, Binda PC, Brahmi P (2018) Ornamental Germplasm: Potential New Resources for Floriculture Industry. Int J Curr Microbiol App Sci 7(12):1731–1742

    Google Scholar 

  • Pelkonen V, Pirttila A (2012) Taxonomy and phylogeny of the genus Lilium. Floricult Ornam Biotechnol 6:1–8

    Google Scholar 

  • Petrova A, Bazos I (2013) Lilium rhodopeum. The IUCN Red List of Threatened Species 2013: e.T165256A5996953. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T165256A5996953.en

    Book  Google Scholar 

  • Rai R, Shrestha J, Kim JH (2018) Combining ability and gene action analysis of quantitative traits in Lilium × formolongi. J Agric Life Environ Sci 30:131–143

    Google Scholar 

  • Rana MS, Samant SS (2011) Population biology of Lilium polyphyllum D. Don ex Royle—a critically endangered medicinal plant in a protected area of Northwestern Himalaya. J Nat Conserv 19:137–142

    Google Scholar 

  • Saha D, Ved D, Ravikumar K, Haridasan K, Dhyani A (2015) Lilium polyphyllum. The IUCN red list of threatened species 2015: e.T50126623A79918170. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T50126623A79918170.en

    Book  Google Scholar 

  • Sayadalian M, Naderi R, Fattahi M, Mohammad R, Padasht D, Mohammad N (2014) An evaluation of some different populations of Lilium ledebourii (BAKER) BOISS, employing agro-morphological characteristics and multivariate analyses. Iran J Hortic Sci (Iran J Agric Sci) 4:379–387

    Google Scholar 

  • Shahin A, Arens P, Van Heusden AW, Van Der Linden G, Van Kaauwen M, Khan N, Schouten H, Van De Weg E, Visser R, Van Tuyl JM (2010) Genetic mapping in Lilium: mapping of major genes and QTL for several ornamental traits and disease resistances. Plant Breed 130:372–382

    Google Scholar 

  • Shahin A, Arens P, Van Heusden AW, Van Der Linden G, Van Kaauwen M, Khan N, Schouten HJ, Van De Weg WE, Visser RG, Van Tuyl JM (2011) Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breed 130(3):372–382

    CAS  Google Scholar 

  • Shahin A, Martijn VK, Danny E, Joachim W, Van Tuy JM, Richard GV, Paul A (2012) Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genomics 13:640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzeng TY, Chen HY, Yang CH (2002) Ectopic expression of carpel-specific MADS Box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130:1827–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  • UPOV. International Union for the Protection of New Varieties of Plants (2005) Test guidelines – English Version. http://www.upov.int/en/publications/tg-rom/tg_index.htm

  • Urbaniec-Kiepura M, Bach A (2014) Effects of pre-storage on Lilium martagon L. seed longevity following cryopreservation. Cryo Letters 35:462–472

    CAS  PubMed  Google Scholar 

  • Urbaniec-Kiepura M, Bach A (2017) Cryopreservation of Lilium martagon L. meristems by droplet-vitrification and evaluation of their physiological stability. Cryo Letters 38(2):78–89

    CAS  PubMed  Google Scholar 

  • van Hintum TJL (1996) Core collections in germplasm conservation, evaluation and use. In: Scoles G, Rossnagel B (eds) V International oat conference & VII International barley genetics symposium: proceedings. University Extension Press/University of Saskatchewan, Saskatoon, pp 113–119

    Google Scholar 

  • Van Tuyl JM, Van Dien MP, Van Creij MGM, Van Kleinwee TCM, Franken J, Bino RJ (1991) Application of in vitro pollination, ovary culture, ovule culture and embryo rescue for overcoming incongruity barriers in interspecific Lilium crosses. Plant Sci 74:115–126

    Google Scholar 

  • Van Tuyl JM, van Dijken HS, Chi HS, Lim KB (2000) Breakthroughs in interspecific hybridization of lily. Acta Hortic 508:83–88

    Google Scholar 

  • Van Tuyl JM, Chung MY, Chung JD, Lim KB (2002a) Introgression with Lilium hybrids: introgression studies with the GISH method on L. Longiflorum x Asiatic, L. longiflorum x L. rubellum and L. auratum x L. henryi. Lily Yearb N Am Lily Soc 55(17–22):70–72

    Google Scholar 

  • Van Tuyl JM, Lim KB, Ramanna MS (2002b) Interspecific hybridization and introgression. In: Vainstein A (ed) Breeding for ornamentals: classical and molecular approaches. Kluwer Academic Publishers, pp 85–103

    Google Scholar 

  • Vieira P, Wantoch S, Lilley CJ, Chitwood DJ, Atkinson HJ, Kamo K (2015) Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. ‘Nellie White’. Transgenic Res 24(3):421–432

    CAS  PubMed  Google Scholar 

  • Wang S, Xie Y (2004) China species red list, vol 1. Higher Education Press, Beijing

    Google Scholar 

  • Wang HJ, Wan AR, Jauh GY (2008) An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiol 147:1619–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WK, Liu CC, Chiang TY, Chen MT, Chou CH, Yeh CH (2011) Characterization of expressed sequence tags from flower buds of alpine Lilium formosanum using a subtractive cDNA library. Plant Mol Biol Rep 29:88–97

    CAS  Google Scholar 

  • Wang Y, van Kronenburg B, Menzel T, Maliepaard C, Shen X, Krens F (2012) Regeneration and Agrobacterium-mediated transformation of multiple lily cultivars. Plant Cell Tissue Organ Cult 111:113–122

    CAS  Google Scholar 

  • Wu XM (2017) Studies on nutrient composition of Lilium davidii var. unicolor derived products. Food Nutr China 23:77–80

    Google Scholar 

  • Wu XW, Li SF, Xiong L, Qu YH, Zhang YP, Fan MT (2006) Distribution situation and suggestion on protecting wild lilies in Yunnan Province. J Plant Genet Resour 7:327–330

    Google Scholar 

  • Wu XW, Wang LH, Wu LF, Qu SP, Suh JK, Wang JH (2012) Native species of the genus Lilium and the closely related Nomocharis in Yunnan, China. In: Floriculture and biotechnology. Global Science Books, pp 28–38

    Google Scholar 

  • Wu XW, Tian M, Wang LH, Cui GF, Yu RP, Lu ZH, Jia WJ, Qu SP, Gui M, Wang JH (2014) Native species of the genus Lilium in China. Acta Hortic 1027:27–40

    Google Scholar 

  • Xi M, Sun L, Qiu S, Liu J, Xu J, Shi J (2012) In vitro mutagenesis and identification of mutants via ISSR in lily (Lilium longiflorum). Plant Cell Rep 31:1043–1051

    CAS  PubMed  Google Scholar 

  • Xiang Y, Huang X, Wang T, Zhang Y, Liu Q, Hussey PJ, Ren H (2007) ACTIN BINDING PROTEIN29 from Lilium pollen plays an important role in dynamic actin remodeling. Plant Cell 19:1930–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Swoboda I, Bhalla PL, Singh MB (1999) Male gametic cell-specific expression of H2A and H3 histone genes. Plant Mol Biol 39:607–614

    CAS  PubMed  Google Scholar 

  • Xu J, Liu Q, Jia M, Liu Y, Li B, Shi Y (2014) Generation of reactive oxygen species during cryopreservation may improve Lilium ×Siberia pollen viability. Vitro Cell Dev Biol Plant 50:369–375

    CAS  Google Scholar 

  • Yan R, Wang Z, Ren Y, Li H, Liu N, Sun H (2019) Establishment of Efficient Genetic Transformation Systems and Application of CRISPR/Cas9 Genome Editing Technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. Int J Mol Sci 20(12):2920

    CAS  PubMed Central  Google Scholar 

  • Yi JY, Lee GA, Lee SY, Chung JW (2014) Development of cryo-banking system of Lilium species. Flower Res J 22:185–189

    Google Scholar 

  • Yin ZF, Bi WL, Chen L, Zhao B, Volk GM, Wang QC (2014) An efficient, widely applicable cryopreservation of Lilium shoots tips by droplet vitrification. Acta Physiol Plant 36:1683–1692

    CAS  Google Scholar 

  • Yong Y, Zhang Y, Lyu Y (2019a) A MYB-related transcription factor from Lilium lancifolium L. (LlMYB3) is involved in anthocyanin biosynthesis pathway and enhances multiple abiotic stress tolerance in Arabidopsis thaliana. Int J Mol Sci 20:3195. https://doi.org/10.3390/ijms20133195

    Article  CAS  PubMed Central  Google Scholar 

  • Yong Y, Zhang Y, Lyu Y (2019b) A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. Int J Mol Sci 20:3225. https://doi.org/10.3390/ijms20133225

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang X, Wang H, Bun NT (2008) Isolation and characterization of a novel Trypsin inhibitor from fresh lily bulbs. Planta Med 74:546–550

    CAS  PubMed  Google Scholar 

  • Zhao P, Zhang QW, Shi BS, Liu Y (2014) Studies on cryopreservation of Lilium concolor var. pulchelium. J Agric Univ Hebei 37:54–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dhiman, M.R., Sharma, P., Bhargava, B. (2022). Lilium: Conservation, Characterization, and Evaluation. In: Datta, S.K., Gupta, Y.C. (eds) Floriculture and Ornamental Plants. Handbooks of Crop Diversity: Conservation and Use of Plant Genetic Resources. Springer, Singapore. https://doi.org/10.1007/978-981-15-3518-5_6

Download citation

Publish with us

Policies and ethics