Skip to main content

Domain Matched Epitaxial Growth of Dielectric Thin Films

  • Chapter
  • First Online:
Nanostructured Metal Oxides and Devices

Abstract

Epitaxial Ba0.5Sr0.5TiO3 (BST) thin films have been grown by pulsed laser deposition on (0001) Al2O3 substrate with ZnO as buffer layer. The X-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier-filtered HRTEM images of the film–buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Dielectric studies were conducted by fabricating coplanar interdigital capacitors on the epitaxial BST thin films. Epitaxial BST thin films show significantly improved tunable performance over polycrystalline thin films.

Part of the work published in journal applied physics, reprinted from Krishnaprasad et al. [16], with the permission of AIP Publishing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valasek J (1921) Piezo-electric and allied phenomena in rochelle salt. Phys Rev 17:475–481. https://doi.org/10.1103/PhysRev.17.475

    Article  CAS  Google Scholar 

  2. Eason R (2007) Pulsed laser deposition of thin films. Wiley, New Jersey

    Google Scholar 

  3. Busch G, Scherrer P (1987) A new seignette-electric substance. Ferroelectrics 71:15–16. https://doi.org/10.1080/00150198708224825

    Article  CAS  Google Scholar 

  4. Wainer E, Salomon N (1943) Electrical reports titanium alloys manufacturing division. Natl Lead Co. Reports. No. 8, 9, 1

    Google Scholar 

  5. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818. https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    Article  CAS  Google Scholar 

  6. Kittel C (1996) Introduction to solid state physics. Wiely Eastern Limtd

    Google Scholar 

  7. Wang XU (2009) Tunable microwave filters using ferroelectric thin films. https://etheses.bham.ac.uk//id/eprint/1227/1/Wang09PhD.pdf

  8. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) Ferroelectric materials for microwave tunable applications. J Electroceramics 11:5–66. https://doi.org/10.1023/B:JECR.0000015661.81386.e6

    Article  CAS  Google Scholar 

  9. Kuylenstierna D, Ash E, Vorobiev A, Itoh T, Gevorgian S (2006) X-band left handed phase shifter using thin film Ba0.25Sr0.75Tio3 ferroelectric varactors. In: 2006 European microwave conference, IEEE, pp 847–850

    Google Scholar 

  10. Kim KB, Yun TS, Lee JC, Chaker M, Park CS, Wu K (2007) Integration of microwave phase shifter with BST varactor onto TiO2/Si wafer. Electron Lett 43:757. https://doi.org/10.1049/el:20070448

    Article  CAS  Google Scholar 

  11. Vicki Chen L-Y, Forse R, Chase D, York RA (2004) Analog tunable matching network using integrated thin-film BST capacitors. In: 2004 IEEE MTT-S international microwave symposium digest (IEEE Cat. No. 04CH37535), IEEE, pp 261–264

    Google Scholar 

  12. Kuylenstierna D, Vorobiev A, Linner P, Gevorgian S (2005) Ultrawide-band tunable true-time delay lines using ferroelectric varactors. IEEE Trans Microw Theory Tech 53:2164–2170. https://doi.org/10.1109/TMTT.2005.848805

    Article  CAS  Google Scholar 

  13. Bao P, Jackson TJ, Wang X, Lancaster MJ (2008) Barium strontium titanate thin film varactors for room-temperature microwave device applications. J Phys D Appl Phys 41:063001. https://doi.org/10.1088/0022-3727/41/6/063001

    Article  CAS  Google Scholar 

  14. Yan X, Ren W, Shi P, Wu X, Yao X (2011) Enhanced tunable dielectric properties of Ba0.5Sr0.5TiO3/Bi1.5Zn1.0Nb1.5O7 multilayer thin films by a sol–gel process. Thin Solid Films 520:789–792. https://doi.org/10.1016/j.tsf.2011.04.118

  15. Chen CL, Feng HH, Zhang Z, Brazdeikis A, Huang ZJ, Chu WK, Chu CW, Miranda FA, Van Keuls FW, Romanofsky RR, Liou Y (1999) Epitaxial ferroelectric Ba0.5Sr0.5TiO3 thin films for room-temperature tunable element applications. Appl Phys Lett 75:412. https://doi.org/10.1063/1.124392

  16. Krishnaprasad PS, Antony A, Rojas F, Jayaraj MK (2015) (Domain matched epitaxial growth of (111) Ba0.5Sr0.5TiO3 thin films on (0001) Al2O3 with ZnO buffer layer. J Appl Phys 117:124102. https://doi.org/10.1063/1.4915949

  17. Ranjan R, Pandey D, Schuddinck W, Richard O, De Meulenaere P, Van Landuyt J, Van Tendeloo G (2001) Evolution of crystallographic phases in (Sr1−xCax)TiO3 with composition (x). J Solid State Chem 162:20–28. https://doi.org/10.1006/jssc.2001.9336

    Article  CAS  Google Scholar 

  18. Kitamura N, Mizoguchi T, Itoh T, Idemoto Y (2014) Ferroelectric performances and crystal structures of (Pb, La) (Zr, Ti, Nb)O3. J Solid State Chem 210:275–279. https://doi.org/10.1016/j.jssc.2013.11.038

    Article  CAS  Google Scholar 

  19. Gevorgian S (2009) Ferroelectrics in microwave devices, circuits and systems. Springer Science & Business Media, New York

    Book  Google Scholar 

  20. Fujisaki Y, Iseki K, Ishiwara H (2003) Characterization of metal-ferroelectric-metal-insulator-semiconductor (MFMIS) fets using (Sr,Sm)0.8Bi2.2Ta2O9 (SSBT). Thin Films Mater Res Soc Symp Proc 786:297. https://doi.org/10.1557/proc-786-e9.8/c9.8

  21. Schlom DG, Guha S, Datta S (2008) Gate oxides beyond SiO2. MRS Bull 33:1017–1025. https://doi.org/10.1557/mrs2008.221

    Article  CAS  Google Scholar 

  22. Liang Y, Kulik J, Wei Y, Eschrich T, Curless J, Craigo B, Smith S (2003) Hetero-epitaxy of crystalline perovskite oxides on GaAs(001). MRS Proc. 786:E8.4.1–E8.4.6. https://doi.org/10.1557/proc-786-e8.4

  23. Chen DY, Murphy TE, Phillips JD (2005) Properties of ferroelectric Pb(Zr, Ti)O3 thin films on ZnO/Al2O3(0001) epilayers. Thin Solid Films 491:301–304. https://doi.org/10.1016/j.tsf.2005.06.007

    Article  CAS  Google Scholar 

  24. Ashkenov N, Schubert M, Twerdowski E, Wenckstern HV, Mbenkum BN, Hochmuth H, Lorenz M, Grill W, Grundmann M (2005) Rectifying semiconductor-ferroelectric polarization loops and offsets in Pt-BaTiO3-ZnO-Pt thin film capacitor structures. Thin Solid Films 486:153–157. https://doi.org/10.1016/j.tsf.2004.11.226

    Article  CAS  Google Scholar 

  25. Evans JT, Suizu RI, Boyer LL (1997) Functionality of the ferroelectric/oxide semiconductor interface. Appl Surf Sci 117–118:413–417. https://doi.org/10.1016/S0169-4332(97)80116-X

    Article  Google Scholar 

  26. Afanas’ev VP, Bulat DY, Kaptelov EY, Pronin IP (2004) The effect of optical radiation on the semiconductor conductivity in a thin-film ferroelectric-semiconductor structure. Tech Phys Lett 30:518–521. https://doi.org/10.1134/1.1773355

  27. Cho K-H, Kang M-G, Oh S-M, Kang C-Y, Lee Y, Yoon S-J (2010) Low voltage ZnO thin-film transistors with Ti-substituted BZN gate insulator for flexible electronics. Thin Solid Films 518:6277–6279. https://doi.org/10.1016/j.tsf.2010.03.061

    Article  CAS  Google Scholar 

  28. Wu J, Wang J (2010) ZnO as a buffer layer for growth of BiFeO3 thin films. J Appl Phys 108:034102. https://doi.org/10.1063/1.3460108

    Article  CAS  Google Scholar 

  29. Krishnaprasad PS, Antony A, Rojas F, Bertomeu J, Jayaraj MK (2014) Domain matched epitaxial growth of Bi1.5Zn1Nb1.5O7 thin films by pulsed laser deposition. J Alloys Compd 586:524–528. https://doi.org/10.1016/j.jallcom.2013.10.025

  30. Wu J, Wang J (2010) Diodelike and resistive hysteresis behavior of heterolayered BiFeO3/ZnO ferroelectric thin films. J Appl Phys 108:094107. https://doi.org/10.1063/1.3500498

    Article  CAS  Google Scholar 

  31. Muralt P (2000) Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng 10:136. https://doi.org/10.1088/0960-1317/10/2/307

    Article  CAS  Google Scholar 

  32. Sakai S, Takahashi M (2010) Recent progress of ferroelectric-gate field-effect transistors and applications to nonvolatile logic and FeNAND flash memory. Mater (Basel) 3:4950–4964. https://doi.org/10.3390/ma3114950

    Article  CAS  Google Scholar 

  33. Butler KT, Frost JM, Walsh A (2015) Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ Sci 8:838–848. https://doi.org/10.1039/C4EE03523B

    Article  CAS  Google Scholar 

  34. Wu SY (1974) A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Trans Electron Devices 21:499–504. https://doi.org/10.1109/T-ED.1974.17955

    Article  Google Scholar 

  35. Evans JT, Womack R (1988) An experimental 512-bit nonvolatile memory with ferroelectric storage cell. IEEE J Solid-State Circ 23:1171–1175. https://doi.org/10.1109/4.5940

    Article  Google Scholar 

  36. Ma TP, Han JP (2002) Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron Device Lett 23:386–388. https://doi.org/10.1109/LED.2002.1015207

    Article  CAS  Google Scholar 

  37. Grossman M, Lohse O, Bolten D, Boettger U, Waser R (2002) Hetero-epitaxy of crystalline perovskite oxides on GaAs(001). In: MRS symposium proceedings, vol. 688, pp C3.4.1–C3.4.9

    Google Scholar 

  38. Cagin E, Chen DY, Siddiqui JJ, Phillips JD (2007) Hysteretic metal–ferroelectric–semiconductor capacitors based on PZT/ZnO heterostructures. J Phys D Appl Phys 40:2430–2434. https://doi.org/10.1088/0022-3727/40/8/003

    Article  CAS  Google Scholar 

  39. Siddiqui J, Cagin E, Chen D, Phillips JD (2006) ZnO thin-film transistors with polycrystalline (Ba, Sr) TiO3 gate insulators. Appl Phys Lett 88:1–4. https://doi.org/10.1063/1.2204574

    Article  CAS  Google Scholar 

  40. Reshmi R, Asha AS, Krishnaprasad PS, Jayaraj MK, Sebastian MT (2011) High tunability of pulsed laser deposited Ba0.7Sr0.3TiO3 thin films on perovskite oxide electrode. J Alloys Compd 509:6561–6566. https://doi.org/10.1016/j.jallcom.2011.02.074

  41. James KK, Krishnaprasad PS, Hasna K, Jayaraj MK (2015) Structural and optical properties of La-doped BaSnO3 thin films grown by PLD. J Phys Chem Solids 76:64–69. https://doi.org/10.1016/j.jpcs.2014.07.024

    Article  CAS  Google Scholar 

  42. Hartmann AJ, Neilson M, Lamb RN, Watanabe K, Scott JF (2000) Ruthenium oxide and strontium ruthenate electrodes for ferroelectric thin-films capacitors. Appl Phys A Mater Sci Process 70:239–242. https://doi.org/10.1007/s003390050041

    Article  CAS  Google Scholar 

  43. Yang Q, Cao J, Zhou Y, Sun L, Lou X (2016) Dead layer effect and its elimination in ferroelectric thin film with oxide electrodes. Acta Mater 112:216–223. https://doi.org/10.1016/j.actamat.2016.04.036

    Article  CAS  Google Scholar 

  44. Vijay DP (1993) Electrodes for PbZrxTi1−xO3 ferroelectric thin films. J Electrochem Soc 140:2640. https://doi.org/10.1149/1.2220877

    Article  CAS  Google Scholar 

  45. He L, Vanderbilt D (2003) First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys Rev B. 68:134103. https://doi.org/10.1103/PhysRevB.68.134103

    Article  CAS  Google Scholar 

  46. Jayadevan KP, Liu CY, Tseng TY (2005) Surface chemical and leakage current density characteristics of nanocrystalline Ag-Ba0.5Sr0.5TiO3 thin films. J Am Ceram Soc 88:2456–2460. https://doi.org/10.1111/j.1551-2916.2005.00441.x

  47. Srivastava A, Kumar D, Singh RK, Venkataraman H, Eisenstadt WR (2000) Improvement in electrical and dielectric behavior of (Ba, Sr)TiO3 thin films by Ag doping. Phys Rev B 61:7305–7307. https://doi.org/10.1103/PhysRevB.61.7305

    Article  CAS  Google Scholar 

  48. Lee SY, Tseng TY (2002) Electrical and dielectric behavior of MgO doped Ba0.7Sr0.3TiO3 thin films on Al2O3 substrate. Appl Phys Lett 80 1797. https://doi.org/10.1063/1.1458067

  49. Jayadevan KP, Tseng TY (2002) Composite and multilayer ferroelectric thin films: processing, properties and applications. J Mater Sci: Mater Electron 13:439–459. https://doi.org/10.1023/A:101612931

    Article  CAS  Google Scholar 

  50. Cross LE, Newnham RE (1987) History of ferroelectrics. Ceram Civiliz III:289–305

    Google Scholar 

  51. Kawashima S, Nishida M, Ueda I, Ouchi H (1983) Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. J Am Ceram Soc 66:421–423. https://doi.org/10.1111/j.1151-2916.1983.tb10074.x

    Article  CAS  Google Scholar 

  52. Cole MW, Joshi PC, Ervin MH (2001) La doped Ba1−xSrxTiO3 thin films for tunable device applications. J Appl Phys 89:6336. https://doi.org/10.1063/1.1366656

    Article  CAS  Google Scholar 

  53. Cole MW, Joshi PC, Ervin MH, Wood MC, Pfeffer RL (2000) The influence of Mg doping on the materials properties of Ba1−xSrxTiO3 thin films for tunable device applications. Thin Solid Films 374:34–41. https://doi.org/10.1016/S0040-6090(00)01059-2

    Article  CAS  Google Scholar 

  54. Xu Y (2013) Ferroelectric materials and their applications. Elsevier Science, Amsterdam

    Google Scholar 

  55. Weston TB, Webster AH, Mcnamara VM (1969) Lead zirconate-lead titanate piezoelectric ceramics with iron oxide additions. J Am Ceram Soc 52:253–257. https://doi.org/10.1111/j.1151-2916.1969.tb09178.x

    Article  CAS  Google Scholar 

  56. Ahn KH, Baik S, Kim SS (2002) Significant suppression of leakage current in (Ba, Sr)TiO3 thin films by Ni or Mn doping. J Appl Phys 92:2651. https://doi.org/10.1063/1.1495526

    Article  CAS  Google Scholar 

  57. Zhou Y, Xue D, Ding X, Zhang L, Sun J, Ren X (2013) Modeling the paraelectric aging effect in the acceptor doped perovskite ferroelectrics: role of oxygen vacancy. J Phys: Condens Matter 25:435901. https://doi.org/10.1088/0953-8984/25/43/435901

    Article  CAS  Google Scholar 

  58. Morrison FD, Sinclair DC, West AR (1999) Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J Appl Phys 86:6355. https://doi.org/10.1063/1.371698

    Article  CAS  Google Scholar 

  59. Sedlar M, Sayer M, Weaver L (1995) Sol-gel processing and properties of cerium doped barium strontium titanate thin films. J Sol-Gel Sci Technol 5:201–210. https://doi.org/10.1007/BF00487017

    Article  CAS  Google Scholar 

  60. Wang SY, Cheng BL, Wang C, Redfern SAT, Dai SY, Jin KJ, Lu HB, Zhou YL, Chen ZH, Yang GZ (2005) Influence of Ce doping on leakage current in Ba0.5Sr0.5TiO3 films. J Phys D Appl Phys 38:2253. https://doi.org/10.1088/0022-3727/38/13/025

  61. Kamba S, Savinov M, Laufek F, Tkáč O, Kadlec C, Veljko S, John EJ, Subodh G, Sebastian MT, Klementová M, Bovtun V, Pokorný J, Goian V, Petzelt J (2009) Ferroelectric and incipient ferroelectric properties of a novel Sr9−xPbxCe2Ti2O36 (x = 0–9) ceramic system. Chem Mater 21:811–819. https://doi.org/10.1021/cm803058q

    Article  CAS  Google Scholar 

  62. Krishnaprasad PS, Mohanan P, Subodh G, Sebastian MT, Jayaraj MK (2014) A novel Sr3Pb6Ce2Ti12O36 ferroelectric thin film grown by pulsed laser ablation. Appl Phys A 116:199–206. https://doi.org/10.1007/s00339-013-8085-5

    Article  CAS  Google Scholar 

  63. Kaiser WJ, Logothetis EM, Wenger LE (1985) Dielectric response of small metal particle composites. J Phys C: Solid State Phys 18:L837–L842. https://doi.org/10.1088/0022-3719/18/26/013

    Article  CAS  Google Scholar 

  64. Chýlek P, Srivastava V (1984) Effective dielectric constant of a metal-dielectric composite. Phys Rev B 30:1008–1009. https://doi.org/10.1103/PhysRevB.30.1008

    Article  Google Scholar 

  65. Duan N, ten Elshof JE, Verweij H, Greuel G, Dannapple O (2000) Enhancement of dielectric and ferroelectric properties by addition of Pt particles to a lead zirconate titanate matrix. Appl Phys Lett 77:3263. https://doi.org/10.1063/1.1325405

    Article  CAS  Google Scholar 

  66. Li Y, Shu L, Zhou Y, Guo J, Xiang F, He L, Wang H (2013) Enhanced flexoelectric effect in a non-ferroelectric composite. Appl Phys Lett 103:142909. https://doi.org/10.1063/1.4824168

    Article  CAS  Google Scholar 

  67. George S, James J, Sebastian MT (2007) Giant permittivity of a bismuth zinc niobate-silver composite. J Am Ceram Soc 90:3522–3528. https://doi.org/10.1111/j.1551-2916.2007.01935.x

    Article  CAS  Google Scholar 

  68. Huang J, Cao Y, Hong M, Du P (2008) Ag–Ba0.75Sr0.25TiO3 composites with excellent dielectric properties. Appl Phys Lett 92:90–93. https://doi.org/10.1063/1.2836764

  69. Hwang HJ, Nagai T, Ohji T, Sando M, Toriyama M, Niihara K (2005) Curie temperature anomaly in lead zirconate titanate/silver composites. J Am Ceram Soc 81:709–712. https://doi.org/10.1111/j.1151-2916.1998.tb02394.x

    Article  Google Scholar 

  70. Xiang PH, Dong XL, Feng C De, Liang RH, Wang YL (2006) Dielectric behavior of lead zirconate titanate/silver composites. Mater Chem Phys 97:410–414. https://doi.org/10.1016/j.matchemphys.2005.08.034

    Article  CAS  Google Scholar 

  71. Jayadevan KP, Liu CY, Tseng TY (2004) Dielectric characteristics of nanocrystalline Ag–Ba0.5Sr0.5TiO3 composite thin films. Appl Phys Lett 85:1211. https://doi.org/10.1063/1.1780596

  72. Joshi PC, Cole MW (2000) Mg-doped Ba0.6Sr0.4TiO3 thin films for tunable microwave applications. Appl Phys Lett 77:289. https://doi.org/10.1063/1.126953

  73. Narayan J, Larson B (2003) Domain epitaxy: a unified paradigm for thin film growth. J Appl Phys 93:278–285. https://doi.org/10.1063/1.1528301

    Article  CAS  Google Scholar 

  74. Maissel LI, Glang R (1970) Handbook of thin film technology. McGraw-Hill, New York

    Google Scholar 

  75. Frank FC, van der Merwe JH (1949) One-dimensional dislocations. I. Static theory. Proc R Soc Lond A Math Phys Sci 198:205–216. https://doi.org/10.2307/98165

  76. Stevens BL, Cohen DJ, Barnett SA (2008) Structure and interdiffusion of epitaxial ZnO∕ZnMgO nanolayered thin films. J Vac Sci Technol A: Vacuum, Surfaces, Film 26:1538. https://doi.org/10.1116/1.2993257

  77. Yano M, Ogata K, Yan F, Koike K, Sasa S, Inoue M (2002) ZnO and ZnMgO growth by molecular beam epitaxy. MRS Proc 744, M3.1. https://doi.org/10.1557/proc-744-m3.1

  78. Vispute RD, Talyansky V, Choopun S, Sharma RP, Venkatesan T, He M, Tang X, Halpern JB, Spencer MG, Li YX, Salamanca-Riba LG, Iliadis AA, Jones KA (1998) Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl Phys Lett 73:348. https://doi.org/10.1063/1.121830

    Article  CAS  Google Scholar 

  79. Visinoiu A, Scholz R, Chattopadhyay S, Alexe M, Hesse D (2002) Formation of epitaxial BaTiO3/SrTiO3 multilayers grown on Nb-doped SrTiO3(001) substrates. Jpn J Appl Phys 41:6633

    Article  CAS  Google Scholar 

  80. Shimoyama K, Kiyohara M, Kubo K, Uedono A, Yamabe K (2002) Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate. J Appl Phys 92:4625. https://doi.org/10.1063/1.1506196

    Article  CAS  Google Scholar 

  81. Jin C (2003) Growth and characterization of ZnO and ZnO based alloys MgxZn1−xO and MnxZn1−xO

    Google Scholar 

  82. Tuoc VN (2008) First principle study on the domain matching epitaxy growth of semiconductor hetero-interface. Mater Trans 49:2491–2496. https://doi.org/10.2320/matertrans.MB200818

    Article  CAS  Google Scholar 

  83. Vispute RD, Chowdhury R, Tiwari P, Narayan J (1994) Pulsed laser deposition and characterization of epitaxial Cu/TiN/Si(100) heterostructures. Appl Phys Lett 65:2565–2567. https://doi.org/10.1063/1.112994

    Article  CAS  Google Scholar 

  84. Zheleva T, Jagannadham K, Narayan J (1994) Epitaxial growth in large-lattice-mismatch systems. J Appl Phys 75:860–871. https://doi.org/10.1063/1.356440

    Article  CAS  Google Scholar 

  85. Narayan J, Dovidenko K, Sharma AK, Oktyabrsky S (1998) Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures. J Appl Phys 84:2597. https://doi.org/10.1063/1.368440

  86. Vispute RD, Wu H, Narayan J (1995) High quality epitaxial aluminum nitride layers on sapphire by pulsed laser deposition. Appl Phys Lett 67:1549. https://doi.org/10.1063/1.114489

    Article  CAS  Google Scholar 

  87. Vispute RD, Narayan J, Dovidenko K, Jagannadham K, Parikh N, Suvkhanov A, Budai JD (1996) Heteroepitaxial structures of SrTiO3/TiN on Si(100) by in situ pulsed laser deposition. J Appl Phys 80:6720. https://doi.org/10.1063/1.363798

  88. Sánchez F, Bachelet R, de Coux P, Warot-Fonrose B, Skumryev V, Tarnawska L, Zaumseil P, Schroeder T, Fontcuberta J (2011) Domain matching epitaxy of ferrimagnetic CoFe2O4 thin films on Sc2O3/Si(111). Appl Phys Lett 99:211910. https://doi.org/10.1063/1.3663216

    Article  CAS  Google Scholar 

  89. Liu W-R, Li Y-H, Hsieh WF, Hsu C-H, Lee WC, Lee YJ, Hong M, Kwo J (2009) Domain matching epitaxial growth of high-quality ZnO film using a YO buffer layer on Si(111). Cryst Growth Des 9:239–242. https://doi.org/10.1021/cg8003849

    Article  CAS  Google Scholar 

  90. Zhang KHL, Lazarov VK, Galindo PL, Oropeza FE, Payne DJ, Egdell RG (2012) Domain matching epitaxial growth of In2O3 thin films on α-Al2O3(0001). Cryst Growth Des 12:1000–1007. https://doi.org/10.1021/cg201474h

    Article  CAS  Google Scholar 

  91. Zhuang L, Wong KH, Pang GKH (2007) Domain matching epitaxy of cubic MgxZn1−xO films on LaAlO3 by pulsed laser deposition. Appl Phys A Mater Sci Process 89:543–546. https://doi.org/10.1007/s00339-007-4121-7

    Article  CAS  Google Scholar 

  92. Song YH, Son JH, Yu HK, Lee JH, Jung GH, Lee JY, Lee JL (2011) Domain matching epitaxy of Mg-containing Ag contact on p-type GaN. Cryst Growth Des 11:2559–2563. https://doi.org/10.1021/cg200323h

    Article  CAS  Google Scholar 

  93. Ezhilvalavan S, Tseng TY (2000) Progress in the developments of (Ba, Sr)TiO3 (BST) thin films for Gigabit era DRAMs. Mater Chem Phys 65:227–248. https://doi.org/10.1016/S0254-0584(00)00253-4

    Article  CAS  Google Scholar 

  94. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park NY, Stephenson GB, Stolitchnov I, Taganstev AK, Taylor DV, Yamada T, Streiffer S (2006) Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 100:051606. https://doi.org/10.1063/1.2336999

  95. Vélu G, Blary K, Burgnies L, Marteau A, Houzet G, Lippens D, Carru J (2007) A 360 BST phase shifter with moderate bias voltage at 30 GHz. IEEE Trans Microw Theory Techn 55:438–444. https://doi.org/10.1109/TMTT.2006.889319

    Article  CAS  Google Scholar 

  96. Van Keuls FW, Romanofsky RR, Bohman DY, Winters MD, Miranda FA, Mueller CH, Treece RE, Rivkin TV, Galt D (1997) (YBa2Cu3O7−δ,Au)/SrTiO3/LaAlO3 thin film conductor/ferroelectric coupled microstrip line phase shifters for phased array applications. Appl Phys Lett 71:3075. https://doi.org/10.1063/1.120251

  97. Basmajian JA, Devries RC (1957) Phase equilibria in the system BaTiO3–SrTiO3. J Am Ceram Soc 40:373–376. https://doi.org/10.1111/j.1151-2916.1957.tb12556.x

    Article  CAS  Google Scholar 

  98. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2005) Permittivity, tunability and loss in ferroelectrics for reconfigurable high frequency electronics. Springer Science, Heidelberg

    Google Scholar 

  99. Panda B, Dhar A, Nigam GD, Bhattacharya D, Ray SK (1998) Optical properties of RF sputtered strontium substituted barium titanate thin films. Thin Solid Films 332:46–49. https://doi.org/10.1016/S0040-6090(98)01012-8

    Article  CAS  Google Scholar 

  100. Cheng HF (1996) Structural and optical properties of laser deposited ferroelectric (Sr0.2 Ba0.8)TiO3 thin films. J Appl Phys 79:7965. https://doi.org/10.1063/1.362346

  101. Adikary SU, Chan HLW (2003) Ferroelectric and dielectric properties of sol–gel derived BaxSr1−xTiO3 thin films. Thin Solid Films 424:70–74. https://doi.org/10.1016/S0040-6090(02)00918-5

    Article  CAS  Google Scholar 

  102. Roy D, Krupanidhi SB (1993) Excimer laser ablated barium strontium titanate thin films for dynamic random access memory applications. Appl Phys Lett 62:1056–1058. https://doi.org/10.1063/1.108793

    Article  CAS  Google Scholar 

  103. Knauss LA, Pond JM, Horwitz JS, Chrisey DB, Mueller CH, Treece R (1996) The effect of annealing on the structure and dielectric properties of BaxSr1−xTiO3 ferroelectric thin films. Appl Phys Lett 69:25. https://doi.org/10.1063/1.118106

    Article  CAS  Google Scholar 

  104. Tarsa EJ, Hachfeld EA, Quinlan FT, Speck JS, Eddy M (1996) Growth-related stress and surface morphology in homoepitaxial SrTiO3 films. Appl Phys Lett 68:490. https://doi.org/10.1063/1.116376

    Article  CAS  Google Scholar 

  105. Chen CL, Shen J, Chen SY, Luo GP, Chu CW, Miranda FA, Van Keuls FW, Jiang JC, Meletis EI, Chang HY (2001) Epitaxial growth of dielectric Ba0.6Sr0.4TiO3 thin film on MgO for room temperature microwave phase shifters. Appl Phys Lett 78:652–654. https://doi.org/10.1063/1.1343499

  106. Zhu X, Zhu J, Zhou S, Liu Z, Ming N, Lu S, Chan HL-W, Choy C-L (2003) Recent progress of (Ba,Sr)TiO3 thin films for tunable microwave devices. J Electron Mater 32:1125–1134. https://doi.org/10.1007/s11664-003-0098-y

    Article  CAS  Google Scholar 

  107. Kim WJ, Wu HD, Chang W, Qadri SB, Pond JM, Kirchoefer SW, Chrisey DB, Horwitz JS (2000) Microwave dielectric properties of strained (Ba0.4Sr0.6)TiO3 thin films. J Appl Phys 88:5448. https://doi.org/10.1063/1.1314619

  108. Sirenko AA, Bernhard C, Golnik A, Clark AM, Hao J, Si W, Xi XX (2000) Soft-mode hardening in SrTiO3 thin films. Nature 404:373–376. https://doi.org/10.1038/35006023

    Article  CAS  Google Scholar 

  109. Chang W, Horwitz JS, Carter AC, Pond JM, Kirchoefer SW, Gilmore CM, Chrisey DB (1999) The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films. Appl Phys Lett 74:1033. https://doi.org/10.1063/1.123446

  110. Sirenko AA, Akimov IA, Fox JR, Clark AM, Li H-C, Si W, Xi XX (1999) Observation of the first-order Raman scattering in SrTiO3 thin films. Phys Rev Lett 82:4500–4503. https://doi.org/10.1103/PhysRevLett.82.4500

    Article  CAS  Google Scholar 

  111. Natori K, Otani D, Sano N (1998) Thickness dependence of the effective dielectric constant in a thin film capacitor. Appl Phys Lett 73:632. https://doi.org/10.1063/1.121930

    Article  CAS  Google Scholar 

  112. Kang BS, Lee J-S, Stan L, Lee J-K, DePaula RF, Arendt PN, Nastasi M, Jia QX (2004) Dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films on SiO2∕Si using biaxially oriented ion-beam-assisted-deposited MgO as templates. Appl Phys Lett 85:4702. https://doi.org/10.1063/1.1812573

  113. Park BH, Peterson EJ, Jia QX, Lee J, Zeng X, Si W, Xi XX (2001) Effects of very thin strain layers on dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films. Appl Phys Lett 78:533. https://doi.org/10.1063/1.1340863

  114. Liu H, Avrutin V, Zhu C, Özgür U, Yang J, Lu C, Morkoç H (2013) Enhanced microwave dielectric tunability of Ba0.5Sr0.5TiO3 thin films grown with reduced strain on DyScO3 substrates by three-step technique. J Appl Phys 113:044108. https://doi.org/10.1063/1.4789008

  115. Zhu X, Chong N, Chan HL-W, Choy C-L, Wong K-H, Liu Z, Ming N (2002) Epitaxial growth and planar dielectric properties of compositionally graded (Ba1−x Srx)TiO3 thin films prepared by pulsed-laser deposition. Appl Phys Lett 80:3376. https://doi.org/10.1063/1.1475367

    Article  CAS  Google Scholar 

  116. Xiao B, Liu H, Avrutin V, Leach JH, Rowe E, Liu H, Özgür Ü, Morkoç H, Chang W, Alldredge LMB, Kirchoefer SW, Pond JM (2009) Epitaxial growth of (001)-oriented Ba0.5Sr0.5TiO3 thin films on a-plane sapphire with an MgO/ZnO bridge layer. Appl Phys Lett 95:210–212. https://doi.org/10.1063/1.3266862

  117. Yamada T, Muralt P, Sherman VO, Sandu CS, Setter N (2007) Epitaxial growth of Ba0.3Sr0.7TiO3 thin films on Al2O3(0001) using ultrathin TiN layer as a sacrificial template. Appl Phys Lett 90:142911. https://doi.org/10.1063/1.2719673

  118. Park BH, Gim Y, Fan Y, Jia QX, Lu P (2000) High nonlinearity of Ba0.6Sr0.4TiO3 films heteroepitaxially grown on MgO substrates. Appl Phys Lett 77:2587. https://doi.org/10.1063/1.1318233

  119. Yang Z, Hao J (2012) In-plane dielectric properties of epitaxial Ba0.7Sr0.3TiO3 thin films grown on GaAs for tunable device application. J Appl Phys 112:054110. https://doi.org/10.1063/1.4749270

  120. Carlson CM, Rivkin TV, Parilla PA, Perkins JD, Ginley DS, Kozyrev AB, Oshadchy VN, Pavlov AS (2000) Large dielectric constant (ɛ/ɛ0 > 6000) Ba0.4Sr0.6TiO3 thin films for high-performance microwave phase shifters. Appl Phys Lett 76:1920. https://doi.org/10.1063/1.126212

  121. Leach JH, Liu H, Avrutin V, Xiao B, Özgür Ü, Morko̧ H, Das J, Song YY, Patton CE (2010) Large dielectric tuning and microwave phase shift at low electric field in epitaxial Ba0.5Sr0.5TiO3 on SrTiO3. J Appl Phys 107:10–15. https://doi.org/10.1063/1.3359707

  122. Zhou XY, Heindl T, Pang GKH, Miao J, Zheng RK, Chan HLW, Choy CL, Wang Y (2006) Microstructure and enhanced in-plane ferroelectricity of Ba0.7Sr0.3TiO3 thin films grown on MgAl2O4(001) single-crystal substrate. Appl Phys Lett 89:232906. https://doi.org/10.1063/1.2402900

  123. Yang L, Ponchel F, Wang G, Rémiens D, Légier J-F, Chateigner D, Dong X (2010) Microwave properties of epitaxial (111)-oriented Ba0.6Sr0.4TiO3 thin films on Al2O3(0001) up to 40 GHz. Appl Phys Lett 97:162909. https://doi.org/10.1063/1.3478015

  124. Lin Y, Lee J-S, Wang H, Li Y, Foltyn SR, Jia QX, Collis GE, Burrell AK, McCleskey TM (2004) Structural and dielectric properties of epitaxial Ba1−xSrxTiO3 films grown on LaAlO3 substrates by polymer-assisted deposition. Appl Phys Lett 85:5007. https://doi.org/10.1063/1.1827927

  125. Qin WF, Xiong J, Zhu J, Tang JL, Jie WJ, Wei XH, Zhang Y, Li YR (2007) Fabrication and characterization of epitaxial Ba0.6Sr0.4TiO3/LaNiO3 heterostructures. J Mater Sci Mater Electron 18:973–976. https://doi.org/10.1007/s10854-007-9150-7

  126. Kim J, Choi JS, Park BH (2005) Low-temperature growth of epitaxial Ba0.5Sr0.5TiO3 films applicable to microwave tunable devices. J Korean Phys Soc 46:183–185

    Google Scholar 

  127. Zhu X, Zheng D, Peng W, Miao J, Li J (2004) Structural and electrical properties of epitaxial Ba0.5Sr0.5TiO3/SrRuO3 heterostructures grown by pulsed laser deposition. J Cryst Growth 268:192–197. https://doi.org/10.1016/j.jcrysgro.2004.04.112

  128. Li H, Finder J, Liang Y, Gregory R, Qin W (2005) Dielectric properties of epitaxial Ba0.5Sr0.5TiO3 films on amorphous SiO2 on sapphire. Appl Phys Lett 87:072905. https://doi.org/10.1063/1.2011774

  129. Fardin EA, Holland AS, Ghorbani K, Reichart P (2006) Enhanced tunability of magnetron sputtered Ba0.5Sr0.5TiO3 thin films on c-plane sapphire substrates. Appl Phys Lett 89:022901. https://doi.org/10.1063/1.2220530

  130. Lu SG, Zhu XH, Mak CL, Wong KH, Chan HLW, Choy CL (2003) High tunability in compositionally graded epitaxial barium strontium titanate thin films by pulsed-laser deposition. Appl Phys Lett 82:2877–2879. https://doi.org/10.1063/1.1569427

    Article  CAS  Google Scholar 

  131. Choi W, Kang BS, Jia QX, Matias V, Findikoglu AT (2006) Dielectric properties of ⟨001⟩-oriented Ba0.6Sr0.4TiO3 thin films on polycrystalline metal tapes using biaxially oriented MgO∕γ-Al2O3 buffer layers. Appl Phys Lett 88:062907. https://doi.org/10.1063/1.2173232

  132. Moon SE, Kim EK, Kwak MH, Ryu HC, Kim YT, Kang KY, Lee SJ, Kim WJ (2003) Orientation dependent microwave dielectric properties of ferroelectric Ba1−xSrxTiO3 thin films. Appl Phys Lett 83:2166–2168. https://doi.org/10.1063/1.1609658

    Article  CAS  Google Scholar 

  133. Cho CR, Hwang JY, Kim JP, Jeong SY, Yoon SG, Lee WJ (2004) Growth and characterization of (Ba0.5Sr0.5)TiO3 films epitaxially grown on (002) GaN/(0006) Al2O3 electrode. Jpn J Appl Phys 43:L1425–L1428. https://doi.org/10.1143/jjap.43.l1425

  134. Fewster PF (2003) X ray scattering from semiconductors. Imperial College Press, Covent Garden, London

    Book  Google Scholar 

  135. Tachibana T, Yokota Y, Kobashi K, Shintani Y (1997) X-ray diffraction pole figure measurements of diamond films grown on platinum(111). J Appl Phys 82:4327. https://doi.org/10.1063/1.366240

    Article  CAS  Google Scholar 

  136. Alldredge LMB, Chang W, Qadri SB, Kirchoefer SW, Pond JM (2007) Ferroelectric and paraelectric Ba0.5Sr0.5TiO3 film structure distortions at room temperature and their effects on tunable microwave properties. Appl Phys Lett 90:212901. https://doi.org/10.1063/1.2741610

  137. Cao LZ, Fu WY, Wang SF, Wang Q, Sun ZH, Yang H, Cheng BL, Wang H, Zhou YL (2007) Effects of film thickness and preferred orientation on the dielectric properties of (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 films. J Phys D Appl Phys 40:2906–2910. https://doi.org/10.1088/0022-3727/40/9/036

  138. Lu J, Stemmer S (2003) Low-loss, tunable bismuth zinc niobate films deposited by rf magnetron sputtering. Appl Phys Lett 83:2411–2413. https://doi.org/10.1063/1.1613036

    Article  CAS  Google Scholar 

  139. Ren W, Trolier-McKinstry S, Randall CA, Shrout TR (2001) Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications. J Appl Phys 89:767. https://doi.org/10.1063/1.1328408

    Article  CAS  Google Scholar 

  140. Zhu X, Zhu J, Zhou S, Liu Z, Ming N, Chan HL-W, Choy C-L, Wong K (2008) Epitaxial growth, dielectric response, and microstructure of compositionally graded (Ba,Sr)TiO3 thin films grown on (100) MgO substrates by pulsed laser deposition. J Mater Res 23:737–744. https://doi.org/10.1557/JMR.2008.0086

    Article  CAS  Google Scholar 

  141. Ramesh R (2013) Thin film ferroelectric materials and devices. Springer, New York

    Google Scholar 

  142. Pertsev NA, Koukhar VG (2000) Polarization instability in polydomain ferroelectric epitaxial thin films and the formation of heterophase structures. Phys Rev Lett 84:3722–3725. https://doi.org/10.1103/PhysRevLett.84.3722

    Article  CAS  Google Scholar 

  143. Li YL, Choudhury S, Liu ZK, Chen LQ (2003) Effect of external mechanical constraints on the phase diagram of epitaxial PbZr1−xTixO3 thin films—thermodynamic calculations and phase-field simulations. Appl Phys Lett 83:1608. https://doi.org/10.1063/1.1600824

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnaprasad, P.S., Jayaraj, M.K. (2020). Domain Matched Epitaxial Growth of Dielectric Thin Films. In: Jayaraj, M. (eds) Nanostructured Metal Oxides and Devices. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-3314-3_9

Download citation

Publish with us

Policies and ethics