Skip to main content

The Role of Fitness Status in the Performance-Enhancing Effects of Dietary Inorganic Nitrate Supplementation: Meta-analysis and Meta-regression Analysis

  • Conference paper
  • First Online:
Enhancing Health and Sports Performance by Design (MoHE 2019)

Abstract

A systematic evaluation of current evidence was conducted to clarify the potential of training status to influence the exercise performance enhancing (ergogenic) effect of dietary inorganic nitrate supplementation. Studies were located via PubMed, ProQuest and SPORTDiscus electronic databases reported according to the guidelines outlined in the statement of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Thirty-four studies met the inclusion criteria (70 trials). Random-effects meta-analyses was conducted, and meta-regressions were performed in a model with a priori potential moderator variables. Subgroup analysis revealed that NO3 supplementation was ergogenic in the lowest fitness category (i.e. \( \dot{V}\text{o}_{{2{ \hbox{max} }}} \) < 55.0 ml·kg−1·min−1) [standardized mean difference (SMD) = 0.17 (95% CI: 0.07 to 0.27, p = 0.001], but elicited no significant effect in the upper realms of fitness category (\( \dot{V}\text{o}_{{2{ \hbox{max} }}} \) > 55.0 ml·kg−1·min−1) p > 0.05). Meta-regression revealed that baseline \( \dot{V}\text{o}_{{2{ \hbox{max} }}} \) and supplementation duration was negatively (R2 = −0.11, 95% CI: −0.02 to −0.00, p = 0.035) and positively (R2 = 0.40, 95% CI: 0.00 to 0.05, p = 0.047) associated with the mean performance change between NO3 and control condition, respectively. The current analysis indicates that NO3 supplementation can enhance exercise performance with an ergogenic effect more likely in untrained subjects and as the duration of supplementation increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, S.J., Winyard, P.G., Vanhatalo, A., Blackwell, J.R., DiMenna, F.J., Wilkerson, D.P., Jones, A.M.: Acute L-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. J. Appl. Physiol. 109(5), 1394–1403 (2010). https://doi.org/10.1152/japplphysiol.00503.2010

    Article  Google Scholar 

  2. Wylie, L.J., Mohr, M., Krustrup, P., Jackman, S.R., Ermιdis, G., Kelly, J., Black, M.I., Bailey, S.J., Vanhatalo, A., Jones, A.M.: Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur. J. Appl. Physiol. 113(7), 1673–1684 (2013). https://doi.org/10.1007/s00421-013-2589-8

    Article  Google Scholar 

  3. Nisoli, E., Carruba, M.O.: Nitric oxide and mitochondrial biogenesis. J. Cell Sci. 119, 2855–2862 (2006). https://doi.org/10.1242/jcs.03062

    Article  Google Scholar 

  4. Merry, T.L., Lynch, G.S., McConell, G.K.: Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 299(6), R1656–1665 (2010). https://doi.org/10.1152/ajpregu.00433.2010

    Article  Google Scholar 

  5. Hart, J.D.E., Dulhunty, A.F.: Nitric oxide activates or inhibits skeletal muscle ryanodine receptors depending on its concentration, membrane potential and ligand binding. J. Membr. Biol. 173(3), 227 (2000). https://doi.org/10.1007/s002320001022

    Article  Google Scholar 

  6. Lundberg, J.O., Weitzberg, E., Gladwin, M.T.: The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 (2008). https://doi.org/10.1038/nrd2466

    Article  Google Scholar 

  7. Jones, A.M.: Dietary nitrate supplementation and exercise performance. Sports Med. 44(Suppl. 1), 1–24 (2014). https://doi.org/10.1007/s40279-014-0149-y

    Article  Google Scholar 

  8. Dreißigacker, U., Wendt, M., Wittke, T., Tsikas, D., Maassen, N.: Positive correlation between plasma nitrite and performance during high-intensive exercise but not oxidative stress in healthy men. Nitric Oxide-Biol. Chem. (2010). https://doi.org/10.1016/j.niox.2010.05.003

    Article  Google Scholar 

  9. Rassaf, T., Lauer, T., Heiss, C., Balzer, J., Mangold, S., Leyendecker, T., Rottler, J., Drexhage, C., Meyer, C., Kelm, M.: Nitric oxide synthase-derived plasma nitrite predicts exercise capacity. Br. J. Sports Med. 41, 669–673 (2007). https://doi.org/10.1136/bjsm.2007.035758

    Article  Google Scholar 

  10. Kelly, J., Vanhatalo, A., Wilkerson, D.P., Wylie, L.J., Jones, A.M.: Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med. Sci. Sports Exerc. 45, 1798–1806 (2013). https://doi.org/10.1249/MSS.0b013e31828e885c

    Article  Google Scholar 

  11. Bailey, S.J., Winyard, P., Vanhatalo, A., Blackwell, J.R., Dimenna, F.J., Wilkerson, D.P., Tarr, J., Benjamin, N., Jones, A.M.: Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. (Bethesda, Md.: 1985) 107(4), 1144–1155 (2009). https://doi.org/10.1152/japplphysiol.00722.2009

  12. Thompson, K.G., Turner, L., Prichard, J., Dodd, F., Kennedy, D.O., Haskell, C., Blackwell, J.R., Jones, A.M.: Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir. Physiol. Neurobiol. 193(1), 11–20 (2014)

    Article  Google Scholar 

  13. Porcelli, S., Ramaglia, M., Bellistri, G., Pavei, G., Pugliese, L., Montorsi, M., Rasica, L., Marzorati, M.: Aerobic fitness affects the exercise performance responses to nitrate supplementation. Med. Sci. Sports Exerc. 47(8), 1643–1651 (2015). https://doi.org/10.1249/mss.0000000000000577

  14. Vanhatalo, A., Bailey, S.J., Blackwell, J.R., DiMenna, F.J., Pavey, T.G., Wilkerson, D.P., Benjamin, N., Winyard, P.G., Jones, A.M.: Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 299(4), R1121–R1131 (2010). https://doi.org/10.1152/ajpregu.00206.2010

    Article  Google Scholar 

  15. Boorsma, R.K., Whitfield, J., Spriet, L.L.: Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med. Sci. Sports Exerc. (2014). https://doi.org/10.1249/MSS.0000000000000364

    Article  Google Scholar 

  16. Callahan, M.J., Parr, E.B., Hawley, J.A., Burke, L.M.: Single and combined effects of beetroot crystals and sodium bicarbonate on 4-km cycling time trial performance. Int. J. Sport Nutr. Exerc. Metab. 27(3), 271–278 (2017). https://doi.org/10.1123/ijsnem.2016-0228

    Article  Google Scholar 

  17. Bescós, R., Rodríguez, F.A., Iglesias, X., Ferrer, M.D., Iborra, E., Pons, A.: Acute administration of inorganic nitrate reduces VO2peak in endurance athletes. Med. Sci. Sports Exerc. 43(10), 1979–1986 (2011). https://doi.org/10.1249/MSS.0b013e318217d439

    Article  Google Scholar 

  18. Muggeridge, D.J., Howe, C.C.F., Spendiff, O., Pedlar, C., James, P.E., Easton, C.: The effects of a single dose of concentrated beetroot juice on performance in trained flatwater Kayakers. Int. J. Sport Nutr. Exerc. Metab. 23(5), 498–506 (2013). https://doi.org/10.1123/ijsnem.23.5.498

    Article  Google Scholar 

  19. Campos, H.O., Drummond, L.R., Rodrigues, Q.T., Machado, F.S.M., Pires, W., Wanner, S.P., Coimbra, C.C.: Nitrate supplementation improves physical performance specifically in non-athletes during prolonged open-ended tests: a systematic review and meta-analysis. Br. J. Nutr. 116, 636–657 (2018). https://doi.org/10.1017/s0007114518000132

    Article  Google Scholar 

  20. McMahon, N.F., Leveritt, M.D., Pavey, T.G.: The effect of dietary nitrate supplementation on endurance exercise performance in healthy adults: a systematic review and meta-analysis. Sports Med. 47, 735–756 (2017). https://doi.org/10.1007/s40279-016-0617-7

    Article  Google Scholar 

  21. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., Whitlock, E.: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Revista Espanola de Nutricion Humana y Dietetica 4, 1 (2016). https://doi.org/10.1186/2046-4053-4-1

    Article  Google Scholar 

  22. WHO: Primary Registries: WHO. World Health Organization. https://www.who.int/ictrp/network/primary/en/ (2019). Accessed 30 May 2019

  23. Decroix, L., De Pauw, K., Foster, C., Meeusen, R.: Guidelines to classify female subject groups in sport-science research. Int. J. Sports Physiol. Perform. 11, 204–213 (2016). https://doi.org/10.1123/ijspp.2015-0153

    Article  Google Scholar 

  24. Aucouturier, J., Boissière, J., Pawlak-Chaouch, M., Cuvelier, G., Gamelin, F.X.: Effect of dietary nitrate supplementation on tolerance to supramaximal intensity intermittent exercise. Nitric Oxide-Biol. Chem. 49, 16–25 (2015). https://doi.org/10.1016/j.niox.2015.05.004

    Article  Google Scholar 

  25. Bailey, S.J., Fulford, J., Vanhatalo, A., Winyard, P.G., Blackwell, J.R., DiMenna, F.J., Wilkerson, D.P., Benjamin, N., Jones, A.M.: Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 109(1), 135–148 (2010). https://doi.org/10.1152/japplphysiol.00046.2010

    Article  Google Scholar 

  26. Christensen, P.M., Petersen, N.K., Friis, S.N., Weitzberg, E., Nybo, L.: Effects of nitrate supplementation in trained and untrained muscle are modest with initial high plasma nitrite levels. Scand. J. Med. Sci. Sports 27(12), 1616–1626 (2017). https://doi.org/10.1111/sms.12848

    Article  Google Scholar 

  27. Rienks, J.N., Vanderwoude, A.A., Maas, E., Blea, Z.M., Subudhi, A.W.: Effect of beetroot juice on moderate-intensity exercise at a constant rating of perceived exertion. Int. J. Exerc. Sci. 8(3), 277–286 (2015)

    Google Scholar 

  28. Thompson, C., Wylie, L., Fulford, J., Kelly, J., Black, M., McDonagh, S., Jeukendrup, A., Vanhatalo, A., Jones, A.: Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur. J. Appl. Physiol. 115(9), 1825–1834 (2015)

    Article  Google Scholar 

  29. Glaister, M., Pattison, J.R., Muniz-Pumares, D., Patterson, S.D., Foley, P.: Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J. Strength Cond. Res. 29(1), 165–174 (2015). https://doi.org/10.1519/JSC.0000000000000596

    Article  Google Scholar 

  30. Kramer, S.J., Baur, D.A., Spicer, M.T., Vukovich, M.D., Ormsbee, M.J.: The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes. J. Int. Soc. Sports Nutr. 13(1), 39 (2016). https://doi.org/10.1186/s12970-016-0150-y

    Article  Google Scholar 

  31. Martin, K., Smee, D., Thompson, K.G., Rattray, B.: No improvement of repeated-sprint performance with dietary nitrate. Int. J. Sports Physiol. Perform. 9(5), 845–850 (2014)

    Article  Google Scholar 

  32. Peeling, P., Cox, G.R., Bullock, N., Burke, L.M.: Beetroot juice improves on-water 500 m time-trial performance, and laboratory-based paddling economy in national and international-level Kayak athletes. Int. J. Sport Nutr. Exerc. Metab. 25(3), 278–284 (2015)

    Article  Google Scholar 

  33. Lansley, K.E., Winyard, P.G., Fulford, J., Vanhatalo, A., Bailey, S.J., Blackwell, J.R., DiMenna, F.J., Gilchrist, M., Benjamin, N., Jones, A.M.: Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J. Appl. Physiol. (Bethesda, Md. : 1985), 110(3), 591–600 (2011). https://doi.org/10.1152/japplphysiol.01070.2010

  34. Vasconcellos, J., Henrique Silvestre, D., dos Santos Baião, D., Werneck-de-Castro, J.P., Silveira Alvares, T., Paschoalin, V.M.F.: A single dose of beetroot gel rich in nitrate does not improve performance but lowers blood glucose in physically active individuals. J. Nutr. Metab. 2017(2), 1–9 (2017). https://doi.org/10.1155/2017/7853034

    Article  Google Scholar 

  35. Wylie, L.J., Bailey, S.J., Kelly, J., Blackwell, J.R., Vanhatalo, A., Jones, A.M.: Influence of beetroot juice supplementation on intermittent exercise performance. Eur. J. Appl. Physiol. 116(2), 415–425 (2016). https://doi.org/10.1007/s00421-015-3296-4

    Article  Google Scholar 

  36. Cermak, N.M., Gibala, M.J., van Loon, L.J.C.: Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int. J. Sport Nutr. Exerc. Metab. 22(1), 64–71 (2012). https://doi.org/10.1123/ijsnem.22.1.64

    Article  Google Scholar 

  37. Cermak, N.M., Res, P., Stinkens, R., Lundberg, J.O., Gibala, M.J., Van Loon, L.J.C.: No improvement in endurance performance after a single dose of beetroot juice. Int. J. Sport Nutr. Exerc. Metab. (2012). https://doi.org/10.1123/ijsnem.22.6.470

    Article  Google Scholar 

  38. Lane, S.C., Hawley, J.A., Desbrow, B., Jones, A.M., Blackwell, J.R., Ross, M.L., Zemski, A.J., Burke, L.M.: Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl. Physiol. Nutr. Metab. 39(9), 1050–1057 (2014). https://doi.org/10.1139/apnm-2013-0336

    Article  Google Scholar 

  39. Lansley, K.E., Winyard, P.G., Bailey, S.J., Vanhatalo, A., Wilkerson, D.P., Blackwell, J.R., Gilchrist, M., Benjamin, N., Jones, A.M.: Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports Exerc. 43(6), 1125–1131 (2011). https://doi.org/10.1249/MSS.0b013e31821597b4

    Article  Google Scholar 

  40. McQuillan, J.A., Dulson, D.K., Laursen, P.B., Kilding, A.E.: The effect of dietary nitrate supplementation on physiology and performance in trained cyclists. Int. J. Sports Physiol. Perform. 12(5), 684–689 (2017). https://doi.org/10.1123/ijspp.2016-0202

    Article  Google Scholar 

  41. Shannon, O.M., Barlow, M.J., Duckworth, L., Williams, E., Wort, G., Woods, D., Siervo, M., O’Hara, J.P.: Dietary nitrate supplementation enhances short but not longer duration running time-trial performance. Eur. J. Appl. Physiol. 117(4), 775–785 (2017). https://doi.org/10.1007/s00421-017-3580-6

    Article  Google Scholar 

  42. Wilkerson, D.P., Hayward, G.M., Bailey, S.J., Vanhatalo, A., Blackwell, J.R., Jones, A.M.: Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur. J. Appl. Physiol. 112(12), 4127–4134 (2012). https://doi.org/10.1007/s00421-012-2397-6

    Article  Google Scholar 

  43. McQuillan, J.A., Dulson, D.K., Laursen, P.B., Kilding, A.E.: Dietary nitrate fails to improve 1 and 4 km cycling performance in highly trained cyclists. Int. J. Sport Nutr. Exerc. Metab. (2017). https://doi.org/10.1123/ijsnem.2016-0212

    Article  Google Scholar 

  44. Nyakayiru, J.M., Jonvik, K.L., Pinckaers, P.J.M., Senden, J., Van Loon, L.J.C., Verdijk, L.B.: No effect of acute and 6-Day nitrate supplementation on VO2 and time-Trial performance in highly trained cyclists. Int. J. Sport Nutr. Exerc. Metab. (2017). https://doi.org/10.1123/ijsnem.2016-0034

    Article  Google Scholar 

  45. Peacock, O., Tjønna, A.E., James, P., Wisløff, U., Welde, B., Böhlke, N., Smith, A., Stokes, K., Cook, C., Sandbakk, Ø.: Dietary nitrate does not enhance running performance in elite cross-country skiers. Med. Sci. Sport. Exerc. 44(11), 2213–2219 (2012). https://doi.org/10.1249/MSS.0b013e3182640f48

    Article  Google Scholar 

  46. Christensen, P.M., Nyberg, M., Bangsbo, J.: Influence of nitrate supplementation on VO 2 kinetics and endurance of elite cyclists. Scand. J. Med. Sci. Sport. 23(1), e21–e31 (2013). https://doi.org/10.1111/sms.12005

    Article  Google Scholar 

  47. McConell, G.K., Bradley, S.J., Stephens, T.J., Canny, B.J., Kingwell, B.A., Lee-Young, R.S.: Skeletal muscle nNOSμ protein content is increased by exercise training in humans. Am. J. Physiol.-Regul. Integr. Comp. Physiol. (2007). https://doi.org/10.1152/ajpregu.00796.2006

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by Fundamental Research Grant Scheme (FRGS/1/2018/-WAB13/UITM/03/1), Ministry of Higher Education, Malaysia. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Linoby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Linoby, A. et al. (2020). The Role of Fitness Status in the Performance-Enhancing Effects of Dietary Inorganic Nitrate Supplementation: Meta-analysis and Meta-regression Analysis. In: Hassan, M., et al. Enhancing Health and Sports Performance by Design. MoHE 2019. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-3270-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3270-2_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3269-6

  • Online ISBN: 978-981-15-3270-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics