Skip to main content

Visible Light-Curable Hydrogel Systems for Tissue Engineering and Drug Delivery

  • Chapter
  • First Online:
Bioinspired Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1249 ))

Abstract

Visible light-curable hydrogels have been investigated as tissue engineering scaffolds and drug delivery carriers due to their physicochemical and biological properties such as porosity, reservoirs for drugs/growth factors, and similarity to living tissue. The physical properties of hydrogels used in biomedical applications can be controlled by polymer concentration, cross-linking density, and light irradiation time. The aim of this review chapter is to outline the results of previous research on visible light-curable hydrogel systems. In the first section, we will introduce photo-initiators and mechanisms for visible light curing. In the next section, hydrogel applications as drug delivery carriers will be emphasized. Finally, cellular interactions and applications in tissue engineering will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peppas NA, Bures P, Leobandung W et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    CAS  PubMed  Google Scholar 

  2. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Google Scholar 

  3. Liu M, Zeng X, Ma C et al (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    CAS  Google Scholar 

  5. Vashist A, Vashist A, Gupta YK et al (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2:147–166

    CAS  PubMed  Google Scholar 

  6. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    CAS  PubMed  Google Scholar 

  7. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    CAS  PubMed  Google Scholar 

  8. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314

    CAS  PubMed  Google Scholar 

  9. Allen NS (1996) Photoinitiators for UV and visible curing of coatings: mechanisms and properties. J Photochem Photobiol A 100(1–3):101–107

    CAS  Google Scholar 

  10. Gómez ML, Previtali CM, Montejano HA (2012) Two-and three-component visible light photoinitiating systems for radical polymerization based on onium salts: an overview of mechanistic and laser flash photolysis studies. Int J Photoenergy 2012:260728

    Google Scholar 

  11. Scranton AB, Bowman CN, Peiffer RW (1997) Photopolymerization: fundamentals and applications. American Chemical Society, Washington, DC

    Google Scholar 

  12. Purbrick MD (1995) Photoinitiation, photopolymerization and photocuring. Gardner Publications, New York. https://doi.org/10.1002/(SICI)1097-0126(199608)40:4<315::AID-PI566>3.0.CO;2-T

    Book  Google Scholar 

  13. Kaastrup K, Sikes HD (2015) Investigation of dendrimers functionalized with eosin as macrophotoinitiators for polymerization-based signal amplification reactions. RSC Adv 5:15652–15659

    CAS  Google Scholar 

  14. Bahney CS, Lujan TJ, Hsu CW et al (2011) Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cell Mater 22:43–55

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cruise GM, Gegre OD, Scharp DS et al (1998) A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate upon porcine islets. Biotechnol Bioeng 57(6):655–665

    CAS  PubMed  Google Scholar 

  16. Kizilel S, Pérez-Luna VH, Teymour F (2004) Photopolymerization of poly(ethylene glycol) diacrylate on eosin-functionalized surfaces. Langmuir 20(20):8652–8658

    CAS  PubMed  Google Scholar 

  17. Shih H, Lin CC (2013) Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol Rapid Commun 34(3):269–273

    CAS  PubMed  Google Scholar 

  18. Kim S-H, Chu C-C (2009) Visible light induced dextran-methacrylate hydrogel formation using (-)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fibers Polym 10(1):14–20

    CAS  Google Scholar 

  19. Unna K, Greslin JG (1942) Studies on the toxicity and pharmacology of riboflavin. J Pharmacol Exp Ther 76(1):75–80

    CAS  Google Scholar 

  20. Bajpai SK, Dubey S (2004) Modulation of dynamic release of vitamin B2 from a model pH-sensitive terpolymeric hydrogel system. Polym Int 53(12):2178–2187

    CAS  Google Scholar 

  21. Ramu A, Mehta MM, Liu J et al (2000) The riboflavin-mediated photooxidation of doxorubicin. Cancer Chemother Pharmacol 46(6):449–458

    CAS  PubMed  Google Scholar 

  22. Wasylewski M (2000) Binding study of riboflavin-binding protein with riboflavin and its analogues by differential scanning calorimetry. J Protein Chem 19(6):523–528

    CAS  PubMed  Google Scholar 

  23. Ramu A, Mehta MM, Leaseburg T et al (2001) The enhancement of riboflavin-mediated photo-oxidation of doxorubicin by histidine and urocanic acid. Cancer Chemother Pharmacol 47(4):338–346

    CAS  PubMed  Google Scholar 

  24. Baldursdottir SG, Kjoniksen A-L (2005) Rheological characterization and turbidity of riboflavin-photosensitized changes in alginate/GDL systems. Eur J Pharm Biopharm 59(3):501–501

    CAS  PubMed  Google Scholar 

  25. Annabi N, Rana D, Shirzaei Sani E et al (2017) Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials 139:229–243

    CAS  PubMed  Google Scholar 

  26. Werdin F, Tenenhaus M, Rennekampff HO (2008) Chronic wound care. Lancet 372(9653):1860–1862

    PubMed  Google Scholar 

  27. Ng VW, Chan JM, Sardon H et al (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 78:46–62

    CAS  PubMed  Google Scholar 

  28. Ghobril C, Grinstaff MW (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44(7):820–1835

    Google Scholar 

  29. Kamoun E, El-Betany A, Menzel H et al (2018) Influence of photoinitiator concentration and irradiation time on the crosslinking performance of visible-light-activated pullulan-HEMA hydrogels. Int J Biol Macromol 120:1884–1892

    CAS  PubMed  Google Scholar 

  30. Dijke P, Iwata KK (1989) Growth factors wound healing. Nat Biotechnol 7:793–798

    Google Scholar 

  31. Yang DH, Seo DI, Lee D-W et al (2017) Preparation and evaluation of visible-light cured glycol chitosan hydrogel dressing containing dual growth factors for accelerated wound healing. J Ind Eng Chem 53:360–370

    CAS  Google Scholar 

  32. Bao P, Kodra A, Tomic-Canic M et al (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153(2):347–358

    CAS  PubMed  Google Scholar 

  33. Rajkumar VS, Shiwen X, Bostrom M et al (2006) Platelet-derived growth factor-β receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169(6):2254–2265

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kolhe P, Kannan RM (2003) Improvement of ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules 4(1):173–180

    CAS  PubMed  Google Scholar 

  35. Yoo Y, Hyun H, Yoon S-J et al (2018) Visible light-cured glycol chitosan hydrogel dressing containing endothelial growth factor and basic fibroblast growth factor accelerates wound healing in vivo. J Ind Eng Chem 67:365–372

    CAS  Google Scholar 

  36. Brown GL, Nanney LB, Griffen J et al (1989) Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med 321:76–79

    CAS  PubMed  Google Scholar 

  37. Shi H-X, Lin C, Lin B-B et al (2013) The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS One 8(4):e59966

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Akita S, Akino K, Hirano A (2013) Basic fibroblast growth factor in scarless wound healing. Adv Wound Care 2:44

    Google Scholar 

  39. Akbik D, Ghadiri M, Chrzanowski W et al (2014) Curcumin as a wound healing agent. Life Sci 116(1):1–7

    CAS  PubMed  Google Scholar 

  40. Joe B, Vijaykumar M, Lokesh BR (2010) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44(2):97–111

    Google Scholar 

  41. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46(1):2–18

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rachmawati H, Edityaningrum CA, Mauludin R (2013) Molecular inclusion complex of curcumin-beta-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 14:1303–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoon S-J, Hyun H, Lee D-W et al (2017) Visible light-cured glycol chitosan hydrogel containing a beta-cyclodextrin-curcumin inclusion complex improves wound healing in vivo. Molecules 22:1513

    PubMed Central  Google Scholar 

  44. Yoon S-J, Yoo Y, Nam SE et al (2018) The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model. Mar Drugs 16:351

    CAS  PubMed Central  Google Scholar 

  45. Yang DH, Moon SW, Lee D-W (2017) Surface modification of titanium with BMP-2/GDF-5 by a heparin linker and its efficacy as a dental implant. Int J Mol Sci 18(1):229

    PubMed Central  Google Scholar 

  46. Kasagi S, Chen W (2012) TGF-beta 1 on osteoimmunology and the bone component cells. Cell Biosci 3(1):4

    Google Scholar 

  47. Ogasawara T, Kawaguchi H, Jinno S et al (2004) Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol Cell Biol 24(15):6560–6568

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chichiricco PM, Riva R, Thomassin JM et al (2018) In situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration. Dent Mater 34(12):1769–1782

    CAS  PubMed  Google Scholar 

  49. Hu J, Hou Y, Park H et al (2012) Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater 8(5):1730–1738

    CAS  PubMed  Google Scholar 

  50. Draget KI, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll 5(2):251–256

    Google Scholar 

  51. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Charron PN, Fenn SL, Poniz A et al (2016) Mechanical properties and failure analysis of visible light crosslinked alginate-based tissue sealants. J Mech Behav Biomed Mater 59:314–321

    PubMed  PubMed Central  Google Scholar 

  53. Balakrishnan B, Lesieur S, Labarre D et al (2005) Periodate oxidation of sodium alginate in water and in ethanol-water mixture: a comparative study. Carbohydr Res 340(7):1425–1429

    CAS  PubMed  Google Scholar 

  54. Jeon O, Alt DS, Ahmed SM, Alsberg E (2012) The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials 33(13):3503–3514. https://10.1016/j.biomaterials.2012.01.041

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ayala P, Lopez JI, Desai TA (2010) Microtopographical cues in 3D attenuate fibrotic phenotype and extracellular matrix deposition: implications for tissue regeneration. Tissue Eng Part A 16:19–27

    Google Scholar 

  56. Bott K, Upton Z, Schrobback K et al (2010) The effects of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31(32):8454–8464

    CAS  PubMed  Google Scholar 

  57. Lee HJ, Fernandes-Cunha GM, Myung D (2018) In situ-forming hyaluronic acid hydrogel through visible light-induced thiol-ene reaction. React Funct Polym 131:29–35. https://doi.org/10.1016/j.reactfunctpolym.2018.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hao Y, Shih H, Muňoz Z et al (2014) Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomater 10(1):104–114

    CAS  PubMed  Google Scholar 

  59. Cushing MC, Anseth KS (2007) Hydrogel cell culture. Science 316(5828):1133–1134

    CAS  PubMed  Google Scholar 

  60. Wang Z, Tian Z, Menard F et al (2017) Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication 9(4):044101

    PubMed  Google Scholar 

  61. Yoon HJ, Shin SR, Cha JM et al (2016) Cold water fish gelatin methacryloyl hydrogel for tissue engineering application. PLoS One 11(10):e0163902

    PubMed  PubMed Central  Google Scholar 

  62. Wang Z, Kumar H, Tian Z et al (2018) Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces 10(32):26859–26869

    CAS  PubMed  Google Scholar 

  63. Cui X, Breitenkamp K, Finn MG et al (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18(11–12):1304–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130

    CAS  PubMed  Google Scholar 

  65. Kim C-H, Park SJ, Yang DH et al (2018) Chitosan for tissue engineering. In: Chun HJ, Park K, Kim C-H, Khang GS (eds) Novel biomaterials for regenerative medicine, vol 1077. Springer, Singapore, pp 475–485

    Google Scholar 

  66. Khor E, Lm LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349

    CAS  PubMed  Google Scholar 

  67. Shahidi F, Abuzaytoun R (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nurt Res 49:93–135

    CAS  Google Scholar 

  68. Hyun H, Park MH, Lim W et al (2018) Injectable visible light-cured glycol chitosan hydrogels with controlled release of anticancer drugs for local cancer therapy in vivo: a feasible study. Artif Cells Nanomed Biotechnol 46(Suppl 2):874–882

    CAS  PubMed  Google Scholar 

  69. Yoo Y, Yoon S-J, Kim SY et al (2018) A local drug delivery system based on visible light-cured glycol chitosan and doxorubicin·hydrochloride for thyroid cancer treatment in vitro and in vivo. Drug Deliv 25(1):1664–1671

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Volkova M, Russell R III (2011) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 7(4):214–220

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hyun H, Park MH, Jo G et al (2019) Photo-cured glycol chitosan hydrogel for ovarian cancer drug delivery. Mar Drugs 17:41

    CAS  PubMed Central  Google Scholar 

  72. Namgung R, Lee YM, Kim J et al (2014) Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat Commun 5:3702

    CAS  PubMed  Google Scholar 

  73. Chen Y, Huang Y, Qin D et al (2016) β-Cyclodextrin-based inclusion complexation bridged biodegradable self-assembly macromolecular micelle for the delivery of paclitaxel. PLoS One 11(3):e0150877

    PubMed  PubMed Central  Google Scholar 

  74. Liu Y, Chen G-S, Yuan Y (2003) Inclusion complexation and solubilization of paclitaxel by bridged bis(beta-cyclodextrin)s containing a tetraethylenepentaamino spacer. J Med Chem 46(22):4634–4637

    CAS  PubMed  Google Scholar 

  75. Schroder U (1985) Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res 64:541–548

    PubMed  Google Scholar 

  76. Watts A, Paterson RC (1988) The response of the mechanically exposed pulp to prednisolone and triamcinolone acetonide. Int Endod J 21:9–16

    CAS  PubMed  Google Scholar 

  77. Rutherford RB, Spångberg L, Tucker M et al (1994) The time-course of the induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol 39(10):833–838

    CAS  PubMed  Google Scholar 

  78. Zhang W, Walboomers XF, Jansen JA (2008) The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing RGF-beta 1. J Biomed Mater Res A 85(2):439–444

    PubMed  Google Scholar 

  79. Komabayashi T, Wadajkar A, Santimano S et al (2016) Preliminary study of light-cured hydrogel for endodontic drug delivery vehicle. J Investig Clin Dent 7:87–92

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Jae Chun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, D.H., Chun, H.J. (2020). Visible Light-Curable Hydrogel Systems for Tissue Engineering and Drug Delivery. In: Chun, H.J., Reis, R.L., Motta, A., Khang, G. (eds) Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, vol 1249 . Springer, Singapore. https://doi.org/10.1007/978-981-15-3258-0_6

Download citation

Publish with us

Policies and ethics