Skip to main content

Immunohistochemistry of Normal Thymus

  • Chapter
  • First Online:
Atlas of Thymic Pathology

Abstract

Immunohistochemistry contributed, among other specialized techniques, to characterize the two main compartments of the human thymus, cortex and medulla, and their constituent cells. Several antibodies have been raised to understand the immunophenotypes of epithelial and lymphoid cells and their evolutionary and functional interplay. This chapter illustrates and provides examples of the main immunohistochemical stains directed to relevant molecules expressed on the cell surface or cytoplasm or nucleus of thymic cells. Insights into their molecular constitution and relevance in thymic physiology are given. This overview is aimed to provide information of the normal thymic microenvironment and to assist in the evaluation of its diseased state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuo T. Cytokeratin profiles of the thymus and thymomas: histogenetic correlations and proposal for a histological classification of thymomas. Histopathology. 2000;36(5):403–14.

    Article  CAS  PubMed  Google Scholar 

  2. Jablonska-Mestanova V, Sisovsky V, Danisovic L, Polak S, Varga I. The normal human newborns thymus. Bratisl Lek Listy. 2013;114(7):402–8.

    CAS  PubMed  Google Scholar 

  3. Laster AJ, Itoh T, Palker TJ, Haynes BF. The human thymic microenvironment: thymic epithelium contains specific keratins associated with early and late stages of epidermal keratinocyte maturation. Differentiation. 1986;31(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  4. Chilosi M, Zamò A, Brighenti A, Malpeli G, Montagna L, Piccoli P, et al. Constitutive expression of DeltaN-p63alpha isoform in human thymus and thymic epithelial tumours. Virchows Arch. 2003;443(2):175–83. https://doi.org/10.1007/s00428-003-0857-4.

    Article  CAS  PubMed  Google Scholar 

  5. Dotto J, Pelosi G, Rosai J. Expression of p63 in thymomas and normal thymus. Am J Clin Pathol. 2007;127(3):415–20. https://doi.org/10.1309/2gaykpddm85p2vew.

    Article  PubMed  Google Scholar 

  6. Weissferdt A, Moran CA. Pax8 expression in thymic epithelial neoplasms: an immunohistochemical analysis. Am J Surg Pathol. 2011;35(9):1305–10. https://doi.org/10.1097/PAS.0b013e3182260735.

    Article  PubMed  Google Scholar 

  7. Liu Y. Characterization of thymic lesions with F-18 FDG PET-CT: an emphasis on epithelial tumors. Nucl Med Commun. 2011;32(7):554–62. https://doi.org/10.1097/MNM.0b013e328345b984.

    Article  PubMed  Google Scholar 

  8. Mosser DD, Duchaine J, Martin LH. Biochemical and developmental characterization of the murine cluster of differentiation 1 antigen. Immunology. 1991;73(3):298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang J, Meyer C, Zhu C. T cell antigen recognition at the cell membrane. Mol Immunol. 2012;52(3-4):155–64. https://doi.org/10.1016/j.molimm.2012.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bamberger M, Santos AM, Goncalves CM, Oliveira MI, James JR, Moreira A, et al. A new pathway of CD5 glycoprotein-mediated T cell inhibition dependent on inhibitory phosphorylation of Fyn kinase. J Biol Chem. 2011;286(35):30324–36. https://doi.org/10.1074/jbc.M111.230102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orazi A, Foucar K, Knowles DM, Weiss LE. Knowles neoplastic hematopathology. Philadelphia: Wolters Kluwer Health / Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  12. Miceli MC, Parnes JR. Role of CD4 and CD8 in T cell activation and differentiation. Adv Immunol. 1993;53:59–122.

    Article  CAS  PubMed  Google Scholar 

  13. Shipp MA, Vijayaraghavan J, Schmidt EV, Masteller EL, D'Adamio L, Hersh LB, et al. Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 ("enkephalinase"): direct evidence by cDNA transfection analysis. Proc Natl Acad Sci U S A. 1989;86(1):297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deibel MR Jr, Riley LK, Coleman MS, Cibull ML, Fuller SA, Todd E. Expression of terminal deoxynucleotidyl transferase in human thymus during ontogeny and development. J Immunol. 1983;131(1):195–200.

    CAS  PubMed  Google Scholar 

  15. Jevremovic D, Roden AC, Ketterling RP, Kurtin PJ, McPhail ED. LMO2 Is a specific marker of T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol. 2016;145(2):180–90. https://doi.org/10.1093/ajcp/aqv024.

    Article  CAS  PubMed  Google Scholar 

  16. Cepeda S, Cantu C, Orozco S, Xiao Y, Brown Z, Semwal MK, et al. Age-associated decline in thymic B cell expression of aire and aire-dependent self-antigens. Cell Rep. 2018;22(5):1276–87. https://doi.org/10.1016/j.celrep.2018.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fend F, Nachbaur D, Oberwasserlechner F, Kreczy A, Huber H, Müller-Hermelink HK. Phenotype and topography of human thymic B cells. An immunohistologic study. Virchows Arch B Cell Pathol Incl Mol Pathol. 1991;60(6):381–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ströbel P, Hartmann E, Rosenwald A, Kalla J, Ott G, Friedel G, et al. Corticomedullary differentiation and maturational arrest in thymomas. Histopathology. 2014;64(4):557–66. https://doi.org/10.1111/his.12279.

    Article  PubMed  Google Scholar 

  19. Kanavaros P, Stefanaki K, Rontogianni D, Papalazarou D, Sgantzos M, Arvanitis D, et al. Immunohistochemical expression of p53, p21/waf1, rb, p16, cyclin D1, p27, Ki67, cyclin A, cyclin B1, bcl2, bax and bak proteins and apoptotic index in normal thymus. Histol Histopathol. 2001;16(4):1005–12. https://doi.org/10.14670/hh-16.1005.

    Article  CAS  PubMed  Google Scholar 

  20. Romano R, Palamaro L, Fusco A, Giardino G, Gallo V, Del Vecchio L, et al. FOXN1: a master regulator gene of thymic epithelial development program. Front Immunol. 2013;4:187. https://doi.org/10.3389/fimmu.2013.00187.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shakib S, Desanti GE, Jenkinson WE, Parnell SM, Jenkinson EJ, Anderson G. Checkpoints in the development of thymic cortical epithelial cells. J Immunol. 2009;182(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  22. Jegalian AG, Bodo J, Hsi ED. NOTCH1 intracellular domain immunohistochemistry as a diagnostic tool to distinguish T-lymphoblastic lymphoma from thymoma. Am J Surg Pathol. 2015;39(4):565–72. https://doi.org/10.1097/PAS.0000000000000358.

    Article  PubMed  Google Scholar 

  23. Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science. 2007;316(5829):1349–53. https://doi.org/10.1126/science.1141915.

    Article  CAS  PubMed  Google Scholar 

  24. Akiyama T, Shinzawa M, Akiyama N. TNF receptor family signaling in the development and functions of medullary thymic epithelial cells. Front Immunol. 2012;3:278. https://doi.org/10.3389/fimmu.2012.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hamazaki Y, Sekai M, Minato N. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunol Rev. 2016;271(1):38–55. https://doi.org/10.1111/imr.12412.

    Article  CAS  PubMed  Google Scholar 

  26. Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott HS, Matsumoto M, et al. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol. 2007;8(3):304–11. https://doi.org/10.1038/ni1438.

    Article  CAS  PubMed  Google Scholar 

  27. Famili F, Wiekmeijer AS, Staal FJ. The development of T cells from stem cells in mice and humans. Future Sci OA. 2017;3(3):FSO186. https://doi.org/10.4155/fsoa-2016-0095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farley AM, Morris LX, Vroegindeweij E, Depreter ML, Vaidya H, Stenhouse FH, et al. Dynamics of thymus organogenesis and colonization in early human development. Development. 2013;140(9):2015–26. https://doi.org/10.1242/dev.087320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manley NR, Condie BG. Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. Prog Mol Biol Transl Sci. 2010;92:103–20. https://doi.org/10.1016/s1877-1173(10)92005-x.

    Article  CAS  PubMed  Google Scholar 

  30. Masunaga A, Sugawara I, Nakamura H, Yoshitake T, Itoyama S. Cytokeratin expression in normal human thymus at different ages. Pathol Int. 1997;47(12):842–7.

    Article  CAS  PubMed  Google Scholar 

  31. Shezen E, Okon E, Ben-Hur H, Abramsky O. Cytokeratin expression in human thymus: immunohistochemical mapping. Cell Tissue Res. 1995;279(1):221–31.

    Article  CAS  PubMed  Google Scholar 

  32. Hamazaki Y. Adult thymic epithelial cell (TEC) progenitors and TEC stem cells: models and mechanisms for TEC development and maintenance. Eur J Immunol. 2015;45(11):2985–93. https://doi.org/10.1002/eji.201545844.

    Article  CAS  PubMed  Google Scholar 

  33. Ordóñez NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol. 2012;19(3):140–51. https://doi.org/10.1097/PAP.0b013e318253465d.

    Article  CAS  PubMed  Google Scholar 

  34. Asirvatham JR, Esposito MJ, Bhuiya TA. Role of PAX-8, CD5, and CD117 in distinguishing thymic carcinoma from poorly differentiated lung carcinoma. Appl Immunohistochem Mol Morphol. 2014;22(5):372–6. https://doi.org/10.1097/PAI.0b013e318297cdb5.

    Article  CAS  PubMed  Google Scholar 

  35. Olson AL, Pessin JE. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr. 1996;16:235–56. https://doi.org/10.1146/annurev.nu.16.070196.001315.

    Article  CAS  PubMed  Google Scholar 

  36. Thomas de Montpréville V, Quilhot P, Chalabreysse L, De Muret A, Hofman V, Lantuéjoul S, et al. Glut-1 intensity and pattern of expression in thymic epithelial tumors are predictive of WHO subtypes. Pathol Res Pract. 2015;211(12):996–1002. https://doi.org/10.1016/j.prp.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  37. Kojika M, Ishii G, Yoshida J, Nishimura M, Hishida T, Ota SJ, et al. Immunohistochemical differential diagnosis between thymic carcinoma and type B3 thymoma: diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasms. Mod Pathol. 2009;22(10):1341–50. https://doi.org/10.1038/modpathol.2009.105.

    Article  CAS  PubMed  Google Scholar 

  38. Keir ME, Latchman YE, Freeman GJ, Sharpe AH. Programmed death-1 (PD-1):PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes. J Immunol. 2005;175(11):7372–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and treg homeostasis in autoimmunity and tumor immunity. J Autoimmun. 2018;95:77–99. https://doi.org/10.1016/j.jaut.2018.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marchevsky AM, Walts AE. PD-L1, PD-1, CD4, and CD8 expression in neoplastic and nonneoplastic thymus. Hum Pathol. 2017;60:16–23. https://doi.org/10.1016/j.humpath.2016.09.023.

    Article  CAS  PubMed  Google Scholar 

  41. Takahama Y, Ohigashi I, Murata S, Tanaka K. Thymoproteasome and peptidic self. Immunogenetics. 2019;71(3):217–21. https://doi.org/10.1007/s00251-018-1081-3.

    Article  PubMed  Google Scholar 

  42. Tomaru U, Ishizu A, Murata S, Miyatake Y, Suzuki S, Takahashi S, et al. Exclusive expression of proteasome subunit {beta}5t in the human thymic cortex. Blood. 2009;113(21):5186–91. https://doi.org/10.1182/blood-2008-11-187633.

    Article  CAS  PubMed  Google Scholar 

  43. Sun L, Li H, Luo H, Zhao Y. Thymic epithelial cell development and its dysfunction in human diseases. Biomed Res Int. 2014;2014:206929. https://doi.org/10.1155/2014/206929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gordon J, Bennett AR, Blackburn CC, Manley NR. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev. 2001;103(1-2):141–3.

    Article  CAS  PubMed  Google Scholar 

  45. Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development. 2011;138(18):3865–78. https://doi.org/10.1242/dev.059998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Palamaro L, Romano R, Fusco A, Giardino G, Gallo V, Pignata C. FOXN1 in organ development and human diseases. Int Rev Immunol. 2014;33(2):83–93. https://doi.org/10.3109/08830185.2013.870171.

    Article  CAS  PubMed  Google Scholar 

  47. Nonaka D, Henley JD, Chiriboga L, Yee H. Diagnostic utility of thymic epithelial markers CD205 (DEC205) and Foxn1 in thymic epithelial neoplasms. Am J Surg Pathol. 2007;31(7):1038–44. https://doi.org/10.1097/PAS.0b013e31802b4917.

    Article  PubMed  Google Scholar 

  48. Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995;375(6527):151–5. https://doi.org/10.1038/375151a0.

    Article  CAS  PubMed  Google Scholar 

  49. Shrimpton RE, Butler M, Morel AS, Eren E, Hue SS, Ritter MA. CD205 (DEC-205): a recognition receptor for apoptotic and necrotic self. Mol Immunol. 2009;46(6):1229–39. https://doi.org/10.1016/j.molimm.2008.11.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zajonc DM. The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Immunogenetics. 2016;68(8):561–76. https://doi.org/10.1007/s00251-016-0931-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wirt DP, Grogan TM, Nagle RB, Copeland JG, Richter LC, Rangel CS, et al. A comprehensive immunotopographic map of human thymus. J Histochem Cytochem. 1988;36(1):1–12. https://doi.org/10.1177/36.1.2961798.

    Article  CAS  PubMed  Google Scholar 

  52. Steinmann GG, Muller-Hermelink HK. Immunohistological demonstration of terminal transferase (TdT) in the age-involuted human thymus. Immunobiology. 1984;166(1):45–52. https://doi.org/10.1016/s0171-2985(84)80142-4.

    Article  CAS  PubMed  Google Scholar 

  53. Matthews JM, Lester K, Joseph S, Curtis DJ. LIM-domain-only proteins in cancer. Nat Rev Cancer. 2013;13(2):111–22. https://doi.org/10.1038/nrc3418.

    Article  CAS  PubMed  Google Scholar 

  54. Chambers J, Rabbitts TH. LMO2 at 25 years: a paradigm of chromosomal translocation proteins. Open Biol. 2015;5(6):150062. https://doi.org/10.1098/rsob.150062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boehm T, Spillantini MG, Sofroniew MV, Surani MA, Rabbitts TH. Developmentally regulated and tissue specific expression of mRNAs encoding the two alternative forms of the LIM domain oncogene rhombotin: evidence for thymus expression. Oncogene. 1991;6(5):695–703.

    CAS  PubMed  Google Scholar 

  56. Yamano T, Nedjic J, Hinterberger M, Steinert M, Koser S, Pinto S, et al. Thymic B cells are licensed to present self antigens for central T cell tolerance induction. Immunity. 2015;42(6):1048–61. https://doi.org/10.1016/j.immuni.2015.05.013.

    Article  CAS  PubMed  Google Scholar 

  57. Perera J, Huang H. The development and function of thymic B cells. Cell Mol Life Sci. 2015;72(14):2657–63. https://doi.org/10.1007/s00018-015-1895-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moller P, Moldenhauer G, Momburg F, Lammler B, Eberlein-Gonska M, Kiesel S, et al. Mediastinal lymphoma of clear cell type is a tumor corresponding to terminal steps of B cell differentiation. Blood. 1987;69(4):1087–95.

    Article  CAS  PubMed  Google Scholar 

  59. Laky K, Fowlkes BJ. Notch signaling in CD4 and CD8 T cell development. Curr Opin Immunol. 2008;20(2):197–202. https://doi.org/10.1016/j.coi.2008.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Masuda K, Itoi M, Amagai T, Minato N, Katsura Y, Kawamoto H. Thymic anlage is colonized by progenitors restricted to T, NK, and dendritic cell lineages. J Immunol. 2005;174(5):2525–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Library of the IRCCS Regina Elena National Cancer Institute for the bibliographic assistance and Prof. S. Ascani, Perugia University, Ospedale S. Maria, Terni, Italy, for providing photographs of the LMO2 staining.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Funding

The authors received no funding for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirella Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramieri, M.T., Gallo, E., Marino, M. (2020). Immunohistochemistry of Normal Thymus. In: Jain, D., Bishop, J.A., Wick, M.R. (eds) Atlas of Thymic Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3164-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3164-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3163-7

  • Online ISBN: 978-981-15-3164-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics