Skip to main content

The Normal Thymus

  • Chapter
  • First Online:
Atlas of Thymic Pathology

Abstract

This chapter shortly describes key stages of the intrauterine development of the thymus and its postnatal continuation from infancy to old age. The immunohistochemical features and distribution of the major cellular constituents, i.e., thymic epithelial cell subsets, T cells, B cells, macrophages, dendritic cells, and myoid cells are depicted and a short overview on thymic function, thymocyte development, and thymic involution is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta S, Louis AG. Tolerance and autoimmunity in primary immunodeficiency disease: a comprehensive review. Clin Rev Allergy Immunol. 2013;45(2):162–9.

    CAS  PubMed  Google Scholar 

  2. Farley AM, et al. Dynamics of thymus organogenesis and colonization in early human development. Development. 2013;140(9):2015–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson G, et al. MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature. 1993;362(6415):70–3.

    CAS  PubMed  Google Scholar 

  4. Patenaude J, Perreault C. Thymic mesenchymal cells have a distinct transcriptomic profile. J Immunol. 2016;196(11):4760–70.

    CAS  PubMed  Google Scholar 

  5. von Gaudecker B, Muller-Hermelink HK. Ontogeny and organization of the stationary non-lymphoid cells in the human thymus. Cell Tissue Res. 1980;207(2):287–306.

    Google Scholar 

  6. Nehls M, et al. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature. 1994;372(6501):103–7.

    CAS  PubMed  Google Scholar 

  7. Frank J, et al. Exposing the human nude phenotype. Nature. 1999;398(6727):473–4.

    CAS  PubMed  Google Scholar 

  8. Carter BW, et al. ITMIG classification of mediastinal compartments and multidisciplinary approach to mediastinal masses. Radiographics. 2017;37(2):413–36.

    PubMed  Google Scholar 

  9. Kotani H, et al. Ectopic cervical thymus: a clinicopathological study of consecutive, unselected infant autopsies. Int J Pediatr Otorhinolaryngol. 2014;78(11):1917–22.

    PubMed  Google Scholar 

  10. Jaretzki A, Steinglass KM, Sonett JR. Thymectomy in the management of myasthenia gravis. Semin Neurol. 2004;24(1):49–62.

    PubMed  Google Scholar 

  11. Bale PM, Sotelo-Avila C. Maldescent of the thymus: 34 necropsy and 10 surgical cases, including 7 thymuses medial to the mandible. Pediatr Pathol. 1993;13(2):181–90.

    CAS  PubMed  Google Scholar 

  12. Hammar JA. Die Menschenthymus in Gesundheit und Krankheit. Ergebnisse der numerischen Analyse von mehr als tausend menschlichen Thymusdrüsen. Teil I: Das normale Organ. Zugleich eine kritische Beleuchtung der Lehre des “Status thymicus”. Zeitschrift für Mikroskopische Anatomie und Forschung. 1926;6(Suppl):1–570.

    Google Scholar 

  13. Maeda Y, et al. S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1. Int Immunol. 2014;26(5):245–55.

    CAS  PubMed  Google Scholar 

  14. Kato S. Thymic microvascular system. Microsc Res Tech. 1997;38(3):287–99.

    CAS  PubMed  Google Scholar 

  15. Heino M, et al. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem Biophys Res Commun. 1999;257(3):821–5.

    CAS  PubMed  Google Scholar 

  16. Kyewski B, Peterson P. Aire, master of many trades. Cell. 2010;140(1):24–6.

    CAS  PubMed  Google Scholar 

  17. Herzig Y, et al. Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nat Immunol. 2017;18(2):161–72.

    CAS  PubMed  Google Scholar 

  18. Douek DC, Altmann DM. T-cell apoptosis and differential human leucocyte antigen class II expression in human thymus. Immunology. 2000;99(2):249–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Strobel P, et al. The ageing and myasthenic thymus: a morphometric study validating a standard procedure in the histological workup of thymic specimens. J Neuroimmunol. 2008;201-202:64–73.

    PubMed  Google Scholar 

  20. Watanabe N, et al. Hassall corpuscle instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature. 2005;436(7054):1181–5.

    Google Scholar 

  21. Blom B, Spits H. Development of human lymphoid cells. Annu Rev Immunol. 2006;24:287–320.

    CAS  PubMed  Google Scholar 

  22. Isaacson PG, Norton AJ, Addis BJ. The human thymus contains a novel population of B lymphocytes. Lancet. 1987;2(8574):1488–91.

    CAS  PubMed  Google Scholar 

  23. Akashi K, et al. B lymphopoiesis in the thymus. J Immunol. 2000;164(10):5221–6.

    CAS  PubMed  Google Scholar 

  24. Perera J, et al. Self-antigen-driven thymic B cell class switching promotes T cell central tolerance. Cell Rep. 2016;17(2):387–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu FT, et al. Thymic B cells promote thymus-derived regulatory T cell development and proliferation. J Autoimmun. 2015;61:62–72.

    CAS  PubMed  Google Scholar 

  26. Surh CD, Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature. 1994;372(6501):100–3.

    CAS  PubMed  Google Scholar 

  27. Wakimoto T, et al. Identification and characterization of human thymic cortical dendritic macrophages that may act as professional scavengers of apoptotic thymocytes. Immunobiology. 2008;213(9-10):837–47.

    CAS  PubMed  Google Scholar 

  28. Cosway EJ, et al. Formation of the intrathymic dendritic cell pool requires CCL21-mediated recruitment of CCR7(+) progenitors to the thymus. J Immunol. 2018;201(2):516–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fergusson JR, et al. Maturing human CD127+ CCR7+ PDL1+ dendritic cells express AIRE in the absence of tissue restricted antigens. Front Immunol. 2018;9:2902.

    CAS  PubMed  Google Scholar 

  30. Bockman DE. Myoid cells in adult human thymus. Nature. 1968;218(5138):286–7.

    CAS  PubMed  Google Scholar 

  31. Marx A, et al. A striational muscle antigen and myasthenia gravis-associated thymomas share an acetylcholine-receptor epitope. Dev Immunol. 1992;2(2):77–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schluep M, et al. Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study. Ann Neurol. 1987;22(2):212–22.

    CAS  PubMed  Google Scholar 

  33. Marx A, et al. The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev. 2013;12(9):875–84.

    CAS  PubMed  Google Scholar 

  34. Van de Velde RL, Friedman NB. Thymic myoid cells and myasthenia gravis. Am J Pathol. 1970;59(2):347–68.

    PubMed  PubMed Central  Google Scholar 

  35. Garcia-Leon MJ, et al. Dynamic regulation of NOTCH1 activation and NOTCH ligand expression in human thymus development. Development. 2018;145:16.

    Google Scholar 

  36. Klein L, et al. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol. 2014;14(6):377–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gies V, et al. B cells differentiate in human thymus and express AIRE. J Allergy Clin Immunol. 2017;139(3):1049–1052.e12.

    CAS  PubMed  Google Scholar 

  38. Bacchetta R, Barzaghi F, Roncarolo MG. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci. 2018;1417(1):5–22.

    CAS  PubMed  Google Scholar 

  39. Derbinski J, et al. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol. 2001;2(11):1032–9.

    CAS  PubMed  Google Scholar 

  40. Munoz-Ruiz M, et al. Thymic determinants of gammadelta T cell differentiation. Trends Immunol. 2017;38(5):336–44.

    CAS  PubMed  Google Scholar 

  41. Benlagha K, et al. A thymic precursor to the NK T cell lineage. Science. 2002;296(5567):553–5.

    CAS  PubMed  Google Scholar 

  42. Dooley J, Liston A. Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue. Eur J Immunol. 2012;42(5):1073–9.

    CAS  PubMed  Google Scholar 

  43. Youm YH, et al. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proc Natl Acad Sci U S A. 2016;113(4):1026–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hamazaki Y. Adult thymic epithelial cell (TEC) progenitors and TEC stem cells: models and mechanisms for TEC development and maintenance. Eur J Immunol. 2015;45(11):2985–93.

    CAS  PubMed  Google Scholar 

  45. Palmer S, et al. Thymic involution and rising disease incidence with age. Proc Natl Acad Sci U S A. 2018;115(8):1883–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fessler J, et al. The impact of aging on regulatory T-cells. Front Immunol. 2013;4:231.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Marx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marx, A. (2020). The Normal Thymus. In: Jain, D., Bishop, J.A., Wick, M.R. (eds) Atlas of Thymic Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3164-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3164-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3163-7

  • Online ISBN: 978-981-15-3164-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics