Skip to main content

Biomechanics of the Hip

  • Chapter
  • First Online:
Frontiers in Orthopaedic Biomechanics

Abstract

The hip joint is a crucial support structure for the human body structure, second only to the knee in the terms of weight-bearing forces placed upon it, and is an essential joint for walking. A solid understanding of the anatomy and biomechanics of the hip joint is necessary for improving treatments for hip disorders and for the design of hip prostheses. In this chapter, the anatomy of the hip joint is introduced and is then followed by a more in-depth analysis of the kinetic and kinematic movements of the joint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schünke M, Schulte E, Schumacher U, Ross LM, Lamperti ED. Thieme atlas of anatomy: latin nomenclature: general anatomy and musculoskeletal system. New York: Thieme; 2006.

    Google Scholar 

  2. Moore KL, Dalley AF, Agur AM. Clinically oriented anatomy. Philadelphia, PA: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  3. Stem ES, O’Connor MI, Kransdorf MJ, Crook J. Computed tomography analysis of acetabular anteversion and abduction. Skelet Radiol. 2006;35:385–9.

    Article  Google Scholar 

  4. Engesæter IØ, Laborie LB, Lehmann TG, Sera F, Fevang J, Pedersen D, et al. Radiological findings for hip dysplasia at skeletal maturity. Validation of digital and manual measurement techniques. Skelet Radiol. 2012;41:775–85.

    Article  Google Scholar 

  5. Laborie LB, Engesæter IØ, Lehmann TG, Sera F, Dezateux C, Engesæter LB, et al. Radiographic measurements of hip dysplasia at skeletal maturity—new reference intervals based on 2,038 19-year-old Norwegians. Skelet Radiol. 2013;42:925–35.

    Article  Google Scholar 

  6. Mannava S, Geeslin AG, Frangiamore SJ, Cinque ME, Geeslin MG, Chahla J, et al. Comprehensive clinical evaluation of femoroacetabular impingement: part 2, plain radiography. Arthrosc Tech. 2017;6:e2003–9.

    Article  Google Scholar 

  7. Tönnis D. Normal Values of the Hip Joint for the Evaluation of X-rays in Children and Adults. Clin Orthop Relat Res. 1976;119:39–47.

    Google Scholar 

  8. Cooperman DR, Wallensten R, Stulberg SD. Acetabular dysplasia in the adult. Clin Orthop Relat Res. 1983;175:79–85.

    Article  Google Scholar 

  9. Zeng Y, Wang Y, Zhu Z, Tang T, Dai K, Qiu S. Differences in acetabular morphology related to side and sex in a Chinese population. J Anat. 2012;220:256–62.

    Article  Google Scholar 

  10. Jacobsen S, Sonne-Holm S, Søballe K, Gebuhr P, Lund B. Hip dysplasia and osteoarthrosis: a survey of 4 151 subjects from the Osteoarthrosis Substudy of the Copenhagen City heart study. Acta Orthop. 2005;76:149–58.

    Article  Google Scholar 

  11. Wiberg G. Studies on dysplastic acetabulum and congenital subluxation of the hip joint with special reference to the complications of osteoarthritis. Acta Chir Scand. 1939;83:58.

    Google Scholar 

  12. Bouttier R, Morvan J, Mazieres B, Rat A-C, Ziegler LE, Fardellone P, et al. Reproducibility of radiographic hip measurements in adults. Joint Bone Spine. 2013;80:52–6.

    Article  Google Scholar 

  13. Tannast M, Hanke MS, Zheng G, Steppacher SD, Siebenrock KA. What are the radiographic reference values for acetabular under-and overcoverage? Clin Orthop Relat Res. 2015;473:1234–46.

    Article  Google Scholar 

  14. Karns MR, Patel SH, Kolaczko J, Liu RW, Mather RC, White BJ, et al. Acetabular rim length: an anatomical study to determine reasonable graft sizes for labral reconstruction. J Hip Preserv Surg. 2017;4:106–12.

    Google Scholar 

  15. Groh MM, Herrera J. A comprehensive review of hip labral tears. Curr Rev Musculoskelet Med. 2009;2:105–17.

    Article  Google Scholar 

  16. Bsat S, Frei H, Beaulé P. The acetabular labrum: a review of its function. Bone Joint J. 2016;98:730–5.

    Article  Google Scholar 

  17. Philippon MJ, Nepple JJ, Campbell KJ, Dornan GJ, Jansson KS, LaPrade RF, et al. The hip fluid seal—part I: the effect of an acetabular labral tear, repair, resection, and reconstruction on hip fluid pressurization. Knee Surg Sports Traumatol Arthrosc. 2014;22:722–9.

    Article  Google Scholar 

  18. Henak CR, Ellis BJ, Harris MD, Anderson AE, Peters CL, Weiss JA. Role of the acetabular labrum in load support across the hip joint. J Biomech. 2011;44:2201–6.

    Article  Google Scholar 

  19. Seldes R, Tan V, Hunt J, Katz M, Winiarsky R, Fitzgerald RJ. Anatomy, histologic features, and vascularity of the adult acetabular labrum. Clin Orthop Relat Res. 2001;382:232–40.

    Article  Google Scholar 

  20. Bartoska R. Measurement of femoral head diameter: a clinical study. Acta Chir Orthop Traumatol Cechoslov. 2009;76:133–6.

    Google Scholar 

  21. Byrne DP, Mulhall KJ, Baker JF. Anatomy & biomechanics of the hip. Open Sports Med J. 2010;4:51–7.

    Article  Google Scholar 

  22. Armstrong C, Gardner D. Thickness and distribution of human femoral head articular cartilage. Changes with age. Ann Rheum Dis. 1977;36:407–12.

    Article  Google Scholar 

  23. von Eisenhart-Rothe R, Eckstein F, Müller-Gerbl M, Landgraf J, Rock C, Putz R. Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens. Anat Embryol. 1997;195:279–88.

    Article  Google Scholar 

  24. Clohisy JC, Nunley RM, Carlisle JC, Schoenecker PL. Incidence and characteristics of femoral deformities in the dysplastic hip. Clin Orthop Relat Res. 2009;467:128–34.

    Article  Google Scholar 

  25. Fabry G, Macewen GD, Shands A Jr. Torsion of the femur: a follow-up study in normal and abnormal conditions. JBJS. 1973;55:1726–38.

    Article  Google Scholar 

  26. Beall DP, Sweet CF, Martin HD, Lastine CL, Grayson DE, Ly JQ, et al. Imaging findings of femoroacetabular impingement syndrome. Skelet Radiol. 2005;34:691–701.

    Article  Google Scholar 

  27. Pollard TC, Villar RN, Norton MR, Fern ED, Williams MR, Simpson DJ, et al. Femoroacetabular impingement and classification of the cam deformity: the reference interval in normal hips. Acta Orthop. 2010;81:134–41.

    Article  Google Scholar 

  28. Maheshwari AV, Malik A, Dorr LD. Impingement of the native hip joint. JBJS. 2007;89:2508–18.

    Article  Google Scholar 

  29. Li B, Aspden R. Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int. 1997;7:450–6.

    Article  Google Scholar 

  30. Zhang Q, Chen W, Liu HJ, Li ZY, Song ZH, Pan JS, et al. The role of the calcar femorale in stress distribution in the proximal femur. Orthop Surg. 2009;1:311–6.

    Article  Google Scholar 

  31. Lunn DE, Lampropoulos A, Stewart TD. Basic biomechanics of the hip. Orthop Trauma. 2016;30:239–46.

    Article  Google Scholar 

  32. Gray H, Standring S. Gray’s anatomy. London: Arcturus Publishing; 2008.

    Google Scholar 

  33. Martin HD, Savage A, Braly BA, Palmer IJ, Beall DP, Kelly B. The function of the hip capsular ligaments: a quantitative report. Arthroscopy. 2008;24:188–95.

    Article  Google Scholar 

  34. Martin HD, Khoury AN, Schröder R, Johnson E, Gómez-Hoyos J, Campos S, et al. Contribution of the pubofemoral ligament to hip stability: a biomechanical study. Arthroscopy. 2017;33:305–13.

    Article  Google Scholar 

  35. Perumal V, Woodley SJ, Nicholson HD. Ligament of the head of femur: a comprehensive review of its anatomy, embryology, and potential function. Clin Anat. 2016;29:247–55.

    Article  Google Scholar 

  36. Bowman KF Jr, Fox J, Sekiya JK. A clinically relevant review of hip biomechanics. Arthroscopy. 2010;26:1118–29.

    Article  Google Scholar 

  37. Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system. Philadelphia, PA: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  38. Johnston RC, Smidt GL. Hip motion measurements for selected activities of daily living. Clin Orthop Relat Res. 1970;72:205–15.

    Google Scholar 

  39. Bovi G, Rabuffetti M, Mazzoleni P, Ferrarin M. A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture. 2011;33:6–13.

    Article  Google Scholar 

  40. Rutherford DJ, Moreside J, Wong I. Hip joint motion and gluteal muscle activation differences between healthy controls and those with varying degrees of hip osteoarthritis during walking. J Electromyogr Kinesiol. 2015;25:944–50.

    Article  Google Scholar 

  41. Beaulieu ML, Lamontagne M, Beaulé PE. Lower limb biomechanics during gait do not return to normal following total hip arthroplasty. Gait Posture. 2010;32:269–73.

    Article  Google Scholar 

  42. Kiss RM, Illyés Á. Comparison of gait parameters in patients following total hip arthroplasty with a direct-lateral or antero-lateral surgical approach. Hum Mov Sci. 2012;31:1302–16.

    Article  Google Scholar 

  43. Madsen MS, Ritter MA, Morris HH, Meding JB, Berend ME, Faris PM, et al. The effect of total hip arthroplasty surgical approach on gait. J Orthop Res. 2004;22:44–50.

    Article  Google Scholar 

  44. Varin D, Lamontagne M, Beaulé PE. Does the anterior approach for THA provide closer-to-normal lower-limb motion? J Arthroplast. 2013;28:1401–7.

    Article  Google Scholar 

  45. Perron M, Malouin F, Moffet H, McFadyen BJ. Three-dimensional gait analysis in women with a total hip arthroplasty. Clin Biomech. 2000;15:504–15.

    Article  Google Scholar 

  46. Sander K, Layher F, Babisch J, Roth A. Evaluation of results after total hip replacement using a minimally invasive and a conventional approach. Clinical scores and gait analysis. Zeitschrift fur Orthopadie und Unfallchirurgie. 2011;149:191–9.

    Article  Google Scholar 

  47. Tateuchi H, Tsukagoshi R, Fukumoto Y, Oda S, Ichihashi N. Dynamic hip joint stiffness in individuals with total hip arthroplasty: relationships between hip impairments and dynamics of the other joints. Clin Biomech. 2011;26:598–604.

    Article  Google Scholar 

  48. Kolk S, Minten MJ, van Bon GE, Rijnen WH, Geurts AC, Verdonschot N, et al. Gait and gait-related activities of daily living after total hip arthroplasty: a systematic review. Clin Biomech. 2014;29:705–18.

    Article  Google Scholar 

  49. Chao E. Biomechanics of the human gait. In: Frontiers in biomechanics. New York: Springer; 1986. p. 225–44.

    Chapter  Google Scholar 

  50. Pauwels F. Biomechanics of the normal and diseased hip: theoretical foundation, technique and results of treatment an atlas. Springer Science & Business Media; 2012.

    Google Scholar 

  51. Pugh J, Rose R, Radin E. A possible mechanism of Wolff’s law: trabecular microfractures. Arch Int Physiol Biochim. 1973;81:27–40.

    Google Scholar 

  52. Bergmann G, Bender A, Dymke J, Duda G, Damm P. Standardized loads acting in hip implants. PLoS One. 2016;11:e0155612.

    Article  Google Scholar 

  53. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–71.

    Article  Google Scholar 

  54. Giarmatzis G, Jonkers I, Wesseling M, Van Rossom S, Verschueren S. Loading of hip measured by hip contact forces at different speeds of walking and running. J Bone Miner Res. 2015;30:1431–40.

    Article  Google Scholar 

  55. Pedersen DR, Brand RA, Cheng C, Arora JS. Direct comparison of muscle force predictions using linear and nonlinear programming. J Biomech Eng. 1987;109:192–9.

    Article  Google Scholar 

  56. Andrews JG, Cheng CK. The joint distribution problem with multiple articular contact forces. J Biomech Eng. 1990;112:364–6.

    Article  Google Scholar 

  57. De Pieri E, Lunn D, Chapman G, Rasmussen K, Ferguson S, Redmond A. Patient characteristics affect hip contact forces during gait. Osteoarthr Cartil. 2019;27:895–905.

    Article  Google Scholar 

  58. Heller M, Bergmann G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, et al. Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech. 2001;34:883–93.

    Article  Google Scholar 

  59. Lenaerts G, Mulier M, Spaepen A, Van der Perre G, Jonkers I. Aberrant pelvis and hip kinematics impair hip loading before and after total hip replacement. Gait Posture. 2009;30:296–302.

    Article  Google Scholar 

  60. Stansfield B, Nicol A, Paul J, Kelly I, Graichen F, Bergmann G. Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. J Biomech. 2003;36:929–36.

    Article  Google Scholar 

  61. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26:969–90.

    Article  Google Scholar 

  62. Bergmann G, Graichen F, Rohlmann A. Is staircase walking a risk for the fixation of hip implants? J Biomech. 1995;28:535–53.

    Article  Google Scholar 

  63. Rydell NW. Forces acting on the femoral head-prosthesis: a study on strain gauge supplied prostheses in living persons. Acta Orthop Scand. 1966;37:1–132.

    Article  Google Scholar 

  64. Weinhandl JT, Irmischer BS, Sievert ZA. Effects of gait speed of femoroacetabular joint forces. Appl Bionics Biomech. 2017;2017:6432969.

    Article  Google Scholar 

  65. Chung M-J, Wang M-JJ. The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait Posture. 2010;31:131–5.

    Article  Google Scholar 

  66. Bergmann G, Graichen F, Rohlmann A. Hip joint contact forces during stumbling. Langenbeck’s Arch Surg. 2004;389:53–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Kung Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, B., Hua, J., Cheng, CK. (2020). Biomechanics of the Hip. In: Cheng, CK., Woo, S.LY. (eds) Frontiers in Orthopaedic Biomechanics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3159-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3159-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3158-3

  • Online ISBN: 978-981-15-3159-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics