Skip to main content

Hand and Wrist Biomechanics

  • Chapter
  • First Online:
Frontiers in Orthopaedic Biomechanics

Abstract

The biomechanical function of the human hand and wrist is closely related to the intricacy of its anatomy. The arrangement of the bones, ligament, and muscles in the hand allows a complex array of tasks to be performed. This chapter provides a brief review of the anatomy of the hand and wrist, normal biomechanical function, and examples of pathomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kijima Y, Viegas SF. Wrist anatomy and biomechanics. J Hand Surg Am. 2009;34(8):1555–63.

    Article  Google Scholar 

  2. Kuo CE, Wolfe SW. Scapholunate instability: current concepts in diagnosis and management. J Hand Surg Am. 2008;33(6):998–1013.

    Article  Google Scholar 

  3. Taleisnik J. The ligaments of the wrist. J Hand Surg Am. 1976;1(2):110–8.

    Article  Google Scholar 

  4. Katz DA, Green JK, Werner FW, Loftus JB. Capsuloligamentous restraints to dorsal and palmar carpal translation. J Hand Surg Am. 2003;28(4):610–3.

    Article  Google Scholar 

  5. Berger RA. The ligaments of the wrist. A current overview of anatomy with considerations of their potential functions. Hand Clin. 1997;13(1):63–82.

    Article  Google Scholar 

  6. Lamas C, Carrera A, Proubasta I, Llusa M, Majo J, Mir X. The anatomy and vascularity of the lunate: considerations applied to Kienbock’s disease. Chir Main. 2007;26(1):13–20.

    Article  Google Scholar 

  7. Gonzalez MH, Mohan V, Elhassan B, Amirouche F. Biomechanics of the digit. J Am Soc Surg Hand. 2005;5(1):48–60.

    Article  Google Scholar 

  8. Navarro A. Luxaciones del carpo. Anales de la Facultad de Medicina. 1921;6:113–41.

    Google Scholar 

  9. Craigen MA, Stanley JK. Wrist kinematics. Row, column or both? J Hand Surg Br. 1995;20(2):165–70.

    Article  Google Scholar 

  10. Moojen TM, Snel JG, Ritt MJ, Venema HW, Kauer JM, Bos KE. In vivo analysis of carpal kinematics and comparative review of the literature. J Hand Surg Am. 2003;28(1):81–7.

    Article  Google Scholar 

  11. Kaufmann R, Pfaeffle J, Blankenhorn B, Stabile K, Robertson D, Goitz R. Kinematics of the midcarpal and radiocarpal joints in radioulnar deviation: an in vitro study. J Hand Surg Am. 2005;30(5):937–42.

    Article  Google Scholar 

  12. Li ZM, Kuxhaus L, Fisk JA, Christophel TH. Coupling between wrist flexion-extension and radial-ulnar deviation. Clin Biomech. 2005;20(2):177–83.

    Article  Google Scholar 

  13. Moritomo H, Apergis EP, Garcia-Elias M, Werner FW, Wolfe SW. International Federation of Societies for Surgery of the Hand 2013 Committee’s report on wrist dart-throwing motion. J Hand Surg Am. 2014;39(7):1433–9.

    Article  Google Scholar 

  14. Wolfe SW, Crisco JJ, Orr CM, Marzke MW. The dart-throwing motion of the wrist: is it unique to humans? J Hand Surg Am. 2006;31(9):1429–37.

    Article  Google Scholar 

  15. Crisco JJ, Coburn JC, Moore DC, Akelman E, Weiss AP, Wolfe SW. In vivo radiocarpal kinematics and the dart thrower’s motion. J Bone Joint Surg Am. 2005;87(12):2729–40.

    Article  Google Scholar 

  16. Werner FW, Green JK, Short WH, Masaoka S. Scaphoid and lunate motion during a wrist dart throw motion. J Hand Surg Am. 2004;29(3):418–22.

    Article  Google Scholar 

  17. Shah KN, Hodax JD, Katarincic JA. Evaluating a flexor tendon laceration with the tenodesis effect. J Pediatr. 2016;176:214–214.e1.

    Article  Google Scholar 

  18. Hazelton FT, Smidt GL, Flatt AE, Stephens RI. The influence of wrist position on the force produced by the finger flexors. J Biomech. 1975;8(5):301–6.

    Article  Google Scholar 

  19. Li ZM. The influence of wrist position on individual finger forces during forceful grip. J Hand Surg Am. 2002;27(5):886–96.

    Article  Google Scholar 

  20. Volz RG, Lieb M, Benjamin J. Biomechanics of the wrist. Clin Orthop Relat Res. 1980;149:112–7.

    Article  Google Scholar 

  21. Bade H, Schubert M, Koebke J. Functional morphology of the deep transverse metacarpal ligament. Ann Anat. 1994;176(5):443–50.

    Article  Google Scholar 

  22. Dzwierzynski WW, Matloub HS, Yan JG, Deng S, Sanger JR, Yousif NJ. Anatomy of the intermetacarpal ligaments of the carpometacarpal joints of the fingers. J Hand Surg Am. 1997;22(5):931–4.

    Article  Google Scholar 

  23. Garcia-Elias M, An KN, Cooney WP 3rd, Linscheid RL, Chao EY. Stability of the transverse carpal arch: an experimental study. J Hand Surg Am. 1989;14(2 Pt 1):277–82.

    Article  Google Scholar 

  24. Domalain MF, Seitz WH, Evans PJ, Li ZM. Biomechanical effect of increasing or decreasing degrees of freedom for surgery of trapeziometacarpal joint arthritis: a simulation study. J Orthop Res. 2011;29(11):1675–81.

    Article  Google Scholar 

  25. Hollister A, Buford WL, Myers LM, Giurintano DJ, Novick A. The axes of rotation of the thumb carpometacarpal joint. J Orthop Res. 1992;10(3):454–60.

    Article  Google Scholar 

  26. Van Heest AE, Kallemeier P. Thumb carpal metacarpal arthritis. J Am Acad Orthop Surg. 2008;16(3):140–51.

    Article  Google Scholar 

  27. Abboud JA, Beredjiklian PK, Bozentka DJ. Metacarpophalangeal joint arthroplasty in rheumatoid arthritis. J Am Acad Orthop Surg. 2003;11(3):184–91.

    Article  Google Scholar 

  28. Bain GI, Polites N, Higgs BG, Heptinstall RJ, McGrath AM. The functional range of motion of the finger joints. J Hand Surg Eur Vol. 2015;40(4):406–11.

    Article  Google Scholar 

  29. Allison DM. Anatomy of the collateral ligaments of the proximal interphalangeal joint. J Hand Surg Am. 2005;30(5):1026–31.

    Article  Google Scholar 

  30. Chen J, Tan J, Zhang AX. In vivo length changes of the proximal interphalangeal joint proper and accessory collateral ligaments during flexion. J Hand Surg Am. 2015;40(6):1130–7.

    Article  Google Scholar 

  31. Halilaj E, Rainbow MJ, Moore DC, Laidlaw DH, Weiss AP, Ladd AL, Crisco JJ. In vivo recruitment patterns in the anterior oblique and dorsoradial ligaments of the first carpometacarpal joint. J Biomech. 2015;48(10):1893–8.

    Article  Google Scholar 

  32. Barron OA, Glickel SZ, Eaton RG. Basal joint arthritis of the thumb. J Am Acad Orthop Surg. 2000;8(5):314–23.

    Article  Google Scholar 

  33. Gehrmann SV, Tang J, Li ZM, Goitz RJ, Windolf J, Kaufmann RA. Motion deficit of the thumb in CMC joint arthritis. J Hand Surg Am. 2010;35(9):1449–53.

    Article  Google Scholar 

  34. Koff MF, Shrivastava N, Gardner TR, Rosenwasser MP, Mow VC, Strauch RJ. An in vitro analysis of ligament reconstruction or extension osteotomy on trapeziometacarpal joint stability and contact area. J Hand Surg Am. 2006;31(3):429–39.

    Article  Google Scholar 

  35. Ladd AL, Crisco JJ, Hagert E, Rose J, Weiss AP. The 2014 ABJS Nicolas Andry Award: The puzzle of the thumb: mobility, stability, and demands in opposition. Clin Orthop Relat Res. 2014;472(12):3605–22.

    Article  Google Scholar 

  36. Imaeda T, Cooney WP, Niebur GL, Linscheid RL, An KN. Kinematics of the trapeziometacarpal joint: a biomechanical analysis comparing tendon interposition arthroplasty and total-joint arthroplasty. J Hand Surg Am. 1996;21(4):544–53.

    Article  Google Scholar 

  37. Bu J, Patterson RM, Morris R, Yang J, Viegas SF. The effect of radial shortening on wrist joint mechanics in cadaver specimens with inherent differences in ulnar variance. J Hand Surg Am. 2006;31(10):1594–600.

    Article  Google Scholar 

  38. Palmer AK, Werner FW. Biomechanics of the distal radiulnar joint. Clin Orthop. 1984;187:26–35.

    Article  Google Scholar 

  39. Pogue DJ, Viegas SF, Patterson RM, Peterson PD, Jenkins DK, Sweo TD, Hokanson JA. Effects of distal radius fracture malunion on wrist joint mechanics. J Hand Surg Am. 1990;15(5):721–7.

    Article  Google Scholar 

  40. Fernandez DL. Correction of post-traumatic wrist deformity in adults by osteotomy, bone-grafting, and internal fixation. J Bone Joint Surg Am. 1982;64(8):1164–78.

    Article  Google Scholar 

  41. Prommersberger KJ, Pillukat T, Muhldorfer M, van Schoonhoven J. Malunion of the distal radius. Arch Orthop Trauma Surg. 2012;132(5):693–702.

    Article  Google Scholar 

  42. Cranford CS, Ho JY, Kalainov DM, Hartigan BJ. Carpal tunnel syndrome. J Am Acad Orthop Surg. 2007;15(9):537–48.

    Article  Google Scholar 

  43. Brown RK, Peimer CA. Changes in digital flexor tendon mechanics after endoscopic and open carpal tunnel releases in cadaver wrists. J Hand Surg Am. 2000;25(1):112–9.

    Article  Google Scholar 

  44. Kiritsis PG, Kline SC. Biomechanical changes after carpal tunnel release: a cadaveric model for comparing open, endoscopic, and step-cut lengthening techniques. J Hand Surg Am. 1995;20(2):173–80.

    Article  Google Scholar 

  45. Netscher D, Mosharrafa A, Lee M, Polsen C, Choi H, Steadman AK, Thornby J. Transverse carpal ligament: its effect on flexor tendon excursion, morphologic changes of the carpal canal, and on pinch and grip strengths after open carpal tunnel release. Plast Reconstr Surg. 1997;100(3):636–42.

    Article  Google Scholar 

  46. Seitz, WH, A. Lallb Open carpal tunnel release with median neurolysis and Z-plasty reconstruction of the transverse carpal ligament. Current Orthopaedic Practice. 2013;24(1):53–7.

    Article  Google Scholar 

  47. Kwon YE, Gong HS, Shin HS, Lee HR, Kim KH, Baek GH. Evaluation of carpal arch widening and outcomes after carpal tunnel release. J Hand Surg Am. 2017;42(2):113–7.

    Article  Google Scholar 

  48. Guo X, Fan Y, Li ZM. Effects of dividing the transverse carpal ligament on the mechanical behavior of the carpal bones under axial compressive load: a finite element study. Med Eng Phys. 2009;31(2):188–94.

    Article  Google Scholar 

  49. Li ZM, Tang J, Chakan M, Kaz R. Carpal tunnel expansion by palmarly directed forces to the transverse carpal ligament. J Biomech Eng. 2009;131(8):081011.

    Article  Google Scholar 

  50. Li ZM, Gabra JN, Marquardt TL, Kim DH. Narrowing carpal arch width to increase cross sectional area of carpal tunnel—a cadaveric study. Clin Biomech. 2013;28(4):402–7.

    Article  Google Scholar 

  51. Marquardt TL, Evans PJ, Seitz WH Jr, Li ZM. Carpal arch and median nerve changes during radioulnar wrist compression in carpal tunnel syndrome patients. J Orthop Res. 2016;34(7):1234–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Ming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Regal, S., Maschke, S., Li, ZM. (2020). Hand and Wrist Biomechanics. In: Cheng, CK., Woo, S.LY. (eds) Frontiers in Orthopaedic Biomechanics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3159-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3159-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3158-3

  • Online ISBN: 978-981-15-3159-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics