Skip to main content

Biomechanics of Ligaments

  • Chapter
  • First Online:
Frontiers in Orthopaedic Biomechanics

Abstract

The ligaments are important tissues that connect the bones in the human body. The main function is to transmit the tensile load by playing an important role in maintaining the stability and restraint excessive joint motion in musculoskeletal system. Their unique composition and structure let ligaments to guide joints to articulate smoothly and to protect other soft tissues in and around the joints. These ligaments have biomechanical properties designed for this important function. As such, understanding the biomechanical behavior of ligaments is important. Also, these fundamental knowledges are helpful in preventing ligament injury and improving the treatment method. In this chapter, the ligament composition, structure, and function are introduced. Then the biomechanical properties of the ligaments and the method to obtain them are described by using the anterior cruciate ligament (ACL) of the knee as an example. And finally, injury, as well as current surgical treatment and postoperative rehabilitation, is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woo SL, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury, healing, and repair. J Biomech. 2006;39(1):1–20.

    Article  Google Scholar 

  2. Mienaltowski MJ, Birk DE. Structure, physiology, and biochemistry of collagens. In: Progress heritable soft connective tissue diseases, vol. 802. Dordrecht: Springer; 2014. p. 5–29.

    Chapter  Google Scholar 

  3. Milz S, Jakob J, Buttner A, Tischer T, Putz R, Benjamin M. The structure of the coracoacromial ligament: fibrocartilage differentiation does not necessarily mean pathology. Scand J Med Sci Sports. 2008;18(1):16–22.

    Article  Google Scholar 

  4. Smith SM, Thomas CE, Birk DE. Pericellular proteins of the developing mouse tendon: a proteomic analysis. Connect Tissue Res. 2012;53(1):2–13.

    Article  Google Scholar 

  5. Quapp KM. Material characterization of human medical collateral. Ligament. 1997;

    Google Scholar 

  6. Mommersteeg TJ, Blankevoort L, Kooloos JG, Hendriks JC, Kauer JM, Huiskes R. Nonuniform distribution of collagen density in human knee ligaments. J Orthop Res. 1994;12(2):238–45.

    Article  Google Scholar 

  7. Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med. 1991;19(3):217–25.

    Article  Google Scholar 

  8. Pioletti DP, Rakotomanana LR, Leyvraz PF. Strain rate effect on the mechanical behavior of the anterior cruciate ligament-bone complex. Med Eng Phys. 1999;21(2):95–100.

    Article  Google Scholar 

  9. Edwards JH, Ingham E, Herbert A. Decellularisation affects the strain rate dependent and dynamic mechanical properties of a xenogeneic tendon intended for anterior cruciate ligament replacement. J Mech Behav Biomed Mater. 2019;91:18–23.

    Article  Google Scholar 

  10. Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med. 1993;21(4):535–9.

    Article  Google Scholar 

  11. Lund-Hanssen H, Gannon J, Engebretsen L, Holen KJ, Anda S, Vatten L. Intercondylar notch width and the risk for anterior cruciate ligament rupture. A case-control study in 46 female handball players. Acta Orthop Scand. 1994;65(5):529–32.

    Article  Google Scholar 

  12. Souryal TO, Moore HA, Evans JP. Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med. 1988;16(5):449–54.

    Article  Google Scholar 

  13. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes new risk factors for anterior cruciate ligament injuries. Am J Sport Med. 2010;38(1):54–62.

    Article  Google Scholar 

  14. Todd MS, Lalliss S, Garcia E, DeBerardino TM, Cameron KL. The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sport Med. 2010;38(1):63–7.

    Article  Google Scholar 

  15. Khan MS, Seon JK, Song EK. Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop. 2011;35(8):1251–6.

    Article  Google Scholar 

  16. Renstrom P, Ljungqvist A, Arendt E, Beynnon B, Fukubayashi T, Garrett W, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sport Med. 2008;42(6):394–412.

    Article  Google Scholar 

  17. Orchard J, Seward H, McGivern J, Hood S. Rainfall, evaporation and the risk of non-contact anterior cruciate ligament injury in the Australian Football League. Med J Aust. 1999;170(7):304–6.

    Article  Google Scholar 

  18. Olsen OE, Myklebust G, Engebretsen L, Holme I, Bahr R. Relationship between floor type and risk of ACL injury in team handball. Scand J Med Sci Sports. 2003;13(5):299–304.

    Article  Google Scholar 

  19. Orchard JW, Powell JW. Risk of knee and ankle: sprains under various weather conditions in american football. Med Sci Sports Exerc. 2003;35(7):1118–23.

    Article  Google Scholar 

  20. Orchard JW, Chivers I, Aldous D, Bennell K, Seward H. Rye grass is associated with fewer non-contact anterior cruciate ligament injuries than Bermuda grass. Br J Sport Med. 2005;39(10):704–9.

    Article  Google Scholar 

  21. Lambson RB, Barnhill BS, Higgins RW. Football cleat design and its effect on anterior cruciate ligament injuries. A three-year prospective study. Am J Sports Med. 1996;24(2):155–9.

    Article  Google Scholar 

  22. Woo SL-Y, Debski RE, Zeminski J, Abramowitch SD, Saw SS, Fenwick JA. Injury and repair of ligaments and tendons. Annu Rev Biomed Eng. 2000;2:83–118.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to convey their appreciation to Prof. Savio L-Y. Woo for his precious suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, J., Lian, Z., Yang, B., Fan, Y. (2020). Biomechanics of Ligaments. In: Cheng, CK., Woo, S.LY. (eds) Frontiers in Orthopaedic Biomechanics. Springer, Singapore. https://doi.org/10.1007/978-981-15-3159-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3159-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3158-3

  • Online ISBN: 978-981-15-3159-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics