Skip to main content

Zinc-Solubilizing Microbes for Sustainable Crop Production: Current Understanding, Opportunities, and Challenges

  • Chapter
  • First Online:
Phytobiomes: Current Insights and Future Vistas

Abstract

Zinc (Zn) is an essential and prime micronutrient needed in diminutive amount by agricultural crops for complete growth and development. It acts as an essential and key constituent of a variety of enzymatic reactions, carbohydrate metabolism, synthesis of proteins and auxin, and maintenance of cellular membrane veracity in plants. Zn is also an essential element in human diet as its deficiency affects normal development and functioning of nervous, immune, and skeletal systems. Crop plants and their consumable parts serve as major sources of Zn in human diet. Plants can uptake Zn as divalent cation, but a major portion of it exists in insoluble form in the soil and very little Zn becomes available to the plants. There are wide varieties of microbes which employ myriads of biological processes to make Zn available to plants from unavailable sources. These zinc-solubilizing microbes (ZSM) can be utilized as prospective alternatives to conventional less-efficient fertilizer application for enhancing Zn availability in soils. Owing to the naturally available source of Zn in soil and high cost of synthetic Zn fertilizers, the demand of ZSM is escalating with time. The injudicious application of chemical fertilizers can be minimized by using ZSM in crop production that can lead to environmental and agricultural sustainability. At the global level, several researchers have recognized the importance of ZSM for crop growth, health, and development. The current article illustrates the role of ZSM in improving plant production in an economical, environment-friendly, and sustainable manner. The mechanisms used by ZSM for Zn solubilization have been explained. An attempt has been made to provide a comprehensive global overview of research initiatives made in the field of sustainable crop production through ZSM, and further opportunities and challenges for use of ZSM-based technology in agriculture have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaid-Ullah M, Hassan MN, Jamil M, Brade G, Shah MKN, Sessitsch A (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60

    Google Scholar 

  • Alexander M (1997) Introduction to soil microbiology. Wiley, New York

    Google Scholar 

  • Alloway BJ (2004) Zinc in soils and crop nutrition. Publication of the International Zinc Association. http://www.iza.com/Documents/Communications/Publications/ALLOWAY_PRINT.pdf. Accessed on 8 June 2019

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. IZA and IFA, Brussels/Paris

    Google Scholar 

  • Anitha S, Padma DSN, Sunitha KK (2015) Isolation and identification of zinc solubilizing fungal isolates from agriculture fields. Indian J Agric Sci 85(12):1638–1642

    CAS  Google Scholar 

  • Bailey SE, Thompson PJ, Horton NP, Mullineaux CW, Robinson C, Mann NH (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J Biol Chem 277:2006–2011

    CAS  PubMed  Google Scholar 

  • Biari A, Gholami A, Rahmani HA (2008) Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. J Biol Sci 8:1015–1020

    CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20. https://doi.org/10.1094/CCHEM-87-1-0010

    Article  CAS  Google Scholar 

  • Chang HB, Lin CW, Huang HJ (2005) Zinc induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regul 46:261–266. https://doi.org/10.1007/s10725-005-0162-0

    Article  CAS  Google Scholar 

  • Coles KE, David JC, Fisher PJ, Lappin-Scott HM, Macnair MR (2001) Solubilization of zinc compounds by fungi associated with the hyperaccumulator Thlaspi caerulescens. Bot J Scotl 51:237–247

    Google Scholar 

  • Costerousse B, Schonholzer-Mauclaire L, Frossard E, Thonar C (2018) Identification of heterotrophic zinc mobilization processes among bacterial strains isolated from wheat rhizosphere (Triticum aestivum L.). Appl Environ Microbiol 84:e01715–e01717

    PubMed  Google Scholar 

  • Deepak J, Geeta N, Sachin V, Anita S (2013) Enhancement of wheat growth and Zn content in grains by zinc solubilizing bacteria. Int J Agric Environ Biotechnol 6:363–370. https://doi.org/10.5958/j.2230-732X.6.3.004

    Article  Google Scholar 

  • Doolette CL, Read TL, Li C, Scheckel KG, Donner E, Kopittke PM, Schjoerring JK, Lombi E (2018) Foliar application of zinc sulphate and zinc EDTA to wheat leaves: differences in mobility, distribution, and speciation. J Exp Bot 69(18):4469–4481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland, pp 17–39

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo DD, Barros PM, Cordeiro AM, Serra TS, Lourenço T, Chander S, Oliveira MM, Saibo NJ (2012) Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J Exp Bot 63:3643–3656

    CAS  PubMed  Google Scholar 

  • Fomina M, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant- symbiotic fungi. Geomicrobiol J 21:351–366

    CAS  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005a) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    CAS  Google Scholar 

  • Fomina M, Hillier S, Charnock JM, Melville KI, Alexander J, Gadd GM (2005b) Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71:371–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    CAS  PubMed  Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Varma A (2005) Microbial diversity in soils. In: Buscot F, Varma S (eds) Micro-organisms in soils: roles in genesis and functions. Springer, Heidelberg, pp 195–212

    Google Scholar 

  • Gontia-Mishra I, Sapre S, Tiwari S (2017) Zinc solubilizing bacteria from rhizosphere of rice as a prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–190

    Google Scholar 

  • Goteti PK, Emmanuel LDl A, Desai S, Shaik MHA (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int J Microbiol, Article ID 869697(7). https://doi.org/10.1155/2013/869697

  • Gunes A, Inal A, Adak MS, Alpaslan M, Bagci EG, Erol T (2007) Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture. Nutr Cycl Agroecosyst 78:83–96. https://doi.org/10.1007/s10705-006-9075-1

    Article  CAS  Google Scholar 

  • Gupta N, Ram H, Kumar B (2016) Mechanism of zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Biotechnol 15:89–109

    CAS  Google Scholar 

  • Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57:1116–1127. https://doi.org/10.1111/j.1365-313X.2008.03754.x

    Article  CAS  PubMed  Google Scholar 

  • Hafeez FY, Hameed S, Zaidi AH, Malik KA (2002) Biofertilizer for sustainable agriculture. In: Azam F, Iqbal MM, Inayatullah C, Malik KA (eds) Techniques for sustainable agriculture. ISBN/NIAB, Faisalabad, pp 67–73

    Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition- a review. Am J Agric Econ 3(2):374–391

    CAS  Google Scholar 

  • Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    PubMed  Google Scholar 

  • Hefferon K (2019) Biotechnological approaches for generating zinc-enriched crops to combat malnutrition. Nutrients 11(2):253. https://doi.org/10.3390/nu11020253

    Article  CAS  PubMed Central  Google Scholar 

  • Hong JW, Park JY, Gadd GM (2010) Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J Appl Microbiol 108(6):2030–2040

    CAS  PubMed  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pak J Agric Sci 52:915–922

    Google Scholar 

  • Hussain A, Zahir ZA, Asghar HN, Ahmad M, Jamil M, Naveed M, Akhtar MFUZ (2018) Zinc solubilizing Bacteria for zinc biofortification in cereals: a step toward sustainable nutritional security. In: Meena VS (ed) Role of rhizospheric microbes in soil. Springer, Singapore, pp 203–227

    Google Scholar 

  • Hutchins SR, Davidson MS, Brierey JA, Brierley CL (1986) Microorganisms in reclamation of metals. Annu Rev Microbiol 40:311–336

    CAS  PubMed  Google Scholar 

  • Jaivel N, Siva kumar U, Marimuthu P (2017) Characterization of zinc solubilization and organic acid detection in Pseudomonas sp. RZ1 from rice phyllosphere. Int J Chem Stud 5(6):272–277

    CAS  Google Scholar 

  • Jamali H, Sharma A, Kushwaha P, Kashyap PL, Roohi SAK (2018) Exploitation of multifarious abiotic stresses, antagonistic activity and plant growth promoting attributes of Bacillus amyloliquefaciens AH53 for sustainable agriculture production. Int J Curr Microbiol App Sci 7(10):751–763

    CAS  Google Scholar 

  • Jasrotia P, Kashyap PL, Bhardwaj AK, Kumar S, Singh GP (2018) Scope and applications of nanotechnology for wheat production: a review of recent advances. Wheat Barley Res 10(1):1–14

    Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root-derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257. https://doi.org/10.1007/BF00008338

    Article  CAS  Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593. https://doi.org/10.3389/fmicb.2017.02593

    Article  PubMed  PubMed Central  Google Scholar 

  • Karak T, Singh UK, Das S, Das DK, Kuzyakov Y (2005) Comparative efficacy of ZnSO4 and Zn-EDTA application for fertilization of rice (Oryza sativa L.). Arch Agron Soil Sci 51:253–264. https://doi.org/10.1080/03650340400026701

    Article  CAS  Google Scholar 

  • Khan A, Singh J, Upadhayay VK, Singh AV, Shah S (2019) Microbial biofortification: a green technology through plant growth promoting microorganisms. In: Shah S et al (eds) Sustainable green technologies for environmental management. Springer, Singapore, pp 255–268

    Google Scholar 

  • Khande R, Sushil KS, Ramesh A, Mahaveer PS (2017) Zinc solubilizing Bacillus strains that modulate growth, yield and zinc biofortification of soybean and wheat. Rhizosphere 4:126–138. https://doi.org/10.1016/j.rhisph.2017.09.002

    Article  Google Scholar 

  • Khanghahi MY, Ricciuti P, Allegretta I, Terzano R, Crecchio C (2018) Solubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of their growth conditions. Environ Sci Pollut R 25(26):25862–25868

    CAS  Google Scholar 

  • Kucey RMN (1987) Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 53:2699–2703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467

    CAS  Google Scholar 

  • Lin CW, Chang HB, Huang HJ (2005) Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiol Biochem 43:963–968

    CAS  PubMed  Google Scholar 

  • Lopez-Millan AF, Ellis DR, Grusak MA (2005) Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Sci 168:1015–1022

    CAS  Google Scholar 

  • Lucini L, Bernardo L (2015) Comparison of proteome response to saline and zinc stress in lettuce. Front Plant Sci 6:240

    PubMed  PubMed Central  Google Scholar 

  • Mandal M, Das DK (2013) Zinc in rice-wheat irrigated ecosystem. J Rice Res 1:111. https://doi.org/10.4172/2375-4338.1000111

    Article  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    CAS  Google Scholar 

  • McDonald GK, Graham RD, Lloyd J, Lewis J, Lonergan P, Khabas-Saberi H (2001) Breeding for improved zinc and manganese efficiency in wheat and barley. In: Rowe B, Donaghy D, Mendham N (eds) Science and technology: delivering results for agriculture? Proceedings of the 10th Australian Agronomy Conference, Hobart

    Google Scholar 

  • Mhatre M, Srinivas L, Ganapathi TR (2011) Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean Ferritin gene. Biol Trace Elem Res 144:1219–1228. https://doi.org/10.1007/s12011-011-9092-z

    Article  CAS  PubMed  Google Scholar 

  • Mumtaz MZ, Ahmad M, Jamil M, Hussain T (2017) Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202:51–60

    CAS  PubMed  Google Scholar 

  • Naz I, Ahmad H, Khokhar SN, Khan K, Shah AH (2016) Impact of zinc solubilizing bacteria on zinc contents of wheat. Am Eurasian J Agric Environ Sci 16:449–454. https://doi.org/10.5829/idosi.aejaes.2016.16.3.12886

    Article  CAS  Google Scholar 

  • Nielsen FH (2012) History of zinc in agriculture. Adv Nutr 3(6):783–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omara AA, GhazI AA, El-Akhdar IA (2016) Isolation and identification of zinc dissolving bacteria and their potential on growth of Zea mays. Egypt J Microbiol 51:29–43

    Google Scholar 

  • Othman NMI, Othman R, MohdSaud H, Wahab PEM (2017) Effects of root colonization by zinc-solubilizing bacteria on rice plant (Oryza sativa MR219) growth. Agric Nat Res 51(6):532–537

    Google Scholar 

  • Pawar A, Ismail S, Mundhe S, Patil VD (2015) Solubilization of insoluble zinc compounds by different microbial isolates in vitro condition. Int J Trop Agric 33:865–869

    Google Scholar 

  • Poovarasan S, Mohandas S, Sita T (2015) Functional characterization of actinomycetes isolated from the AM fungal (Glomus mosseae) spores. Int J Curr Microbiol App Sci 4(9):598:612

    Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi O (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in vertisols of central India. Agric Ecosyst Environ Appl Soil Ecol 73:87–96

    Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    CAS  Google Scholar 

  • Rattan RK, Shukla LM (1991) Influence of different zinc carrier on the utilization of 285 micro nutrients by rice. J Indian Soc Soil Sci 39:808–810

    CAS  Google Scholar 

  • Raulin J (1869) Etudes chimique sur Ia vegetation (Chemical studies on plants). Annales des Sciences Naturrelles Botanique at Biologie Vegetale 11:293–299

    Google Scholar 

  • Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927

    Google Scholar 

  • Sarathambal C, Thangaraju M, Paulraj C, Gomathy M (2010) Assessing the zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using labelled 65 Zn compounds. Indian J Microbiol 50:103–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2004) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Brazil J Microbiol 35:121–125

    CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    CAS  PubMed  Google Scholar 

  • Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilization and their role on plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 47–63

    Google Scholar 

  • Schöll LV, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814

    PubMed  Google Scholar 

  • Sharma SK, Sharma MP, Ramesh A, Joshi OP (2012) Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J Microbiol Biotechnol 22(3):352–359

    CAS  PubMed  Google Scholar 

  • Shakeel M, Rais A, Hassan MN, Hafeez FY (2015) Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Front Microbiol 6:1286. https://doi.org/10.3389/fmicb.2015.01286

    Article  PubMed  PubMed Central  Google Scholar 

  • Simine CDD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fertil Soils 28:87–94

    Google Scholar 

  • Singh MV (2009) Micronutrient nutritional problems in soils of India and improvement for human and animal health. Indian J Fertil 5(4):11–16

    CAS  Google Scholar 

  • Singh P, Shukla AK, Behera SK, Tiwari PK (2019) Zinc application enhances superoxide dismutase and carbonic anhydrase activities in zinc-efficient and zinc-inefficient wheat genotypes. J Soil Sci Plant Nutr 19:477–487. https://doi.org/10.1007/s42729-019-00038-7

    Article  CAS  Google Scholar 

  • Subramanian KS, Tenshia V, Jayalakshmi K, Ramachandran V (2009) Role of arbuscular mycorrhizal fungus (Glomus intraradices) (fungus aided). Agric Biotechnol Sustain Dev 1:29–38

    CAS  Google Scholar 

  • Tan S, Han R, Li P, Yang G, Li S, Zhang P (2015) Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res 2:109–122. https://doi.org/10.1007/s11248-014-9822-z

    Article  CAS  Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39:245–253

    Google Scholar 

  • Tarkalson DD, Jolley VD, Robbins CW, Terry RE (1998) Mycorrhizal colonization and nutrient uptake of dry bean in manure and composted manure treated subsoil and untreated topsoil and subsoil. J Plant Nutr 21:1867–1878

    CAS  Google Scholar 

  • Tavallali V, Rahemi M, Eshghi S, Kholdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turk J Agric For 34(4):349–359

    CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Mishra S, Chauhan DK, Dubey NK (2015) Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol Plant 37:139

    Google Scholar 

  • Vaid SK, Kumar B, Sharma A, Shukla AK, Srivastava PC (2014) Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J Soil Sci Plant Nutr 14(4):889–910. https://doi.org/10.4067/S0718-95162014005000071

    Article  Google Scholar 

  • Venkatakrishnan SS, Sudalayandy RS, Savariappan AR (2003) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) strains. Braz J Microbiol 34:121–125

    Google Scholar 

  • Vidyashree DN, Muthuraju R, Panneerselvam P (2018a) Evaluation of zinc solubilizing bacterial (ZSB) strains on growth, yield and quality of tomato (Lycopersicon esculentum). Int J Curr Microbiol App Sci 7(4):1493–1502

    Google Scholar 

  • Vidyashree DN, Muthuraju R, Panneerselvam P, Mitra D (2018b) Organic acids production by zinc solubilizing bacterial isolates. Int J Curr Microbiol App Sci 7(10):626–633

    CAS  Google Scholar 

  • Wakatsuki T (1995) Metal oxidoreduction by microbial cells. J Ind Microbiol 14:169–177. https://doi.org/10.1007/BF01569900

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang X, Zhang X, Dong L, Zhang J, Wei Y, Feng Y, Lu L (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62:1783–1791

    CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593. https://doi.org/10.1016/j.tplants.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  • Whiting SN, Souza MD, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyper accumulator by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    CAS  PubMed  Google Scholar 

  • Wu SC, Cheung KC, Luo YM (2006) Wong effects of inoculation of plant growth promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    CAS  PubMed  Google Scholar 

  • Yuvaraj M, Subramanian KS (2015) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61(2):319–326. https://doi.org/10.1080/00380768.2014.979327

    Article  CAS  Google Scholar 

  • Zeb H, Hussain A, Naveed M, Ditta A, Ahmad S, Jamshaid MU, Ahmad HT, Hussain MB, Aziz R, Haider MS (2018) Compost enriched with ZnO and Zn-solubilising bacteria improves yield and Zn-fortification in flooded rice. Ital J Agron 13(4):310–316

    Google Scholar 

  • Zuo Y, Zhang F (2009) Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agron Sustain Dev 29:63–71. https://doi.org/10.1051/agro:2008055

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kushwaha, P., Kashyap, P.L., Pandiyan, K., Bhardwaj, A.K. (2020). Zinc-Solubilizing Microbes for Sustainable Crop Production: Current Understanding, Opportunities, and Challenges. In: Solanki, M., Kashyap, P., Kumari, B. (eds) Phytobiomes: Current Insights and Future Vistas. Springer, Singapore. https://doi.org/10.1007/978-981-15-3151-4_11

Download citation

Publish with us

Policies and ethics