Skip to main content

Recent Developments in Nanocarrier-Based Nutraceuticals for Therapeutic Purposes

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems

Abstract

Modern-day agriculture is evolving from the traditional production of raw food products to advances in novel food engineering technologies that ensure purity and functionality including health-specific products. Plants are the ultimate source of food and nutrition. Nutraceuticals are the functional foods which can provide health and medicinal benefits or can be used for prevention and treatment of various diseases along with providing basic nutrition. Nutraceuticals can be purified food nutrients, dietary supplements, herbs, cereals, milk, soups, or herbal products to genetically engineered foods enriched with vitamins and essential minerals. The components may also include phytochemicals, probiotics, vitamins, antioxidants, and essential minerals that are derived from plant and/or microbial sources. Recently, nanoparticle pharmaceutical drug delivery systems came into picture. These nanocarriers can also be used to enhance the potential of nano-formulated nutraceuticals. Presently, many nanocarrier systems have been developed such as micelles, liposomes, polymeric nanoparticles, and nanoemulsions. Some of these pharmaceutical carriers have already made their way to clinical development, while others are still under the process of preclinical development. The development of multifunctional nutraceutical nanocarriers combining several useful properties in one particle can boost up the efficacy of many therapeutic and diagnostic protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15

    CAS  Google Scholar 

  • Ai H, Jones SA, De Villiers MM et al (2003) Nano-encapsulation of furosemide microcrystals for controlled drug release. J Control Release 86(1):59–68

    CAS  PubMed  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750

    CAS  PubMed  Google Scholar 

  • Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58(3):168–172

    PubMed  Google Scholar 

  • Anselmo AC, Mitragotri S (2015) A review of clinical translation of inorganic nanoparticles. AAPS J 17(5):1041–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aouadi M, Tesz JG, Nicoloro SM et al (2009) Orally delivered siRNA targeting macrophage Map 4k4 suppresses systemic inflammation. Nature 458:1180–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora D, Sharma N, Sharma V et al (2016) An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 100(6):2603–2615

    CAS  PubMed  Google Scholar 

  • Aslan K, Wu M, Lakowicz JR et al (2007) Fluorescent core− shell Ag@ SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129(6):1524–1525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atwater HA (2007) The promise of plasmonics. Sci Am 296(4):56–62

    CAS  PubMed  Google Scholar 

  • Baert K, de Geest BG, de Rycke R (2015) β-glucan microparticles targeted to epithelial APN as oral antigen delivery system. J Control Release 220:149–159

    CAS  PubMed  Google Scholar 

  • Baran J, Allendorf DJ, Hong F et al (2007) Oral Beta-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice. Folia Histochem Cytobiol 45(2):107–114

    CAS  PubMed  Google Scholar 

  • Bernkop Schnurch A, Walker G (2001) Multifunctional matrices for oral peptide delivery. Crit Rev Ther Drug Carrier Syst 18(5):459–501

    CAS  PubMed  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47(37):10182–10188

    CAS  Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn JA, Miller JN (1995) (1-3)-beta-D-glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 28:3–141

    CAS  Google Scholar 

  • Bromberg L (2008) Polymeric micelles in oral chemotherapy. J Control Release 128(2):99–112

    CAS  PubMed  Google Scholar 

  • Buckeridge MS, Rayon C, Urbanowicz B et al (2004) Mixed linkage (1→3), (1→4)-Beta-D-glucans of grasses. Cereal Chem 81:115

    CAS  Google Scholar 

  • Chang M, Zhang F, Wei T et al (2016) Smart linkers in polymer–drug conjugates for tumor-targeted delivery. J Drug Target 24(6):475–491

    CAS  PubMed  Google Scholar 

  • Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280

    CAS  Google Scholar 

  • Chauhan B, Kumar G, Kalam N (2013) Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res 4(1):4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006a) Nanotechnology in nutraceuticals and functional foods. Food Technol 60(7):73–75

    Google Scholar 

  • Chen L, Remondetto GE, Subirade M (2006b) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17(5):272–283

    CAS  Google Scholar 

  • Chen KJ, Liang HF, Chen HL et al (2012) A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano 7(1):438–446

    PubMed  Google Scholar 

  • Chen R, Wang S, Zhang J (2015) Aloe-emodin loaded solid lipid nanoparticles: formulation design and in vitro anti-cancer study. Drug Deliv 22(5):666–674

    CAS  PubMed  Google Scholar 

  • Chonn A, Semple SC, Cullis PR (1992) Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem 267(26):18759–18765

    CAS  PubMed  Google Scholar 

  • Chung HY, Cesari M, al AS (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8(1):18–30

    CAS  PubMed  Google Scholar 

  • Cohen S, Bernstein H (1996) Microparticulate systems for the delivery of proteins and vaccines, vol 77. CRC Press, Brand

    Google Scholar 

  • Deng C, Jiang Y, Cheng R et al (2012) Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 7(5):467–480

    CAS  Google Scholar 

  • Díaz M, Vivas-Mejia P (2013) Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharmaceuticals 6(11):1361–1380

    PubMed  Google Scholar 

  • Du B, Lin C, Bian Z et al (2015) An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci Technol 41(1):49–59

    CAS  Google Scholar 

  • Dudeja P, Gupta RK (2017) Nutraceuticals. In: Food safety in the 21st century. Academic Press, San Diego, pp 491–496

    Google Scholar 

  • Durr NJ, Larson T, Smith DK (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gogary RI, Rubio N, Wang JT et al (2014) Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano 8:1384–1401

    CAS  PubMed  Google Scholar 

  • Gabizon AA (1995) Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 16(2–3):285–294

    CAS  Google Scholar 

  • Gao Y, Chen Y, Ji X et al (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5(12):9788–9798

    CAS  PubMed  Google Scholar 

  • Goodridge HS, Reyes CN, Becker CA et al (2011) Activation of the innate immune receptor dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472(7344):471–U541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053

    CAS  PubMed  Google Scholar 

  • Gregoriadis G (1988) Liposomes as a drug delivery system: optimization studies. In: Biotechnological applications of lipid microstructures. Springer, New York, pp 151–159

    Google Scholar 

  • Gursoy RN, Benita S (2004) Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 58(3):173–182

    PubMed  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    CAS  Google Scholar 

  • Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew Chem Int Ed 40(23):4330–4361

    CAS  Google Scholar 

  • Huang H, Ostroff GR, Lee CK et al (2012) Relative contributions of dectin-1 and complement to immune responses to particulate beta-glucans. J Immunol 189(1):312–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue Y, Yoshimura S, Tozuka Y et al (2007) Application of ascorbic acid 2-glucoside as a solubilizing agent for clarithromycin: solubilization and nanoparticle formation. Int J Pharm 331(1):38–45

    CAS  PubMed  Google Scholar 

  • Jiang Y, Lu H, Dag A et al (2016) Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. J Mater Chem B 4(11):2017–2027

    CAS  PubMed  Google Scholar 

  • Kester M, Heakal Y, Fox T et al (2008) Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett 8(12):4116–4121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kommareddy S, Amiji M (2007) Poly (ethylene glycol)–modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine 3(1):32–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75(1):1–18

    CAS  PubMed  Google Scholar 

  • Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452(7183):76

    CAS  PubMed  Google Scholar 

  • Lasic DD, Martin FJ (1995) Stealth liposomes, vol 20. CRC Press, Boca Raton

    Google Scholar 

  • Lasic DD, Martin FJ, Gabizon A et al (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta (BBA)-Biomembranes 1070(1):187–192

    CAS  Google Scholar 

  • Lo YL, Sung KH, Chiu CC et al (2013) Chemically conjugating polyethylenimine with chondroitin sulfate to promote CD44-mediated endocytosis for gene delivery. Mol Pharm 10(2):664–676

    CAS  PubMed  Google Scholar 

  • Luo C, Sun J, Sun B et al (2014) Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci 35(11):556–566

    CAS  PubMed  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul 41:189

    CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    CAS  PubMed  Google Scholar 

  • Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):10

    Google Scholar 

  • Matsumura Y (2007) Preclinical and clinical studies of anticancer drug-incorporated polymeric micelles. J Drug Target 15(7–8):507–517

    CAS  PubMed  Google Scholar 

  • Matsumura Y (2008) Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 60(8):899–914

    CAS  PubMed  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478

    CAS  PubMed  Google Scholar 

  • Morgan TT, Muddana HS, Altinoglu EI et al (2008) Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 8(12):4108–4115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller RH (1991) Colloidal carriers for controlled drug delivery and targeting: modification, characterization and in vivo distribution. Taylor & Francis, Boca Raton

    Google Scholar 

  • Nagai H, Okazaki Y, Chew SH et al (2011) Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci 108:E1330–E1338

    PubMed  Google Scholar 

  • Narayanan S, Mony U, Vijaykumar DK et al (2015) Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine 11(6):1399–1406

    CAS  PubMed  Google Scholar 

  • Owen SC, Chan DP, Shoichet MS (2012) Polymeric micelle stability. Nano Today 7(1):53–65

    CAS  Google Scholar 

  • Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    CAS  PubMed  Google Scholar 

  • Pang X, Yang X, Zhai G (2014) Polymer-drug conjugates: recent progress on administration routes. Expert Opin Drug Deliv 11(7):1075–1086

    CAS  PubMed  Google Scholar 

  • Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17:1044–1052

    CAS  PubMed  Google Scholar 

  • Perche F, Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013:1

    Google Scholar 

  • Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    PubMed  Google Scholar 

  • Pillai JJ, Thulasidasan AKT, Anto RJ et al (2014) Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells. J Nanobiotechnol 12(1):25

    Google Scholar 

  • Platt VM, Szoka FC Jr (2008) Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5(4):474–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plavcová Z, Å alamúnová P, Saloň I et al (2019) Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro. Int J Pharm 568:118532

    PubMed  Google Scholar 

  • Popovtzer R, Agrawal A, Kotov NA et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porter CJ, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6(3):231

    CAS  PubMed  Google Scholar 

  • Porter CJ, Pouton CW, Cuine JF et al (2008) Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 60(6):673–691

    CAS  PubMed  Google Scholar 

  • Qian X, Peng XH, Ansari DO et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83

    CAS  PubMed  Google Scholar 

  • Rapoport NY, Kennedy AM, Shea JE et al (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138(3):268–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezvantalab S, Drude NI, Moraveji MK et al (2018) PLGA-based nanoparticles in cancer treatment. Front Pharmacol 9:1260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland A (ed) (1993) Pharmaceutical particulate carriers. Therapeutic applications, vol 61. Marcel Dekker, New York

    Google Scholar 

  • Saloň I, HanuÅ¡ J, Ulbrich P et al (2016) Suspension stability and diffusion properties of yeast glucan microparticles. Food Bioprod Process 99(Supplement C):128–135

    Google Scholar 

  • Saneja A, Dhar Dubey R, Alam N et al (2014a) Co-formulation of P-glycoprotein substrate and inhibitor in nanocarriers: an emerging strategy for cancer chemotherapy. Curr Cancer Drug Targets 14(5):419–433

    CAS  PubMed  Google Scholar 

  • Saneja A, Khare V, Alam N et al (2014b) Advances in P-glycoprotein-based approaches for delivering anticancer drugs: pharmacokinetic perspective and clinical relevance. Expert Opin Drug Deliv 11(1):121–138

    CAS  PubMed  Google Scholar 

  • Saneja A, Nehate C, Alam N (2016) Recent advances in chitosan-based nanomedicines for cancer chemotherapy. In: Chitin and chitosan for regenerative medicine. Springer, New Delhi, pp 229–259

    Google Scholar 

  • Sanguansri P, Augustin MA (2006) Nanoscale materials development–a food industry perspective. Trends Food Sci Technol 17(10):547–556

    CAS  Google Scholar 

  • Santos HA, Bimbo LM, Peltonen L et al (2015) Inorganic nanoparticles in targeted drug delivery and imaging. In: Targeted drug delivery: concepts and design. Springer, Cham, pp 571–613

    Google Scholar 

  • Sercombe L, Veerati T, Moheimani F et al (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:286

    PubMed  PubMed Central  Google Scholar 

  • Sharma S, Bano A, Pathak N (2019) Pre- and probiotics: using functional foods in the fight against microbial resistance to antibiotics. Antibacterial drug discovery to combat MDR, 978-981-13-9870-4, 459963_1_En, (18)

    Google Scholar 

  • Shimomur M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6(1):11–16

    Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW et al (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    CAS  PubMed  Google Scholar 

  • Soto ER, Ostroff GR (2008) Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjug Chem 19(4):840–848

    CAS  PubMed  Google Scholar 

  • Soto E, Kim YS, Lee J et al (2010) Glucan particle encapsulated rifampicin for targeted delivery to macrophages. Polymers 2:681–689

    CAS  Google Scholar 

  • Soto ER, Caras AC, Kut LC et al (2012) Glucan particles for macrophage targeted delivery of nanoparticles. J Drug Deliv 13:14352

    Google Scholar 

  • Sutradhar KB, Amin ML (2014) Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol 2014:1

    Google Scholar 

  • Sutton D, Nasongkla N, Blanco E et al (2007) Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 24(6):1029–1046

    CAS  PubMed  Google Scholar 

  • Talelli M, Barz M, Rijcken CJ et al (2015) Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation. Nano Today 10(1):93–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teong B, Lin CY, Chang SJ et al (2015) Enhanced anti-cancer activity by curcumin-loaded hydrogel nanoparticle derived aggregates on A549 lung adenocarcinoma cells. J Mater Sci Mater Med 26(1):49

    Google Scholar 

  • Thanki K, Gangwal RP, Sangamwar AT et al (2013) Oral delivery of anticancer drugs: challenges and opportunities. J Control Release 170(1):15–40

    CAS  PubMed  Google Scholar 

  • Torchilin VP (1996) How do polymers prolong circulation time of liposomes? J Liposome Res 6(1):99–116

    CAS  Google Scholar 

  • Torchilin VP (1998) Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul 15(1):1–19

    CAS  PubMed  Google Scholar 

  • Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555

    CAS  PubMed  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1

    CAS  PubMed  Google Scholar 

  • Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16(2–3):141–155

    CAS  Google Scholar 

  • Torchilin VP, Levchenko TS, Whiteman KR et al (2001) Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials 22(22):3035–3044

    CAS  PubMed  Google Scholar 

  • Upadhyay TK, Fatima N, Sharma D et al (2017) Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced targeted delivery to macrophages. EXCLI 16:210–228

    Google Scholar 

  • Upadhyay TK, Fatima N, Sharma A et al (2019) Nano-rifabutin entrapment within glucan microparticles enhances protection against intracellular Mycobacterium tuberculosis. Artif Cells Nanomed Biotechnol 47(1):427–435

    CAS  PubMed  Google Scholar 

  • Van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3(2):205–216

    PubMed  Google Scholar 

  • Vecchione R, Quagliariello V, Calabria D et al (2016) Curcumin bioavailability from oil in water nano-emulsions: in vitro and in vivo study on the dimensional, compositional and interactional dependence. J Control Release 233:88–100

    CAS  PubMed  Google Scholar 

  • Wang L, Wang W, Rui Z et al (2016) The effective combination therapy against human osteosarcoma: doxorubicin plus curcumin co-encapsulated lipid-coated polymeric nanoparticulate drug delivery system. Drug Deliv 23(9):3200–3208

    CAS  PubMed  Google Scholar 

  • Weber S, Zimmer A, Pardeike J (2014) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86(1):7–22

    CAS  PubMed  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421

    CAS  PubMed  Google Scholar 

  • Wing Shing Ho J, Wan Man Cheung M, Wai Lam Yu V (2012) Active phytochemicals from Chinese herbs as therapeutic agents for the heart. Cardiovasc Hematol Agents Med Chem 10(3):251–255

    Google Scholar 

  • Woodle MC, Engbers CM, Zalipsky S (1994) New amphipatic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug Chem 5(6):493–496

    CAS  PubMed  Google Scholar 

  • Xu P, Wang R, Li J et al (2015) PEG–PLGA–PLL nanoparticles in combination with gambogic acid for reversing multidrug resistance of K56 New amphipatic polymer-lipid conjugat2/A02 cells to daunorubicin. RSC Adv 5:61051–61059

    CAS  Google Scholar 

  • Yallapu MM, Ebeling MC, Khan S (2013) Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol Cancer Ther 12(8):1471–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Allendorf DJ, Brandley B (2005) Yeast whole glucan particle (wgp) beta-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert Opin Biol Ther 5(5):691–702

    CAS  PubMed  Google Scholar 

  • Yu C, Nakshatri H, Irudayaraj J (2007) Identity profiling of cell surface markers by multiplex gold nanorod probes. Nano Lett 7(8):2300–2306

    CAS  PubMed  Google Scholar 

  • Yu M, Chen Z, Guo W et al (2015) Specifically targeted delivery of protein to phagocytic macrophages. Int J Nanomedicine 10:1743–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J (2007) Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: a perspective on plant biotechnology application. Recent Pat Biotechnol 1(1):75–97

    CAS  PubMed  Google Scholar 

  • Zhao J, Lee P, Wallace JM et al (2015a) Gold nanoparticles in cancer therapy: efficacy, biodistribution, and toxicity. Curr Pharm Des 21:4240–4251

    CAS  PubMed  Google Scholar 

  • Zhao T, Liu Y, Gao Z et al (2015b) Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes. Mater Sci Eng 53:196–203

    CAS  Google Scholar 

  • Zhong Y, Meng F, Deng C (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 15(6):1955–1969

    CAS  PubMed  Google Scholar 

  • Zhou L, Duan X, Zeng S et al (2015) Codelivery of SH-aspirin and curcumin by mPEG-PLGA nanoparticles enhanced antitumor activity by inducing mitochondrial apoptosis. Int J Nanomedicine 10:5205

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the DST-FIST, Department of Science and Technology as well as Uttar Pradesh Council of Science and Technology and Integral University, Lucknow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolee Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bano, A., Gupta, A., Sharma, S., Sharma, R. (2020). Recent Developments in Nanocarrier-Based Nutraceuticals for Therapeutic Purposes. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_20

Download citation

Publish with us

Policies and ethics