Skip to main content

New Insights into Application of Nanoparticles for Plant Growth Promotion: Present and Future Prospects

  • Chapter
  • First Online:
Biogenic Nano-Particles and their Use in Agro-ecosystems

Abstract

Nanotechnology has opened up new avenues in precision and sustainable agriculture by offering more efficient fertilizers and pesticides. The effects of use of these nanomaterials include increased seed germination, length of root-shoot, and biomass of the seedlings along with enhancement of the physiological parameters that enhance nitrogen metabolism and photosynthetic activity in many crop plants. They also provide many other benefits as reducing the amount of chemical used and increasing the absorption of nutrients from the soil, hence reducing the agricultural inputs. Nanotechnology holds the promises controlled release of agrochemicals as well as targeted delivery of several macromolecules. This technology may be used to make nanoscale sensors for monitoring the soil quality as well as nutritional status of agricultural field. Precise and on-demand application of nanopesticides or nanofertilizers can enhance the productivity and prove protection against several pests without harming the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55

    Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28(4):313–318

    CAS  Google Scholar 

  • Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim Acta 143:12

    Google Scholar 

  • Anjum NA, Singh N, Singh MK et al (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841

    CAS  PubMed  Google Scholar 

  • Bahadır EB, Sezgintürk MK (2017) Biosensor technologies for analyses of food contaminants. In: Nanobiosensors. Elsevier, Amsterdam, pp 289–337. ISBN 978-0-12-804301-1

    Google Scholar 

  • Bailey-Serres J, Fukao T, Gibbs DJ et al (2012) Making sense of low oxygen sensing. Trends Plant Sci 17:129–138

    CAS  PubMed  Google Scholar 

  • Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64(2):120–127

    Google Scholar 

  • Beck MB, Villarroel Walker R (2013) On water security, sustainability, and the water-food-energy-climate nexus. Front Environ Sci Eng 7:626–639

    Google Scholar 

  • Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79e85

    Google Scholar 

  • Bhattacharyya A, Datta PS, Chaudhuri P et al (2011) Nanotechnology: a new frontier for food security in socio economic development. In: Proceeding of disaster, risk and vulnerability conference 2011 held at School of Environmental Sciences, Mahatma Gandhi University, India in association with the Applied Geoinformatics for Society and Environment, Germany, pp 12–14

    Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M et al (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319

    Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52e62

    Google Scholar 

  • Burris KP, Stewart CN (2012) Fluorescent nanoparticles: sensing pathogens and toxins in foods and crops. Trends Food Sci Technol 28:143–152

    CAS  Google Scholar 

  • Cañas JE, Long M, Nations S et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem Int J 27(9):1922–1931

    Google Scholar 

  • Chaudhari Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595e603

    Google Scholar 

  • Cherchi C, Gu AZ (2010) Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ Sci Technol 44(21):8302–8307

    CAS  PubMed  Google Scholar 

  • Chidambaram R (2016) Application of rice husk nanosorbents containing 2, 4-dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. J Taiwan Inst Chem Eng 63:318–326

    Google Scholar 

  • Choudhury SR, Ghosh M, Mandal A et al (2011) Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl Microbiol Biotechnol 90(2):733–743

    PubMed  Google Scholar 

  • Clark HA, Hoyer M, Philbert MA (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836

    CAS  PubMed  Google Scholar 

  • Donaldson K, Stone V, Tran CL (2004) Nanotoxicology. Occup Environ Med 619:727–728

    Google Scholar 

  • El-Shanshoury AERR, ElSilk SE, Ebeid ME (2011) Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnol 2011:1–7

    Google Scholar 

  • EPA (2007) Nanotechnology white paper. U.S. Environmental Protection Agency publication, Washington, DC. Available at: http://www.epa.gov/nanoscience/files/epa_nano_wp_2007.pdf. Accessed 22 Jan 11

  • Farrar J, Hawes M, Jones D et al (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N (2012) Impact of bulk and nanosized titanium dioxide (TiO 2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146(1):101–106

    CAS  PubMed  Google Scholar 

  • Feng BH, Peng LF (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88:576–582

    CAS  Google Scholar 

  • Flood J (2010) The importance of plant health to food security. Food Sec 2(3):215–231

    Google Scholar 

  • García EA, Fernández RG, Días-García ME (2005) Tris(bipyridine)ruthenium(II) doped sol-gel materials for oxygen recognition in organic solvents. Microporous Mesoporous Mater 77:235–239

    Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    PubMed  PubMed Central  Google Scholar 

  • Gheorghe I, Czobor I, Lazar V et al (2017) Present and perspectives in pesticides biosensors development and contribution of nanotechnology. In: New pesticides and soil sensors. Elsevier, Amsterdam, pp 337–372. ISBN 978-0-12-804299-1

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    CAS  PubMed  Google Scholar 

  • Gogoi R, Dureja P, Singh PK (2009) Nanoformulations- a safer and effective option for agrochemicals. Indian Farm 59(8):7–12

    Google Scholar 

  • Grillo R, Pereira AE, Nishisaka CS et al (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    CAS  PubMed  Google Scholar 

  • Gutiérrez FJ, Mussons ML, Gatón P et al (2011) Nanotechnology and food industry. Scientific, health and social aspects of the food industry. Tech, Croatia Book Chapter

    Google Scholar 

  • Hayles J, Johnson L, Worthley C et al (2017) Nanopesticides: a review of current research and perspectives. In: New pesticides and soil sensors. Elsevier, San Diego, pp 193–225

    Google Scholar 

  • Huang J, Li Q, Sun D et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Google Scholar 

  • Husu I, Rodio G, Touloupakis E et al (2013) Insights into photo-electrochemical sensing of herbicides driven by Chlamydomonas reinhardtii cells. Sensors Actuators B Chem 185:321–330

    CAS  Google Scholar 

  • Jackson T, Mansfield K, Saafi M et al (2008) Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 41:381–390

    Google Scholar 

  • Jaeger CH III, Lindow SE, Miller W et al (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jalali B, Suryanarayana D (1971) Shift in the carbohydrate spectrum of root exudates of wheat in relation to its root-rot disease. Plant Soil 34:261–267

    CAS  Google Scholar 

  • Jenne M, Kambham M, Tollamadugu NP et al (2018) The use of slow releasing nanoparticle encapsulated Azadirachtin formulations for the management of Caryedon serratus O. (groundnut bruchid). IET Nanobiotechnol 12(7):963–967

    PubMed  Google Scholar 

  • Joseph T, Morrison M (2006) Nanoforum report: nanotechnology in agriculture and food. European Nanotechnology Gateway. Available at: http://ftp.cordis.europa.eu/pub/nanotechnology/docs/nanotechnology_in_agriculture_and_food.pdf. Accessed 18 Apr 14

  • Kahru A, Dubourguier HL (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105e119

    Google Scholar 

  • Kalagatur NK, Ghosh N, Sivaraman O (2018) Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front Pharmacol 9:610

    PubMed  PubMed Central  Google Scholar 

  • Kannan N, Rangaraj S, Gopalu K et al (2012) Curr Nanosci 8:902–908

    Google Scholar 

  • Kaushal M, Wani SP (2017) Nanosensors: frontiers in precision agriculture. In: Nanotechnology. Springer, Singapore, pp 279–291

    Google Scholar 

  • Kaweeteerawat C, Ivask A, Liu R et al (2015) Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environ Sci Technol 49(2):1105–1112

    CAS  PubMed  Google Scholar 

  • Khandelwal N, Barbole RS, Banerjee SS et al (2016) Budding trends in integrated pest management using advanced micro-and nano-materials: challenges and perspectives. J Environ Manag 184:157–169

    CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    CAS  Google Scholar 

  • Klimant I, Ruckruh F, Liebsch G (1999) Fast response oxygen micro-optodes based on novel soluble ormosil glasses. Mikrochim Acta 131:35–46

    CAS  Google Scholar 

  • Konotop YO, Kovalenko MS, Ulynets VZ et al (2014) Phytotoxicity of colloidal solutions of metal-containing nanoparticles. Cytol Genet 48(2):99–102

    Google Scholar 

  • Kumar V, Guleria P, Kumar V et al (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    PubMed  Google Scholar 

  • Kumar S, Kumar D, Dilbaghi N (2017) Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ Sci Pollut Res 24(1):926–937

    Google Scholar 

  • Lahiani MH, Dervishi E, Chen J et al (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5(16):7965–7973

    CAS  PubMed  Google Scholar 

  • Lai F, Wissing SA, Müller RH et al (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm Sci Tech 7:E10

    Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    CAS  PubMed  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem: Int J 29(3):669–675

    CAS  Google Scholar 

  • Lee S, Chung H, Kim S et al (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224:1668. https://doi.org/10.1007/s11270-013-1668-0

    Article  CAS  Google Scholar 

  • Li N, Sioutas C, Cho A et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao W, Lu X (2016) Determination of chemical hazards in foods using surface-enhanced Raman spectroscopy coupled with advanced separation techniques. Trends Food Sci Technol 54:103–113

    CAS  Google Scholar 

  • Lin CA (2007) Size matters: regulating nanotechnology. Harv Environ Law Rev 31:350–407

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    CAS  PubMed  Google Scholar 

  • Liu Y, Yan L, Heiden P et al (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79:458–465

    CAS  Google Scholar 

  • Liu Y, Laks P, Heiden P (2002) Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J Appl Polym Sci 86:615–621

    CAS  Google Scholar 

  • Liu XM, Zhang FD, Zhang SQ et al (2005) Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fert Sci 11:14–18

    Google Scholar 

  • Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients. Water Air Soil Pollut 227(1):42

    Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ et al (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    PubMed  PubMed Central  Google Scholar 

  • Lu W, Lu ML, Zhang QP et al (2013) Octahydrogenated retinoic acid-conjugated glycol chitosan nanoparticles as a novel carrier of azadirachtin: synthesis, characterization, and in vitro evaluation. J Polym Sci A Polym Chem 51:3932–3940

    CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B et al (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778

    CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7

    Google Scholar 

  • Mahajan P, Shailesh K, Dhoke RK et al (2013) Nanotechnology 3:4052–4081

    Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2000) Effect of nanoscale titanium dioxide particles on the germination and growth of canola Brassica napus. J Ornam Hortic Plants 3:25–32

    Google Scholar 

  • Marschner H (1996) Mineral nutrition of higher plants. Academic Press/Harcourt Brace & Co, London

    Google Scholar 

  • Maruyama CR, Guilger M, Pascoli M et al (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran KLM, Fitzgerald J, McPartlin DA et al (2016) Biosensor-based technologies for the detection of pathogens and toxins. In: Comprehensive analytical chemistry, vol 74. Elsevier, Amsterdam, pp 93–120. ISBN 978-0-444-63579-2

    Google Scholar 

  • Morla S, Rao CR, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci (JCBPS) 1(2):328

    CAS  Google Scholar 

  • Naderi MR, Abedi A (2012) J Nanotech 11(1):18–26

    Google Scholar 

  • Nadi E, Aynehband A, Mojaddam M (2013) Int J Biosci 3:267–272

    Google Scholar 

  • Nair R, Varghese SH, Nair BG (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154e163

    Google Scholar 

  • Namasivayam KRS, Aruna A, Gokila (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9(9):19–27

    Google Scholar 

  • Navarro E, Baun A, Behra R (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372e386

    Google Scholar 

  • Nguyen TNQ, Le VA, Hua QC, Nguyen TT (2014) Enhancing insecticide activity of anacardic acid by intercalating it into MgAl layered double hydroxides nanoparticles. J Vietnam Environ 6(3):208–211. https://doi.org/10.13141/jve

  • Patra P, Mitra S, Debnath N et al (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir 28(49):16966–16978

    CAS  PubMed  Google Scholar 

  • Patra P, Choudhury SR, Mandal S et al (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vignaradiata) nutrition. In: Advanced nanomaterials and nanotechnology. Springer, Berlin/Heidelberg, pp 301–309

    Google Scholar 

  • Patra S, Roy E, Madhuri R et al (2017) A technique comes to life for security of life: the food contaminant sensors. In: Nanobiosensors. Elsevier, Amsterdam, pp 713–772

    Google Scholar 

  • Pola-López LA, Camas-Anzueto JL, Martínez-Antonio A et al (2018) Novel arsenic biosensor “POLA” obtained by a genetically modified E. coli bioreporter cell. Sensors Actuators B Chem 254:1061–1068

    Google Scholar 

  • Puoci F, Iemma F, Picci N (2008) Stimuli-responsive molecularly imprinted polymers for drug delivery: a review. Current Drug Deliv 5(2):85–96

    CAS  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    CAS  Google Scholar 

  • Rajaie M, Ziaeyan AH (2009) Int J Plant Prod 3(3):35–440

    Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A et al (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    CAS  Google Scholar 

  • Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 14:124e133

    Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197

    Google Scholar 

  • Saharan V, Mehrotra A, Khatik R et al (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    CAS  PubMed  Google Scholar 

  • Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis 2(1):2

    Google Scholar 

  • Schmälzlin E, van Dongen JT, Klimant I (2005) An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys J 89:1339–1345

    PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicon esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    CAS  PubMed  Google Scholar 

  • Singh S (2012) Achieving second green revolution through nanotechnology in India. Agric Situat India:545–572

    Google Scholar 

  • Singh S, Singh BK, Yadav SM (2014) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5:1–5. https://doi.org/10.3923/rjnn.2014

    Article  Google Scholar 

  • Sinha K, Ghosh J, Sil PC (2017) New pesticides: a cutting-edge view of contributions from nanotechnology for the development of sustainable agricultural pest control. In: New pesticides and soil sensors. Elsevier, Amsterdam, pp 47–79. ISBN 978-0-12-804299-1

    Google Scholar 

  • Stephenson GR (2003) Pesticide use and world food production: risks and benefits. In: Environmental fate and effects of pesticides. American Chemical Society, Washington, DC, pp 261–270

    Google Scholar 

  • Suh WH, Suslick KS, Stucky GD et al (2009) Nanotechnology, nanotoxicology and neuroscience. Prog Neurobiol 87:133e170

    Google Scholar 

  • Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2(12):953–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R et al (2012) J Curr Nanosci 8:902–908

    CAS  Google Scholar 

  • Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of ‘nano-technology’. In Proceedings of the international conference on production engineering, 1974–8, vol 2, pp 18–23

    Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012a) Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6(2):84–89

    CAS  Google Scholar 

  • Tarafdar JC, Agarwal A, Raliya R et al (2012b) Adv Sci Eng Med 4:1–5

    Google Scholar 

  • Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39(5):1354–1358

    CAS  PubMed  Google Scholar 

  • Verma N, Kaur G (2016) Trends on biosensing systems for heavy metal detection. In: Comprehensive analytical chemistry, vol 74. Elsevier, Amsterdam, pp 33–71. ISBN 978-0-444-63579-2

    Google Scholar 

  • Viirlaid E, Riiberg R, Mäeorg U et al (2009) Glyphosate attachment on aminoactivated carriers for sample stabilization and concentration. Agron Res 13:1152–1159

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E et al (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cui H, Sun C et al (2014) Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers. Nanoscale Res Lett 9:2490

    PubMed  Google Scholar 

  • Wang C, Otto S, Dorn M et al (2019) Luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength. Anal Chem 91(3):2337–2344

    CAS  PubMed  Google Scholar 

  • Xu L, Liu Y, Bai R et al (2010) Applications and toxicological issues surrounding nanotechnology in the food industry. Pure Appl Chem 82:349e372

    Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132

    CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F et al (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    CAS  PubMed  Google Scholar 

  • Yang Y, Cheng J, Garamus VM et al (2018) Preparation of an environmentally friendly formulation of the insecticide nicotine hydrochloride through encapsulation in chitosan/tripolyphosphate nanoparticles. J Agric Food Chem 66(5):1067–1074

    CAS  PubMed  Google Scholar 

  • Yu Z, Sun X, Song H et al (2015) Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides. Mater Sci Appl 6(06):591

    CAS  Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V et al (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3(3):180–190

    CAS  Google Scholar 

  • Zhang J, Li M, Fan T et al (2013) Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J Polym Res 20:107

    CAS  Google Scholar 

  • Zhang D, Hua T, Xiao F et al (2015) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211–219

    CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM et al (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Department of Science and Technology (DST FIST, DST INSPIRE-IF160803) and Uttar Pradesh Council of Science and Technology for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Bano, A., Rai, S., Pathak, N., Sharma, S. (2020). New Insights into Application of Nanoparticles for Plant Growth Promotion: Present and Future Prospects. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_15

Download citation

Publish with us

Policies and ethics