Skip to main content

Transgenic Biofortified Crops: Applicability and Challenges

  • Chapter
  • First Online:
Advances in Agri-Food Biotechnology

Abstract

Throughout the world, more people suffer from malnutrition than hunger, particularly in developing countries. Some nutrients like iodine, vitamin A, iron, and zinc malnutrition are significant concerns. Biofortification is the most resilient method to improve the nutrient content of the crop plants and is a durable and cost-effective method of introducing genes to overcome the nutrient deficiencies faced by the people in developing countries. Currently, agronomic, conventional, and transgenic biofortification are three common approaches to nutrient biofortification. In this chapter, the significant progress made in transgenic biofortification development, their applicability, and future challenges has been discussed. The transgenic approach has been utilized for the successful development of crops to acquire the nutrients that do not exist naturally. Recently, several reports on the development of transgenic crops to enhance levels of essential micronutrient contents in crops like tomato, sweet potato, potato, beans, cassava, and other vegetable crops have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Babili S, Beyer P (2005) Golden Rice–five years on the road–five years to go? Trends Plant Sci 10(12):565–573

    CAS  PubMed  Google Scholar 

  • Aragão FJL, Barros LMG, De Sousa MV, Grossi de Sá MF, Almeida ERP, Gander ES, Rech EL (1999) Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa HBK, Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genet Mol Biol 22(3):445–449

    Google Scholar 

  • Arimond M, Ruel MT (2004) Dietary diversity is associated with child nutritional status: evidence from 11 demographic and health surveys. J Nutr 134(10):2579–2585

    CAS  PubMed  Google Scholar 

  • Bailey DP, Broom DR, Chrismas BC, Taylor L, Flynn E, Hough J (2015) Breaking up prolonged sitting time with walking does not affect appetite or gut hormone concentrations but does induce an energy deficit and suppresses postprandial glycaemia in sedentary adults. Appl Physiol Nutr Metab 41(3):324–331

    PubMed  Google Scholar 

  • Banakar R, Alvarez Fernandez A, Díaz-Benito P, Abadia J, Capell T, Christou P (2017) Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. J Exp Bot 68(17):4983–4995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Black RE, Bhutta ZA LHA, Caulfield LE, De Onnis M, Ezzati M, Mathers C, Rivera J (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260

    PubMed  Google Scholar 

  • Boonyaves K, Gruissem W, Bhullar NK (2016) NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and FERRITIN genes to increase iron in rice grains. Plant Mol Biol 90(3):207–215

    CAS  PubMed  Google Scholar 

  • Boonyaves K, Wu TY, Gruissem W, Bhullar NK (2017) Enhanced grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front Plant Sci 8:130

    PubMed  PubMed Central  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B, Madsen LH, Darbani B, Noeparvar S, Holm PB (2012) Wheat ferritins: improving the iron content of the wheat grain. J Cereal Sci 56(2):204–213

    CAS  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62(2):403–411

    PubMed  Google Scholar 

  • Bouis HE (1999) Economics of enhanced micronutrient density in food staples. Field Crop Res 60:165–173. https://doi.org/10.1016/S0378-4290(98)00138-5

    Article  Google Scholar 

  • Bouis H, Howarth E (2000) Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition (Burbank, Los Angeles County, Calif) 16(7–8):701–704

    CAS  Google Scholar 

  • Bouis HE, Chassy BM, Ochanda JO (2003) 2. Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci Technol 14(5–8):191–209

    CAS  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(1 Suppl):S31–S40

    PubMed  Google Scholar 

  • Brinch-Pedersen H, Borg S, Tauris B, Holm PB (2007) Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. J Cereal Sci 46(3):308–326

    CAS  Google Scholar 

  • Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11(5):1071–1078

    CAS  PubMed  Google Scholar 

  • Chaudhary J, Khatri P, Singla P, Kumawat S, Kumari A, Vikram A, Jindal SK, Kardile H, Kumar R, Sonah H (2019) Advances in omics approaches for abiotic stress tolerance in tomato. Biology 8(4):90

    CAS  PubMed Central  Google Scholar 

  • Chizuru N, Ricardo U, Shiriki K, Prakash S (2003) The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr 7(1a):245–250. https://doi.org/10.1079/PHN2003592

    Article  Google Scholar 

  • Christou P, Twyman RM (2004) The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 17(1):23–42

    PubMed  Google Scholar 

  • De Lepeleire J, Strobbe S, Verstraete J, Blancquaert D, Ambach L, Visser RG, Stove C, Van Der Straeten D (2018) Folate biofortification of potato by tuber-specific expression of four folate biosynthesis genes. Mol Plant 11(1):175–188

    PubMed  Google Scholar 

  • De Onis M, Branca F (2016) Childhood stunting: a global perspective. Matern Child Nutr 12:12–26

    PubMed  PubMed Central  Google Scholar 

  • Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G (2006) Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6(1):13

    PubMed  PubMed Central  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129(3):635–643

    CAS  Google Scholar 

  • Doshi KM, Eudes F, Laroche A, Gaudet D (2006) Transient embryo-specific expression of anthocyanin in wheat. Vitro Cell Dev Biol-Plant 42(5):432–438

    CAS  Google Scholar 

  • Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2004) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot 56(409):81–89

    PubMed  Google Scholar 

  • Fanzo J. The nutrition challenge in sub-Saharan Africa (No. 2012–012). United Nations Development Programme, Regional Bureau for Africa; 2012

    Google Scholar 

  • FAO (2013) FAO statistical yearbook: world food and agriculture

    Google Scholar 

  • FAO (2015) IFAD, and Unicef. "WFP." The state of food insecurity in the world 46

    Google Scholar 

  • Gaitán-Solís E, Taylor NJ, Siritunga D, Stevens W, Schachtman DP (2015) Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci 6:492

    PubMed  PubMed Central  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet 100(5):658–664

    CAS  Google Scholar 

  • Graham H, Peter H, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta HS, Agrawal PK, Mahajan V, Bisht GS, Kumar A, Verma P, Srivastava A, Saha S, Babu R, Pant MC, Mani VP (2009) Quality protein maize for nutritional security: rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96(2):230–237

    Google Scholar 

  • Hefferon KL (2015) Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 16(2):3895–3914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschi A (2009) Career adaptability development in adolescence: multiple predictors and effect on sense of power and life satisfaction. J Vocat Behav 74(2):145–155

    Google Scholar 

  • Hong H, Datla N, Reed DW, Covello PS, MacKenzie SL, Qiu X (2002) High-level production of γ-linolenic acid in Brassica juncea using a Δ6 desaturase from Pythium irregulare. Plant Physiol 129(1):354–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howell EL, Wirz CD, Brossard D, Jamieson KH, Scheufele DA, Winneg KM, Xenos MA (2018) National Academies of Sciences, Engineering, and Medicine report on genetically engineered crops influences public discourse. Politics Life Sci 37(2):250–261

    PubMed  Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91(5):1461S–1467S

    CAS  PubMed  Google Scholar 

  • Ihemere U, Narayanan N, Sayre R (2012) Iron biofortification and homeostasis in transgenic cassava roots expressing an algal iron assimilatory protein, FEA1. Front Plant Sci 3:171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inaba M, Macer D (2004) Policy, regulation and attitudes towards agricultural biotechnology in Japan. J Int Biotechnol Law 1(2):45–53

    Google Scholar 

  • Initiative M (2009) Investing in the future: a united call to action on vitamin and mineral deficiencies. Micronutrient Initiative, Ottawa

    Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32(4):408–416

    CAS  PubMed  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26(1):59–67

    CAS  PubMed  Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18(12):3594–3605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons G, Cakmak I (2012) Agronomic biofortification of food crops with micronutrients. Fertilizing crops to improve human health: a scientific review. Food Nutr Secur 1:97–122

    Google Scholar 

  • Marles RJ (2017) Mineral nutrient composition of vegetables, fruits and grains: the context of reports of apparent historical declines. J Food Compos Anal 56:93–103

    CAS  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543

    PubMed  PubMed Central  Google Scholar 

  • Masuda H, Aung MS, Nishizawa NK (2013) Iron biofortification of rice using different transgenic approaches. Rice 6(1):40

    PubMed  PubMed Central  Google Scholar 

  • McGuire S (2015) FAO, IFAD, and WFP. The state of food insecurity in the world 2015: meeting the 2015 international hunger targets: taking stock of uneven progress. Rome: FAO, 2015. Adv Nutr 6(5):623–624. https://doi.org/10.3945/an.115.009936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura MDG, Lopes LC, Biavatti MW, Busse JW, Wang L, Kennedy SA, Bhatnaga N, de Cássia Bergamaschi C (2016) Brazilian oral herbal medication for osteoarthritis: a systematic review protocol. Syst Rev 5(1):86

    PubMed Central  Google Scholar 

  • Mushtaq M, Mukhtar S, Sakina A, Dar AA, Bhat R, Deshmukh R, Molla K, Kundoo AA, Dar MS (2020) Tweaking genome-editing approaches for virus interference in crop plants. Plant Physiol Biochem 147:8

    Google Scholar 

  • Muthusamy V, Hossain F, Thirunavukkarasu N, Choudhary M, Saha S, Bhat JS, Prasanna BM, Gupta HS (2014) Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9(12):e113583

    PubMed  PubMed Central  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136(4):1064–1067

    CAS  PubMed  Google Scholar 

  • Newell-McGloughlin M (2008) Nutritionally improved agricultural crops. Plant Physiol 147(3):939–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolia A, Manzo A, Veronesi F, Rosellini D (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34(1):77–88

    CAS  PubMed  Google Scholar 

  • Oliva N, Chadha-Mohanty P, Poletti S, Abrigo E, Atienza G, Torrizo L, Garcia R, Dueñas C Jr, Poncio MA, Balindong J, Manzanilla M, Montecillo F, Zaidem M, Barry G, Hervé P, Shou H, Slamet-Loedin IH (2014) Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Mol Breed 33(1):23–37

    CAS  PubMed  Google Scholar 

  • Paul S, Ali N, Datta SK, Datta K (2014) Development of an iron-enriched high-yieldings indica rice cultivar by introgression of a high-iron trait from transgenic iron-biofortified rice. Plant Foods Hum Nutr 69(3):203–208

    CAS  PubMed  Google Scholar 

  • Park HS, Rene ER, Choi SM, Chiu AS (2008) Strategies for sustainable development of industrial park in Ulsan, South Korea—from spontaneous evolution to systematic expansion of industrial symbiosis. J Environ Manag 87(1):1–13

    Google Scholar 

  • Pérez-Massot E, Banakar R, Gómez-Galera S, Zorrilla-López U, Sanahuja G, Arjó G, Miralpeix B, Vamvaka E, Farré G, Rivera SM, Dashevskaya S, Berman J, Sabalza M, Yuan D, Bai C, Bassie L, Twyman RM, Capell T, Christou P, Zhu C (2013) The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes Nutr 8(1):29

    PubMed  Google Scholar 

  • Petry N, Olofin I, Hurrell R, Boy E, Wirth J, Moursi M, Donahue Angel M, Rohner F (2016) The proportion of anemia associated with iron deficiency in low, medium, and high human development index countries: a systematic analysis of national surveys. Nutrients 8(11):693

    PubMed Central  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47(S3):S88–S105

    Google Scholar 

  • Pierce EC, LaFayette PR, Ortega MA, Joyce BL, Kopsell DA, Parrott WA (2015) Ketocarotenoid production in soybean seeds through metabolic engineering. PLoS One 10(9):e0138196

    PubMed  PubMed Central  Google Scholar 

  • Qaim M, Stein AJ, Meenakshi JV (2007) Economics of biofortification. Agric Econ 37:119–133

    Google Scholar 

  • Rana N, Rahim MS, Kaur G, Bansal R, Kumawat S, Roy J, Deshmukh R, Sonah H, Sharma TR (2019) Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). Crit Rev Food Sci Nutr:1–17. https://doi.org/10.1080/10408398.2019.1685454

  • Rodríguez-Celma J, Schmidt W (2013) Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds. Plant Signal Behav 8(11):1473–1485

    Google Scholar 

  • Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: progress toward a more nourishing future. Glob Food Sec 2(1):9–17

    Google Scholar 

  • Sperotto RA, Ricachenevsky FK (2017) Common bean Fe biofortification using model species’ lessons. Front Plant Sci 8:2187

    PubMed  PubMed Central  Google Scholar 

  • Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang GF, Lambert W, Van Der Straeten D (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25(11):1277

    CAS  PubMed  Google Scholar 

  • Tan S, Han R, Li P, Yang G, Li S, Zhang P, Wang WB, Zhao WZ, Yin LP (2015) Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res 24(1):109–122

    CAS  PubMed  Google Scholar 

  • Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AA, Tohme J, Barry G, Slamet-Loedin IH (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda M, Watanabe KN, Ohsawa R (2019) Regulatory status of genome-edited organisms under the Japanese Cartagena Act. Front Bioeng Biotechnol 7:387

    PubMed  PubMed Central  Google Scholar 

  • Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R (2019) Genome editing in plants: exploration of technological advancements and challenges. Cell 8(11):1386

    CAS  Google Scholar 

  • Voogt W, Holwerda HT, Khodabaks R (2010) Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J Sci Food Agric 90(5):906–913

    CAS  PubMed  Google Scholar 

  • Wang C, Zeng J, Li Y, Hu W, Chen L, Miao Y, Deng P, Yuan C, Ma C, Chen X, Zang M, Wang Q, Li K, Chang J, Wang Y, Yang G, He G (2014) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65(9):2545–2556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wesseler J, Zilberman D (2014) The economic power of the golden rice opposition. Environ Dev Econ 19(6):724–742

    Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593

    PubMed  Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, Tohge T, Fernie AR, Günther D, Gruissem W, Sautter C (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7(7):631–644

    CAS  PubMed  Google Scholar 

  • Xiaoyan S, Yan Z, Shubin W (2012) Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. J Agric Biotechnol 20:766–773

    Google Scholar 

  • Yang QQ, Zhang CQ, Chan ML, Zhao DS, Chen JZ, Wang Q, Li QF, Yu HX, Gu MH, Sun SS, Liu QQ (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67(14):4285–4296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    CAS  PubMed  Google Scholar 

  • Zhang L, Yang XD, Zhang YY, Yang J, Qi GX, Guo DQ, Xing GJ, Yao Y, Xu WJ, Li HY, Li QY, Dong YS (2014) Changes in oleic acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing. Int J Genom 2014:921950

    Google Scholar 

  • Zhu C, Sanahuja G, Yuan D, Farré G, Arjó G, Berman J, Zorrilla-López U, Banakar R, Bai C, Pérez-Massot E, Bassie L, Capell T, Christou P (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 11(2):129–141

    CAS  PubMed  Google Scholar 

  • Zou T, Xu N, Hu G, Pang J, Xu H (2014) Biofortification of soybean sprouts with zinc and bioaccessibility of zinc in the sprouts. J Sci Food Agric 94(14):3053–3060

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, Z.A. et al. (2020). Transgenic Biofortified Crops: Applicability and Challenges. In: Sharma, T.R., Deshmukh, R., Sonah, H. (eds) Advances in Agri-Food Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2874-3_7

Download citation

Publish with us

Policies and ethics