Skip to main content

Biofortification of Vegetables

  • Chapter
  • First Online:
Advances in Agri-Food Biotechnology

Abstract

In the past few decades, the major concern on this planet was food security. After making a successful lead in food security now, the developing nations are focusing on nutritional security, which includes food that is enriched in minerals and vitamins. Micronutrients and vitamins are essential for human growth and development. Any deficiency of these components leads to “hidden hunger.” Enhancing these components can alleviate malnutrition in women and children in the developing world. Micronutrients like Fe, Zn, Se, Mg, Ca, Iodine, and vitamins like provitamin A and folate are an important component of the biofortification program. Biofortification of vegetable with vitamins and micronutrients is the present need of an hour to fight different health issues faced by the developing countries. For biofortification of vegetable and other staple crops, three major techniques are used, viz. conventional breeding, agronomic approach (use of mineral fertilizer), and genetic engineering. These approaches have enormous potential to address this vitamin and micronutrient malnutrition. Many genes are available for the target traits by which it will be possible to improve micronutrient in vegetables. These tools can be very much helpful in improving the level of micronutrients and vitamins by several-fold in staple cereals and vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson MD (2019) 6 comparing the effectiveness of structures for addressing hunger and food insecurity. In: Civil society and social movements in food system governance. Routledge, New York, p 124

    Google Scholar 

  • Asensi-Fabado MA, Munné-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15:582–592

    CAS  PubMed  Google Scholar 

  • Azmach G, Gedil M, Menkir A, Spillane C (2013) Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol 13:227

    PubMed  PubMed Central  Google Scholar 

  • Baltussen R, Knai C, Sharan M (2004) Iron fortification and iron supplementation are cost-effective interventions to reduce iron deficiency in four subregions of the world. J Nutr 134:2678–2684

    CAS  PubMed  Google Scholar 

  • Bao B, Prasad AS, Beck FWJ et al (2010) Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr 91:1634–1641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barak P, Helmke PA (1993) The chemistry of zinc. In: Zinc in soils and plants. Springer, Dordrecht, pp 1–13

    Google Scholar 

  • Beard JL (1994) Iron deficiency: assessment during pregnancy and its importance in pregnant adolescents. Am J Clin Nutr 59:502S–510S. https://doi.org/10.1093/ajcn/59.2.502S

    Article  CAS  PubMed  Google Scholar 

  • Bechoff A, Dufour D, Dhuique-Mayer C et al (2009) Effect of hot air, solar and sun drying treatments on provitamin A retention in orange-fleshed sweetpotato. J Food Eng 92:164–171. https://doi.org/10.1016/j.jfoodeng.2008.10.034

    Article  Google Scholar 

  • Black RRE, Allen LHL, Bhutta ZZA et al (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260

    PubMed  Google Scholar 

  • Bouis HE (2000) Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition 16:701–704

    CAS  PubMed  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31. https://doi.org/10.1177/15648265110321s105

    Article  PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere: the hidden half of the hidden half. In: Plant roots: the hidden half. Marcel Dekker, New York

    Google Scholar 

  • Broadley MR, White PJ, Bryson RJ et al (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65:169–181

    CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP et al (2007) Zinc in plants. New Phytol 173:677–702

    CAS  PubMed  Google Scholar 

  • Brown K, Arthur J (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599. https://doi.org/10.1079/PHN2001143

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Cakmak I, Zhang Q (1993) Form and function of zinc plants. In: Zinc in soils and plants. Springer, Dordrecht, pp 93–106

    Google Scholar 

  • Calderini DF, Ortiz-Monasterio I (2003) Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica 134:169–178

    CAS  Google Scholar 

  • Carvalho SMP, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54:961–971

    CAS  Google Scholar 

  • Chaudhary J, Khatri P, Singla P, Kumawat S, Kumari A, Vikram A, Jindal SK, Kardile H, Kumar R, Sonah H (2019) Advances in omics approaches for abiotic stress tolerance in tomato. Biology 8(4):90

    CAS  PubMed Central  Google Scholar 

  • Chávez AL, Bedoya JM, Sánchez T et al (2000) Iron, carotene, and ascorbic acid in cassava roots and leaves. Food Nutr Bull 21:410–413

    Google Scholar 

  • Chávez AL, Sánchez T, Ceballos H et al (2007) Retention of carotenoids in cassava roots submitted to different processing methods. J Sci Food Agric 87:388–393. https://doi.org/10.1002/jsfa.2704

    Article  CAS  Google Scholar 

  • Chen L, Chan SY, Cossins EA (1997) Distribution of folate derivatives and enzymes for synthesis of 10-formyltetrahydrofolate in cytosolic and mitochondrial fractions of pea leaves. Plant Physiol 115:299–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cömert ED, Mogol BA, Gökmen V (2019) Relationship between color and antioxidant capacity of fruits and vegetables. Curr Res Food Sci 2:1. https://doi.org/10.1016/J.CRFS.2019.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Connolly EL, Campbell NH, Grotz N et al (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai JL, Zhu YG, Zhang M, Huang YZ (2004) Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol Trace Elem Res 101:265–276. https://doi.org/10.1385/BTER:101:3:265

    Article  CAS  PubMed  Google Scholar 

  • Dai JL, Zhu YG, Huang YZ et al (2006) Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. Plant Soil 289:301–308. https://doi.org/10.1007/s11104-006-9139-7

    Article  CAS  Google Scholar 

  • Das A, Laha S, Mandal S et al (2017) Preharvest biofortification of horticultural crops. Elsevier Inc., Amsterdam

    Google Scholar 

  • de Oliveira VC, Faquin V, Andrade FR et al (2019) Physiological and physicochemical responses of potato to selenium biofortification in tropical soil. Potato Res 62:315–331. https://doi.org/10.1007/s11540-019-9413-8

    Article  CAS  Google Scholar 

  • De Souza JZ, De Mello PR, Silva SLO, Farias TP, Neto JG, Souza Junior JP (2019) Silicon leaf fertilization promotes biofortification and increases dry matter, ascorbate content, and decreases post-harvest leaf water loss of chard and kale. Commun Soil Sci Plant Anal 50(2):164–172

    Google Scholar 

  • Deshmukh R, Bélanger RR (2016) Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol 30(8):1277–1285

    Google Scholar 

  • Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sonah H, Labbé C, Isenring P, Belzile FJ, Bélanger RR (2015) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83(3):489–500

    CAS  PubMed  Google Scholar 

  • Deshmukh RK, Ma JF, Bélanger RR (2017) Role of silicon in plants. Front Plant Sci 8:1858

    PubMed  PubMed Central  Google Scholar 

  • D’Imperio M, Renna M, Cardinali A, Buttaro D, Santamaria P, Serio F (2016) Silicon biofortification of leafy vegetables and its bioaccessibility in the edible parts. J Sci Food Agric 96(3):751–756

    PubMed  Google Scholar 

  • Diretto G, Al-Babili S, Tavazza R et al (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2:e350

    PubMed  PubMed Central  Google Scholar 

  • Failla ML, Thakkar SK, Kim JY (2009) In vitro bioaccessibility of $β$-carotene in orange fleshed sweet potato (Ipomoea batatas, lam.). J Agric Food Chem 57:10922–10927

    CAS  PubMed  Google Scholar 

  • Failla ML, Chitchumroonchokchai C, Siritunga D et al (2012) Retention during processing and bioaccessibility of $β$-carotene in high $β$-carotene transgenic cassava root. J Agric Food Chem 60:3861–3866

    CAS  PubMed  Google Scholar 

  • Fleshman MK, Lester GE, Riedl KM et al (2011) Carotene and novel apocarotenoid concentrations in orange-fleshed Cucumis melo melons: determinations of $β$-carotene bioaccessibility and bioavailability. J Agric Food Chem 59:4448–4454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Essentials of medical geology. Springer, Dordrecht, pp 375–416

    Google Scholar 

  • Fuge R, Johnson CC (1986) The geochemistry of iodine—a review. Environ Geochem Health 8:31–54

    CAS  PubMed  Google Scholar 

  • Gerber H, Peter H-J, Bürgi E et al (1999) Colloidal aggregates of insoluble inclusions in human goiters. Biochimie 81:441–445

    CAS  PubMed  Google Scholar 

  • Giuliano G (2017) Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 44:169–180. https://doi.org/10.1016/J.COPBIO.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Aquilani R, Dharmapuri S (2000) Metabolic engineering of plant carotenoids. Trends Plant Sci 5:406–409. https://doi.org/10.1016/s1360-1385(00)01749-0

    Article  CAS  PubMed  Google Scholar 

  • Gómez MI, Barrett CB, Raney T et al (2013) Post-green revolution food systems and the triple burden of malnutrition. Food Policy 42:129–138. https://doi.org/10.1016/j.foodpol.2013.06.009

    Article  Google Scholar 

  • Gómez-Galera S, Rojas E, Sudhakar D et al (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165–180. https://doi.org/10.1007/s11248-009-9311-y

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T (2001) Improvement of micronutrient contents by genetic engineering—development of high iron content crops. Plant Biotechnol 18:7–15

    CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Google Scholar 

  • Grivetti LE, Ogle BM (2000) Value of traditional foods in meeting macro- and micronutrient needs: the wild plant connection. Nutr Res Rev 13:31–46. https://doi.org/10.1079/095442200108728990

    Article  CAS  PubMed  Google Scholar 

  • Grotz N, Fox T, Connolly E et al (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci 95:7220–7224

    CAS  PubMed  Google Scholar 

  • Hagenimana V, Carey EE, Gichuki ST et al (1999) Carotenoid contents in fresh, dried and processed sweetpotato products. Ecol Food Nutr 37:455–473. https://doi.org/10.1080/03670244.1998.9991560

    Article  Google Scholar 

  • Halka M, Smoleń S, Czernicka M et al (2019) Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. Plant Physiol Biochem 144:35–48. https://doi.org/10.1016/J.PLAPHY.2019.09.028

    Article  CAS  PubMed  Google Scholar 

  • Hanson AD, Gregory JF (2011) Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol 62:105–125. https://doi.org/10.1146/annurev-arplant-042110-103819

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford MJ, Zhao F-J (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    CAS  Google Scholar 

  • Haynes KG, Yencho GC, Clough ME et al (2012) Genetic variation for potato tuber micronutrient content and implications for biofortification of potatoes to reduce micronutrient malnutrition. Am J Potato Res 89:192–198

    CAS  Google Scholar 

  • Hubert B, Rosegrant M, van Boekel MAJS et al (2010) The future of food: scenarios for 2050. Crop Sci 50:33–50. https://doi.org/10.2135/cropsci2009.09.0530

    Article  Google Scholar 

  • Jomova K, Valko M (2011) Importance of iron chelation in free radical-induced oxidative stress and human disease. Curr Pharm Des 17:3460–3473. https://doi.org/10.2174/138161211798072463

    Article  CAS  PubMed  Google Scholar 

  • Kanyshkova TG, Buneva VN, Nevinsky GA (2001) Lactoferrin and its biological functions. Biochemist 66:1–7

    CAS  Google Scholar 

  • Kennedy G, Nantel G, Shetty P (2003) The scourge of “hidden hunger”: global dimensions of micronutrient deficiencies. Food Nutr Agric 32:8–16

    Google Scholar 

  • Korshunova YO, Eide D, Clark WG et al (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    CAS  PubMed  Google Scholar 

  • Kosambo L (2004) Effect of storage and processing on all trans-$β$ carotene content in fresh Sweet potato (Ipomoea batatas Lam) roots and its products. CIP Funded Res Proj Annu Rep (July 2003–June 2004) Kenya Ind Res Dev Institute, Nairobi, 11p

    Google Scholar 

  • Kumar A, Lal MK, Kar SS et al (2017) Bioavailability of iron and zinc as affected by phytic acid content in rice grain. J Food Biochem 41:e12413. https://doi.org/10.1111/jfbc.12413

    Article  CAS  Google Scholar 

  • Kumar S, Palve A, Joshi C et al (2019) Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches. Heliyon 5:e01914

    PubMed  PubMed Central  Google Scholar 

  • Landini M, Gonzali S, Perata P (2011) Iodine biofortification in tomato. J Plant Nutr Soil Sci 174:480–486

    CAS  Google Scholar 

  • Levenson CW, Morris D (2011) Zinc and neurogenesis: making new neurons from development to adulthood. Adv Nutr 2:96–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H-F, McGrath SP, Zhao F-J (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    CAS  PubMed  Google Scholar 

  • Lipka AE, Gore MA, Magallanes-Lundback M et al (2013) Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain. G3: Genes Genomes Genetics 3:1287–1299

    PubMed  Google Scholar 

  • Lipkie TE, De Moura FF, Zhao Z-Y et al (2013) Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. J Agric Food Chem 61:5764–5771

    CAS  PubMed  Google Scholar 

  • Lyons GH, Stangoulis JCR, Graham RD (2004) Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the HarvestPlus program. Nutr Rev 62:247–252. https://doi.org/10.1111/j.1753-4887.2004.tb00047.x

    Article  PubMed  Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil 269:369–380

    CAS  Google Scholar 

  • Mata NL, Radu RA, Clemmons RS, Travis GH (2002) Isomerization and oxidation of vitamin A in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron 36:69–80. https://doi.org/10.1016/S0896-6273(02)00912-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montesano FF, D’Imperio M, Parente A, Cardinali A, Renna M, Serio F (2016) Green bean biofortification for Si through soilless cultivation: plant response and Si bioaccessibility in pods. Sci Rep 6(1):1–9

    Google Scholar 

  • Mushtaq M, Mukhtar S, Sakina A, Dar AA, Bhat R, Deshmukh R, Molla K, Kundoo AA, Dar MS (2020) Tweaking genome-editing approaches for virus interference in crop plants. Plant Physiol Biochem 147:8

    Google Scholar 

  • Nandi S, Suzuki YA, Huang J et al (2002) Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci 163:713–722

    CAS  Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci 106:7762–7767

    CAS  PubMed  Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067. https://doi.org/10.1093/jn/136.4.1064

    Article  CAS  PubMed  Google Scholar 

  • O’Hare TJ (2015) Biofortification of vegetables for the developed world. Acta Hortic 1106:1–8. https://doi.org/10.17660/ActaHortic.2015.1106.1

    Article  Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E et al (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307. https://doi.org/10.1016/j.jcs.2007.06.005

    Article  CAS  Google Scholar 

  • Pinstrup-Andersen P, Hazell PBR (1985) The impact of the green revolution and prospects for the future. Food Rev Int 1:1–25

    Google Scholar 

  • Pinto E, Ferreira IM (2015) Cation transporters/channels in plants: tools for nutrient biofortification. J Plant Physiol 179:64–82

    CAS  PubMed  Google Scholar 

  • Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2014) Agronomic biofortification of cereal grains with iron and zinc. Adv Agron 125:55–91. https://doi.org/10.1016/B978-0-12-800137-0.00002-9

    Article  Google Scholar 

  • Ram H, Kaur A, Gandass N, Singh S, Deshmukh R, Sonah H, Sharma TR (2019) Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice. PLoS One 14(5):e0217360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rana N, Rahim MS, Kaur G, Bansal R, Kumawat S, Roy J, Deshmukh R, Sonah H, Sharma TR (2019) Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). CRC Crit Rev Food Sci Nutr:1–17. https://doi.org/10.1080/10408398.2019.1685454

  • Ratcliffe S, Jugdaohsingh R, Vivancos J, Marron A, Deshmukh R, Ma JF, Mitani-Ueno N, Robertson J, Wills J, Boekschoten MV (2017) Identification of a mammalian silicon transporter. Am J Phys Cell Phys 312(5):C550–C561

    Google Scholar 

  • Rawat N, Neelam K, Tiwari VK, Dhaliwal HS (2013) Biofortification of cereals to overcome hidden hunger. Plant Breed 132:437–445

    Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241. https://doi.org/10.1016/S0140-6736(00)02490-9

    Article  CAS  Google Scholar 

  • Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Lou GM (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694

    CAS  PubMed  Google Scholar 

  • Römer S, Lübeck J, Kauder F et al (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    PubMed  Google Scholar 

  • Saltzman A, Birol E, Bouis HE et al (2013) Biofortification: progress toward a more nourishing future. Glob Food Sec 2:9–17

    Google Scholar 

  • Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12

    CAS  PubMed  Google Scholar 

  • Santi S, Schmidt W (2008) Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber. J Exp Bot 59:697–704

    CAS  PubMed  Google Scholar 

  • Scholey D, Belton D, Burton E, Perry C (2018) Bioavailability of a novel form of silicon supplement. Sci Rep 8(1):1–8

    CAS  Google Scholar 

  • Semba RD (1994) Vitamin A, immunity, and infection. Clin Infect Dis 19:489–499

    CAS  PubMed  Google Scholar 

  • Shimelis H, Laing M et al (2012) Timelines in conventional crop improvement: pre-breeding and breeding procedures. Aust J Crop Sci 6:1542

    Google Scholar 

  • Sonah H, Deshmukh RK, Labbé C, Bélanger RR (2017) Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 7(1):2771

    PubMed  PubMed Central  Google Scholar 

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154

    CAS  Google Scholar 

  • Strobbe S, Van Der Straeten D (2017) Folate biofortification in food crops. Curr Opin Biotechnol 44:202–211

    CAS  PubMed  Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51:401–432

    CAS  Google Scholar 

  • Thakkar SK, Huo T, Maziya-Dixon B, Failla ML (2009) Impact of style of processing on retention and bioaccessibility of $β$-carotene in cassava (Manihot esculanta, Crantz). J Agric Food Chem 57:1344–1348

    CAS  PubMed  Google Scholar 

  • Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Acad Nutr Diet 101:294

    CAS  Google Scholar 

  • Tuama AA, Mohammed AA (2019) Phytochemical screening and in vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus. Saudi J Biol Sci 26:600–604

    CAS  PubMed  Google Scholar 

  • Tumuhimbise GA, Namutebi A, Turyashemererwa F, Muyonga J (2013) Provitamin A crops: acceptability, bioavailability, efficacy and effectiveness. Food Nutr Sci 4:430

    Google Scholar 

  • Ueno D, Rombolà AD, Iwashita T et al (2007) Identification of two novel phytosiderophores secreted by perennial grasses. New Phytol 174:304–310. https://doi.org/10.1111/j.1469-8137.2007.02056.x

    Article  CAS  PubMed  Google Scholar 

  • Van Hal M (2000) Quality of sweetpotato flour during processing and storage. Food Rev Int 16:1–37

    Google Scholar 

  • Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R (2019) Genome editing in plants: exploration of technological advancements and challenges. Cell 8(11):1386

    CAS  Google Scholar 

  • Velasco I, Bath SC, Rayman MP (2018) Iodine as essential nutrient during the first 1000 days of life. Nutrients 10:290

    PubMed Central  Google Scholar 

  • Vishwakarma K, Mishra M, Patil G, Mulkey S, Ramawat N, Pratap Singh V, Deshmukh R, Kumar Tripathi D, Nguyen HT, Sharma S (2019) Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Crit Rev Biotechnol 39(7):861–883

    CAS  PubMed  Google Scholar 

  • Wargovich MJ (2000) Anticancer properties of fruits and vegetables. HortScience 35:573–575

    CAS  Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180:562–574. https://doi.org/10.1016/J.PLANTSCI.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of plants. CRC Crit Rev Plant Sci 14:49–82. https://doi.org/10.1080/07352689509701922

    Article  CAS  Google Scholar 

  • Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132:495S–499S. https://doi.org/10.1093/jn/132.3.495s

    Article  PubMed  Google Scholar 

  • Welch RM (2005) Biotechnology, biofortification, and global health. Food Nutr Bull 26:S304–S306

    Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    CAS  PubMed  Google Scholar 

  • Weng H-X, Hong C-L, Yan A-L et al (2008a) Mechanism of iodine uptake by cabbage: effects of iodine species and where it is stored. Biol Trace Elem Res 125:59–71. https://doi.org/10.1007/s12011-008-8155-2

    Article  CAS  PubMed  Google Scholar 

  • Weng HX, Weng JK, Yan AL et al (2008b) Increment of iodine content in vegetable plants by applying iodized fertilizer and the residual characteristics of iodine in soil. Biol Trace Elem Res 123:218–228. https://doi.org/10.1007/s12011-008-8094-y

    Article  CAS  PubMed  Google Scholar 

  • Weng HX, Hong CL, Xia TH et al (2013) Iodine biofortification of vegetable plants—an innovative method for iodine supplementation. Chin Sci Bull 58:2066–2072. https://doi.org/10.1007/s11434-013-5709-2

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front Plant Sci 2:80

    PubMed  PubMed Central  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P et al (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    CAS  PubMed  Google Scholar 

  • WHO (2016) Micronutrient deficiencies. WHO, p 3–5

    Google Scholar 

  • WHO IGN (2013) Salt reduction and iodine fortification strategies in public health. Report of a joint technical meeting convened by World Health Organization (WHO) and The George Institute for Global Health in collaboration with the International Council for the Control. World Health Organization

    Google Scholar 

  • Winger RJ, König J, House DA (2008) Technological issues associated with iodine fortification of foods. Trends Food Sci Technol 19:94–101

    CAS  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    CAS  PubMed  Google Scholar 

  • Zhao LI, Yuan L, Wang Z et al (2012) Phytoremediation of zinc-contaminated soil and zinc-biofortification for human nutrition. In: Phytoremediation and biofortification. Springer, Berlin, pp 33–57

    Google Scholar 

  • Zhu Y-G, Huang Y-Z, Hu Y, Liu Y-X (2003) Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Environ Int 29:33–37

    CAS  PubMed  Google Scholar 

  • Zhu C, Sanahuja G, Yuan D et al (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 11:129–141

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lal, M.K. et al. (2020). Biofortification of Vegetables. In: Sharma, T.R., Deshmukh, R., Sonah, H. (eds) Advances in Agri-Food Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2874-3_5

Download citation

Publish with us

Policies and ethics