Skip to main content

Brain’s Networks and Their Functional Significance in Cognition

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Neuroengineering
  • 308 Accesses

Abstract

Understanding the brain’s cognitive function depends on the knowledge of how neural units interconnect both locally, within distinct brain regions, and at the large scale of the whole brain. Balance between localized processing and global integration provides support for the complex processing patterns, underlying high-order cognitive function, while at the same time ensuring flexibility, robustness, and functional diversification in the brain. In this context, the network paradigm enables a theoretical framework for investigating interactions between brain regions as well as the use of powerful computational tools for interpreting the complex topology of functional networks. In this chapter we review current state of the art in studying brain functional networks and summarize methodological advances used to quantify the networks characteristics. We also overview the main neuroimaging techniques, whose data give rise to network interpretations. Further, we discuss the current knowledge on core large-scale networks involved in cognitive function and dysfunction. Overall, this chapter promotes a systematic exploration of how cognition emerges as a network phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACC:

Anterior cingulate cortex

AIC:

Anterior insular cortex

aIPL:

Anterior inferior parietal lobe

aPFC:

Anterior prefrontal cortex

CEN:

Central executive network

dACC:

Dorsal anterior cingulate cortex

DAN:

Dorsal attention network

dFC:

Dorsal frontal cortex

dlPFC:

Dorsolateral prefrontal cortex

DMN:

Default mode network

DMPFC:

Dorsal medial prefrontal cortex

ECoG:

Electrocorticography

EEG:

Electroencephalography

FEF:

Frontal eye fields

fMRI:

Functional magnetic resonance imaging

fNIRS:

Functional near-infrared spectroscopy

fO:

Frontal operculum

ICA:

Independent component analysis

IPS:

Intraparietal sulcus

IPS:

Intraparietal sulcus

LPC:

Lateral parietal cortex

lPPC:

Lateral posterior parietal cortex

mCC:

Medial cingulate cortex

MEG:

Magnetoencephalography

MPC:

Medial precuneus

MTL:

Medial temporal lobe

OFC:

Orbitofrontal cortex

PCC:

Posterior cingulate cortex

PET:

Magnetoencephalography

ROI:

Region of interest

SN:

Salience network

sPL:

Superior parietal lobe

SuN:

Substantia nigra

TPJ:

Temporoparietal junction

VAN:

Ventral attention network

vFC:

Ventral frontal cortex

vlPFC/rlPFC:

Ventral lateral and rostral lateral prefrontal cortex

vmPFC:

Ventral-medial prefrontal cortex;

VTA:

Ventral tegmental area

References

  1. Park, H.J., Friston, K.: Structural and functional brain networks: from connections to cognition. Science. 342, 73–89 (2013)

    Article  Google Scholar 

  2. Sporns, O., Betzel, R.F.: Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016)

    Article  Google Scholar 

  3. Bezerianos, A., Dragomir, A., Balomenos, P.: Networks and pathways in systems pharmacology. In: Computational Methods for Processing and Analysis of Biological Pathways, pp. 11–46. Springer, Cham (2017)

    Chapter  Google Scholar 

  4. Akay, A., Dragomir, A., Erlandsson, B.E.: Network-based modeling and intelligent data mining of social media for improving care. IEEE J. Biomed. Health Inform. 19, 210–218 (2014)

    Article  Google Scholar 

  5. He, B., Yang, L., Wilke, C., Yuan, H.: Electrophysiological imaging of brain activity and connectivity – challenges and opportunities. IEEE Trans. Biomed. Eng. 58, 1918–1931 (2011)

    Article  Google Scholar 

  6. Mier, W., Mier, D.: Advantages in functional imaging of the brain. Front. Human Neurosci. 9, 249 (2015)

    Article  Google Scholar 

  7. Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20, 353 (2017)

    Article  Google Scholar 

  8. Vu, M.A.T., Adalı, T., Ba, D., Buzsáki, G., Carlson, D., Heller, K., Mayberg, H.S.: A shared vision for machine learning in neuroscience. J. Neurosci. 38, 1601–1607 (2018)

    Article  Google Scholar 

  9. Fornito, A., Zalesky, A., Bullmore, E.: Fundamentals of brain network analysis. Academic, Amsterdam (2016)

    Google Scholar 

  10. Bressler, S.L., Menon, V., Menon, V.: Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010)

    Article  Google Scholar 

  11. Petersen, S.E., Sporns, O.: Brain networks and cognitive architectures. Neuron. 88, 207–219 (2015)

    Article  Google Scholar 

  12. Menon, V.: Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011)

    Article  Google Scholar 

  13. Gerstein, G.L., Perkel, D.H.: Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science. 164, 828–830 (1969)

    Article  Google Scholar 

  14. Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994)

    Article  Google Scholar 

  15. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature. 453, 869 (2008)

    Article  Google Scholar 

  16. Riedl, V., Utz, L., Castrillón, G., Grimmer, T., Rauschecker, J.P., Ploner, M., Sorg, C.: Metabolic connectivity mapping reveals effective connectivity in the resting human brain. Proc. Natl. Acad. Sci. 113, 428–433 (2016)

    Article  Google Scholar 

  17. Kameyama, M., Murakami, K., Jinzaki, M.: Comparison of [15O] H2O positron emission tomography and functional magnetic resonance imaging in activation studies. World J. Nucl. Med. 15, 3 (2016)

    Article  Google Scholar 

  18. Bradley, A., Yao, J., Dewald, J., Richter, C.P.: Evaluation of electroencephalography source localization algorithms with multiple cortical sources. PLoS One. 11, 0147266 (2016)

    Article  Google Scholar 

  19. Ferrari, M., Quaresima, V.: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage. 63, 921–935 (2012)

    Article  Google Scholar 

  20. Scarapicchia, V., Brown, C., Mayo, C., Gawryluk, J.R.: Functional magnetic resonance imaging and functional near-infrared spectroscopy: insights from combined recording studies. Front. Hum. Neurosci. 11, 419 (2017)

    Article  Google Scholar 

  21. Mash, L.E., Reiter, M.A., Linke, A.C., Townsend, J., Müller, R.A.: Multimodal approaches to functional connectivity in autism spectrum disorders: an integrative perspective. Dev. Neurobiol. 78, 456–473 (2018)

    Article  Google Scholar 

  22. Lei, X., Xu, P., Luo, C., Zhao, J., Zhou, D., Yao, D.: fMRI functional networks for EEG source imaging. Hum. Brain Mapp. 32, 1141–1160 (2011)

    Article  Google Scholar 

  23. Lei, X., Ostwald, D., Hu, J.: Multimodal functional network connectivity: an EEG-fMRI fusion in network space. PLoS One. 6, e24642 (2011)

    Google Scholar 

  24. Calhoun, V.D., Sui, J.: Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness. In: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, pp. 230–244 (2016)

    Google Scholar 

  25. Moosmann, M., Eichele, T., Nordby, H., Hugdahl, K., Calhoun, V.D.: Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation. Int. J. Psychophysiol. 67, 212–221 (2008)

    Article  Google Scholar 

  26. Keles, H.O., Barbour, R.L., Aghajani, H., Omurtag, A.: Multimodality mapping approach for evolving functional brain connectivity patterns: A fNIRS-EEG study. In: Biomedical Optics, pp. 5–2. Optical Society of America (2014)

    Google Scholar 

  27. Buccino, A.P., Keles, H.O., Omurtag, A.: Hybrid EEG-fNIRS asynchronous brain-computer interface for multiple motor tasks. PLoS One. 11, 0146610 (2016)

    Article  Google Scholar 

  28. Omurtag, A., Aghajani, H., Keles, H.O.: Decoding human mental states by whole-head EEG+ FNIRS during category fluency task performance. J. Neural Eng. 14, 066003 (2017)

    Article  Google Scholar 

  29. Aghajani, H., Garbey, M., Omurtag, A.: Measuring mental workload with EEG+ fNIRS. Front. Hum. Neurosci. 11, 359 (2017)

    Article  Google Scholar 

  30. Li, R., Nguyen, T., Potter, T., Zhang, Y.: Dynamic cortical connectivity alterations associated with Alzheimer’s disease: an EEG and fNIRS integration study. NeuroImage: Clin. 21, 101622 (2019)

    Article  Google Scholar 

  31. Cavaliere, C., Kandeepan, S., Aiello, M., Ribeiro de Paula, D., Marchitelli, R., Fiorenza, S., Loreto, V.: Multimodal neuroimaging approach to variability of functional connectivity in disorders of consciousness: a PET/MRI pilot study. Front. Neurol. 9, 861 (2018)

    Article  Google Scholar 

  32. Shah, N., Arrubla, J., Rajkumar, R., Farrher, E., Mauler, J., Kops, E.R., Sripad, P.: Multimodal fingerprints of resting state networks as assessed by simultaneous trimodal MR-PET-EEG imaging. Sci. Rep. 7, 6452 (2017)

    Article  Google Scholar 

  33. Rajkumar, R., Farrher, E., Mauler, J., Sripad, P., Régio Brambilla, C., Rota Kops, E., Herzog, H.: Comparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data. Hum. Brain Mapp. 1–12 (2018)

    Google Scholar 

  34. Majewska, A.K., Sur, M.: Plasticity and specificity of cortical processing networks. Trends Neurosci. 29, 323–329 (2006)

    Article  Google Scholar 

  35. Power, J.D., Fair, D.A., Schlaggar, B.L., Petersen, S.E.: The development of human brain functional networks. Neuron. 67, 735–748 (2010)

    Article  Google Scholar 

  36. Dimitriadis, S.I., Salis, C., Tarnanas, I., Linden, D.E.: Topological filtering of dynamic brain functional networks unfolds informative chronnectomics: a novel data-driven thresholding scheme based on orthogonal minimal spanning trees (OMSTs). Front. Neuroinform. 11, 28 (2017)

    Article  Google Scholar 

  37. Dodel, S., Herrmann, J.M., Geisel, T.: Functional connectivity by cross-correlation clustering. Neurocomputing. 44, 1065–1070 (2002)

    Article  MATH  Google Scholar 

  38. de Reus, M.A., van den Heuvel, M.P.: The parcellation-based connectome: limitations and extensions. NeuroImage. 80, 397–404 (2013)

    Article  Google Scholar 

  39. Stanley, M.L., Moussa, M.N., Paolini, B.M., Lyday, R.G., Burdette, J.H., Laurienti, P.J.: Defining nodes in complex brain networks. Front. Comput. Neurosci. 7, 169 (2013)

    Article  Google Scholar 

  40. De Vico Fallani, F., Richiardi, J., Chavez, M., Achard, S.: Graph analysis of brain functional networks: practical issues in translational neuroscience. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130521 (2014)

    Article  Google Scholar 

  41. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009)

    Google Scholar 

  42. Engel, A.K., Gerloff, C., Hilgetag, C.C., Nolte, G.: Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron. 80, 867–886 (2013)

    Article  Google Scholar 

  43. Rolls, E.T., Joliot, M., Tzourio-Mazoyer, N.: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. NeuroImage. 122, 1–5 (2015)

    Article  Google Scholar 

  44. Rorden, C., Brett, M.: Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200 (2000)

    Article  Google Scholar 

  45. Shattuck, D.W.: Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage. 39, 1064–1080 (2008)

    Article  Google Scholar 

  46. Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., Parisot, S.: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage. 170, 5–30 (2018)

    Article  Google Scholar 

  47. Menon, V.: Large-scale brain networks in cognition: emerging principles. Anal. Funct. Large-scale Brain Netw. 14, 43–54 (2010)

    Google Scholar 

  48. Duff, E.P., Trachtenberg, A.J., Mackay, C.E., Howard, M.A., Wilson, F., Smith, S.M., Woolrich, M.W.: Task-driven ICA feature generation for accurate and interpretable prediction using fMRI. NeuroImage. 60, 189–203 (2012)

    Article  Google Scholar 

  49. Bassett, D.: Human brain networks in health and disease. Curr. Opin. Neurol. 22, 340 (2009)

    Google Scholar 

  50. Carvalhaes, C., de Barros, J.A.: The surface Laplacian technique in EEG: theory and methods. Int. J. Psychophysiol. 97, 174–188 (2015)

    Article  Google Scholar 

  51. Stam, C.J., Nolte, G., Daffertshofer, A.: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28, 1178–1193 (2007)

    Article  Google Scholar 

  52. Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307 (2004)

    Article  Google Scholar 

  53. Becker, H., Albera, L., Comon, P., Gribonval, R., Wendling, F., Merlet, I.: Brain-source imaging: from sparse to tensor models. IEEE Signal Process. Mag. 32, 100–112 (2015)

    Article  Google Scholar 

  54. De Domenico, M.: Multilayer modeling and analysis of human brain networks. Giga Sci. 6, 004 (2017)

    Article  Google Scholar 

  55. Bose, R., Ashutosh, K., Li, J., Dragomir, A., Thakor, N., Bezerianos, A.: A multilayer network approach for studying creative ideation from EEG. In: Lecture notes in artificial intelligence, pp. 294–303. Springer, Cham (2018)

    Google Scholar 

  56. Wang, H.E., Bénar, C.G., Quilichini, P.P., Friston, K.J., Jirsa, V.K., Bernard, C.: A systematic framework for functional connectivity measures. Front. Neurosci. 8, 405 (2014)

    Article  Google Scholar 

  57. Bastos, A.M., Schoffelen, J.M.: A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2016)

    Article  Google Scholar 

  58. Ploner, M., Sorg, C., Gross, J.: Brain rhythms of pain. Trends Cogn. Sci. 21, 100–110 (2017)

    Article  Google Scholar 

  59. Liu, C.C., Ohara, S., Franaszczuk, P.J., Crone, N.E., Lenz, F.A.: Attention to painful cutaneous laser stimuli evokes directed functional interactions between human sensory and modulatory pain-related cortical areas. Pain. 152, 2781–2791 (2011)

    Article  Google Scholar 

  60. Palva, J.M., Monto, S., Kulashekhar, S., Palva, S.: Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc. Natl. Acad. Sci. 107, 7580–7585 (2010)

    Article  Google Scholar 

  61. Seth, A.K., Barrett, A.B., Barnett, L.: Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35, 3293–3297 (2015)

    Article  Google Scholar 

  62. Vicente, R., Wibral, M., Lindner, M., Pipa, G.: Transfer entropy – a model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 30, 45–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Srinivasan, R., Winter, W.R., Ding, J., Nunez, P.L.: EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J. Neurosci. Methods. 166, 41–52 (2007)

    Article  Google Scholar 

  64. Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999)

    Article  Google Scholar 

  65. Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., Pennartz, C.M.: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage. 55, 1548–1565 (2011)

    Article  Google Scholar 

  66. Canolty, R.T., Knight, R.T.: The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010) 84

    Article  Google Scholar 

  67. Bose, R., Dragomir, A., Taya, F., Thakor, N., Bezerianos, A.: Role of cross-frequency coupling in the frontal and parieto-occipital subnetwork during creative ideation. In: 9th International IEEE/EMBS Conference Neural Engineering, pp. 294–303. Springer, Cham (2019)

    Google Scholar 

  68. Blinowska, K.J.: Review of the methods of determination of directed connectivity from multichannel data. Med. Biol. Eng. Comput. 49, 521–529 (2011)

    Article  Google Scholar 

  69. Baccalá, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474 (2001)

    Article  MATH  Google Scholar 

  70. Hirschberger, M., Qi, Y., Steuer, R.E.: Randomly generating portfolio-selection covariance matrices with specified distributional characteristics. Eur. J. Oper. Res. 177, 1610–1625 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  71. Van Wijk, B.C., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and connectivity density using graph theory. PLoS One. 5, 13701 (2010)

    Article  Google Scholar 

  72. Kleckner, I.R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons, W.K., Barrett, L.F.: Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat. Hum. Behav. 1, 0069 (2017)

    Article  Google Scholar 

  73. Miller, E.K., Cohen, J.D.: An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001)

    Article  Google Scholar 

  74. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100, 253–258 (2003)

    Article  Google Scholar 

  75. Uddin, L.Q.: Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55 (2015)

    Article  Google Scholar 

  76. Raichle, M.E.: Two views of brain function. Trends Cogn. Sci. 14, 180–190 (2010)

    Article  Google Scholar 

  77. Shulman, G.L., Fiez, J.A., Corbetta, M., Buckner, R.L., Miezin, F.M., Raichle, M.E., Petersen, S.E.: Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997)

    Article  Google Scholar 

  78. Andrews-Hanna, J.R.: The brain’s default network and its adaptive role in internal mentation. Neuroscientist. 18, 251–270 (2012)

    Article  Google Scholar 

  79. Shannon, B.J., Dosenbach, R.A., Su, Y., Vlassenko, A.G., Larson-Prior, L.J., Nolan, T.S., Raichle, M.E.: Morning-evening variation in human brain metabolism and memory circuits. J. Neurophysiol. 109, 1444–1456 (2012)

    Article  Google Scholar 

  80. Broyd, S.J., Demanuele, C., Debener, S., Helps, S.K., James, C.J., Sonuga-Barke, E.J.: Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–296 (2009)

    Article  Google Scholar 

  81. Mohan, A., Roberto, A.J., Mohan, A., Lorenzo, A., Jones, K., Carney, M.J., Lapidus, K.A.: Focus: the aging brain: the significance of the default mode network (DMN) in neurological and neuropsychiatric disorders: a review. Yale J. Biol. Med. 89, 49 (2016)

    Google Scholar 

  82. Uddin, L.Q.: Salience network of the human brain. Academic, Amsterdam (2016)

    Google Scholar 

  83. Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H.: Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007)

    Article  Google Scholar 

  84. Sridharan, D., Levitin, D.J., Menon, V.: A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. 105, 12569–12574 (2008)

    Article  Google Scholar 

  85. Stein, M.B.: Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am. J. Psychiatr. 164, 318–327 (2007)

    Article  Google Scholar 

  86. Manoliu, A., Riedl, V., Zherdin, A., Mühlau, M., Schwerthöffer, D., Scherr, M., Wohlschläger, A.M.: Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophr. Bull. 40, 428–437 (2013)

    Article  Google Scholar 

  87. Wiech, K., Lin, C.S., Brodersen, K.H., Bingel, U., Ploner, M., Tracey, I.: Anterior insula integrates information about salience into perceptual decisions about pain. J. Neurosci. 30, 16324–16331 (2010)

    Article  Google Scholar 

  88. Liang, X., He, Y., Salmeron, B.J., Gu, H., Stein, E.A., Yang, Y.: Interactions between the salience and default-mode networks are disrupted in cocaine addiction. J. Neurosci. 35, 8081–8090 (2015)

    Article  Google Scholar 

  89. Scott, D., Hiroi, N.: Deconstructing craving: dissociable cortical control of cue reactivity in nicotine addiction. Biol. Psychiatry. 69, 1052–1059 (2011)

    Article  Google Scholar 

  90. Liang, X., Zou, Q., He, Y., Yang, Y.: Topologically reorganized connectivity architecture of default-mode, executive-control, and salience networks across working memory task loads. Cereb. Cortex. 26, 1501–1511 (2015)

    Article  Google Scholar 

  91. Ham, T., Leff, A., de Boissezon, X., Joffe, A., Sharp, D.J.: Cognitive control and the salience network: an investigation of error processing and effective connectivity. J. Neurosci. 33, 7091–7098 (2013)

    Article  Google Scholar 

  92. Andrews-Hanna, J.R., Smallwood, J., Spreng, R.N.: The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 29–52 (2014)

    Article  Google Scholar 

  93. Sherman, L.E., Rudie, J.D., Pfeifer, J.H., Masten, C.L., McNealy, K., Dapretto, M.: Development of the default mode and central executive networks across early adolescence: a longitudinal study. Dev. Cogn. Neurosci. 10, 148–159 (2014)

    Article  Google Scholar 

  94. Posner, M.I., Petersen, S.E.: The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990)

    Article  Google Scholar 

  95. Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002)

    Google Scholar 

  96. Petersen, S.E., Posner, M.I.: The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012)

    Article  Google Scholar 

  97. Posner, M.I., Rothbart, M.K., Ghassemzadeh, H.: Focus: attention science: restoring attention networks. Yale J. Biol. Med. 92, 139 (2019)

    Google Scholar 

  98. Spreng, R.N., Sepulcre, J., Turner, G.R., Stevens, W.D., Schacter, D.L.: Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J. Cogn. Neurosci. 25, 74–86 (2012)

    Article  Google Scholar 

  99. Farrant, K., Uddin, L.Q.: Asymmetric development of dorsal and ventral attention networks in the human brain. Dev. Cogn. Neurosci. 12, 165–174 (2015)

    Article  Google Scholar 

  100. Posner, M.I.: Imaging attention networks. NeuroImage. 61, 450–456 (2012)

    Article  Google Scholar 

  101. Deslauriers, J., Ansado, J., Marrelec, G., Provost, J.S., Joanette, Y.: Increase of posterior connectivity in aging within the ventral attention network: a functional connectivity analysis using independent component analysis. Brain Res. 1657, 288–296 (2017)

    Article  Google Scholar 

  102. Block, S.R., King, A.P., Sripada, R.K., Weissman, D.H., Welsh, R., Liberzon, I.: Behavioral and neural correlates of disrupted orienting attention in posttraumatic stress disorder. Cogn. Affect. Behav. Neurosci. 17, 422–436 (2017)

    Article  Google Scholar 

  103. Lin, P., Yang, Y., Gao, J., De Pisapia, N., Ge, S., Wang, X., Niu, C.: Dynamic default mode network across different brain states. Sci. Rep. 7, 46088 (2017)

    Article  Google Scholar 

  104. Bola, M., Sabel, B.A.: Dynamic reorganization of brain functional networks during cognition. NeuroImage. 114, 398–413 (2015)

    Article  Google Scholar 

  105. Dragomir, A., Vrahatis, A.G., Bezerianos, A.: A network-based perspective in Alzheimer’s disease: current state and an integrative framework. IEEE J. Biomed. Health Inform. 23, 14–25 (2019)

    Article  Google Scholar 

  106. Jonas, E., Kording, K.P.: Could a neuroscientist understand a microprocessor? PLoS Comput. Biol. 13, 1005268 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dragomir, A., Omurtag, A. (2021). Brain’s Networks and Their Functional Significance in Cognition. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_76-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_76-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Brain’s Networks and Their Functional Significance in Cognition
    Published:
    24 December 2021

    DOI: https://doi.org/10.1007/978-981-15-2848-4_76-2

  2. Original

    Brain’s Networks and Their Functional Significance in Cognition
    Published:
    17 June 2021

    DOI: https://doi.org/10.1007/978-981-15-2848-4_76-1