Skip to main content

Mechanisms and Targeting of Deep-Brain Stimulation Therapies

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Deep-brain stimulation (DBS) is an effective neurosurgical treatment option for individuals with medication-refractory brain disorders. DBS therapy involves sending high-frequency electrical stimulus pulses through one or more chronically implanted electrodes to override pathophysiological information propagating through a particular brain network. The biophysical changes that result from DBS have multiple spatial modes and time scales. These mechanistic concepts will be discussed in the first half of the chapter in which we will emphasize how the biophysical changes can vary across clinical indications, anatomical DBS targets, and methods of stimulation. As the relationship between physiological mechanisms and clinical effects of DBS therapy is better understood, actions can be taken to further optimize the therapy. In the second half of this chapter, we will focus on technological advances in the field of DBS. These include refining the spatial and temporal precision of targeting in DBS therapy, and leveraging control engineering and machine learning approaches to automate and optimize stimulation parameters on an individual basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BA25:

Brodmann Area 25

CE:

European Conformity

CL or CT:

Central lateral nucleus of thalamus

clDBS:

closed-loop DBS

CR:

Coordinated Reset

CT:

Computed Tomography

DBS:

Deep-Brain Stimulation

DTTm:

medial dorsal tegmental tract

EPSC:

Evoked postsynaptic current

ET:

Essential tremor

FDA:

Food and Drug Administration

GPe:

Globus pallidus, external

GPi:

Globus pallidus, internal

HDE:

Humanitarian device exemption

IDE:

Investigational device exemption

IPG:

Implantable pulse generator

MRI:

Magnetic resonance imaging

PD:

Parkinson’s disease

PSO:

Particle swarm optimization

STN:

Subthalamic nucleus

TBI:

Traumatic brain injury

TRD:

Treatment-resistant depression

Vim:

Ventral intermediate nucleus of thalamus

VTA:

volume of tissue activated

References

  1. Hassler, R., Riechert, T., Mundinger, F., et al.: Physiological observations in stereotactic operations in extrapyramidal motor disturbances. Brain. 83, 337–350 (1960). https://doi.org/10.1093/brain/83.2.337

    Article  Google Scholar 

  2. Mark, V.H., Ervin, F.R., Hackett, T.P.: Clinical aspects of stereotactic thalamotomy in the human: part I. The treatment of chronic severe pain. Arch. Neurol. 3, 351–367 (1960). https://doi.org/10.1001/archneur.1960.00450040001001

    Article  Google Scholar 

  3. Bechtereva, N.P., Bondartchuk, A.N., Gretchin, V.B., et al.: Structural-functional organization of the human brain and the pathophysiology of the parkinsonian type hyperkineses. Confin. Neurol. 34, 14–17 (1972)

    Article  Google Scholar 

  4. King, H.E.: Psychological effects of excitation in the limbic system. In: Sheer, D.E. (ed.) Electrical Stimulation of the Brain, pp. 477–486. University of Texas Press, Austin (1961)

    Google Scholar 

  5. Hosobuchi, Y., Adams, J.E., Rutkin, B.: Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch. Neurol. 29, 158–161 (1973). https://doi.org/10.1001/archneur.1973.00490270040005

    Article  Google Scholar 

  6. Benabid, A.L., Pollak, P., Louveau, A., et al.: Combined (thalamotomy and stimulation) stereotactic surgery of the vim thalamic nucleus for bilateral Parkinson disease. SFN. 50, 344–346 (1987). https://doi.org/10.1159/000100803

    Article  Google Scholar 

  7. Benabid, A.L., Pollak, P., Hoffmann, D., et al.: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 337, 403–406 (1991). https://doi.org/10.1016/0140-6736(91)91175-T

    Article  Google Scholar 

  8. Herzog, J., Volkmann, J., Krack, P., et al.: Two-year follow-up of subthalamic deep brain stimulation in Parkinson’s disease. Mov. Disord. 18, 1332–1337 (2003). https://doi.org/10.1002/mds.10518

    Article  Google Scholar 

  9. Mao, Z., Ling, Z., Pan, L., et al.: Comparison of efficacy of deep brain stimulation of different targets in Parkinson’s disease: a network meta-analysis. Front. Aging Neurosci. 11 (2019). https://doi.org/10.3389/fnagi.2019.00023

  10. DeLong, M.R., Wichmann, T.: Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurol. 72, 1354–1360 (2015). https://doi.org/10.1001/jamaneurol.2015.2397

    Article  Google Scholar 

  11. Ondo, W., Almaguer, M., Jankovic, J., Simpson, R.K.: Thalamic deep brain stimulation: comparison between unilateral and bilateral placement. Arch. Neurol. 58, 218–222 (2001). https://doi.org/10.1001/archneur.58.2.218

    Article  Google Scholar 

  12. Benabid, A.L., Pollak, P., Gao, D., et al.: Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J. Neurosurg. 84, 203–214 (1996). https://doi.org/10.3171/jns.1996.84.2.0203

    Article  Google Scholar 

  13. Koch, P., Baltuch, G.: Deep brain stimulation for epilepsy: evidence for limbic network disruption via chronic anterior nucleus of the thalamus and hippocampus stimulation. In: Itakura, T. (ed.) Deep Brain Stimulation for Neurological Disorders: Theoretical Background and Clinical Application, pp. 183–193. Springer International Publishing, Cham (2015)

    Google Scholar 

  14. Velasco, A.L., Velasco, F., Velasco, M., et al.: Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia. 48, 1895–1903 (2007). https://doi.org/10.1111/j.1528-1167.2007.01181.x

    Article  Google Scholar 

  15. Lim, S.-N., Lee, S.-T., Tsai, Y.-T., et al.: Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: a long-term follow-up study. Epilepsia. 48, 342–347 (2007). https://doi.org/10.1111/j.1528-1167.2006.00898.x

    Article  Google Scholar 

  16. Park, H.R., Lee, J.M., Ehm, G., et al.: Long-term clinical outcome of internal globus pallidus deep brain stimulation for dystonia. PLoS One. 11, e0146644 (2016). https://doi.org/10.1371/journal.pone.0146644

    Article  Google Scholar 

  17. Coubes, P., Roubertie, A., Vayssiere, N., et al.: Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet. 355, 2220–2221 (2000). https://doi.org/10.1016/S0140-6736(00)02410-7

    Article  Google Scholar 

  18. Malone, D.A., Dougherty, D.D., Rezai, A.R., et al.: Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry. 65, 267–275 (2009). https://doi.org/10.1016/j.biopsych.2008.08.029

    Article  Google Scholar 

  19. Greenberg, B.D., Malone, D.A., Friehs, G.M., et al.: Three-year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology. 31, 2384–2393 (2006). https://doi.org/10.1038/sj.npp.1301165

    Article  Google Scholar 

  20. Flaherty, A.W., Williams, Z.M., Amirnovin, R., et al.: Deep brain stimulation of the anterior internal capsule for the treatment of Tourette syndrome: technical case report. Oper. Neurosurg. 57, ONS-E403-ONS-E403 (2005). https://doi.org/10.1227/01.NEU.0000176854.24694.95

    Article  Google Scholar 

  21. Kuhn, J., Lenartz, D., Huff, W., et al.: Transient manic-like episode following bilateral deep brain stimulation of the nucleus accumbens and the internal capsule in a patient with Tourette syndrome. Neuromodulation. 11, 128–131 (2008). https://doi.org/10.1111/j.1525-1403.2008.00154.x

    Article  Google Scholar 

  22. Shahed, J., Poysky, J., Kenney, C., et al.: GPi deep brain stimulation for Tourette syndrome improves tics and psychiatric comorbidities. Neurology. 68, 159–160 (2007). https://doi.org/10.1212/01.wnl.0000250354.81556.90

    Article  Google Scholar 

  23. Zhang, J.-G., Ge, Y., Stead, M., et al.: Long-term outcome of globus pallidus internus deep brain stimulation in patients with Tourette syndrome. Mayo Clin. Proc. 89, 1506–1514 (2014). https://doi.org/10.1016/j.mayocp.2014.05.019

    Article  Google Scholar 

  24. Servello, D., Porta, M., Sassi, M., et al.: Deep brain stimulation in 18 patients with severe Gilles de la Tourette syndrome refractory to treatment: the surgery and stimulation. J. Neurol. Neurosurg. Psychiatry. 79, 136–142 (2008). https://doi.org/10.1136/jnnp.2006.104067

    Article  Google Scholar 

  25. Maciunas, R.J., Maddux, B.N., Riley, D.E., et al.: Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome. J. Neurosurg. 107, 1004–1014 (2007). https://doi.org/10.3171/JNS-07/11/1004

    Article  Google Scholar 

  26. Porta, M., Brambilla, A., Cavanna, A.E., et al.: Thalamic deep brain stimulation for treatment-refractory Tourette syndrome: two-year outcome. Neurology. 73, 1375–1380 (2009). https://doi.org/10.1212/WNL.0b013e3181bd809b

    Article  Google Scholar 

  27. Leoutsakos, J.-M.S., Yan, H., Anderson, W.S., et al.: Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the ADvance trial): a two year follow-up including results of delayed activation. J. Alzheimers Dis. 64, 597–606 (2018). https://doi.org/10.3233/JAD-180121

    Article  Google Scholar 

  28. Mao, Z.-Q., Wang, X., Xu, X., et al.: Partial improvement in performance of patients with severe Alzheimer’s disease at an early stage of fornix deep brain stimulation. Neural Regen. Res. 13, 2164–2172 (2018). https://doi.org/10.4103/1673-5374.241468

    Article  Google Scholar 

  29. Jenkinson, N., Nandi, D., Miall, R.C., et al.: Pedunculopontine nucleus stimulation improves akinesia in a parkinsonian monkey. Neuroreport. 15, 2621–2624 (2004)

    Article  Google Scholar 

  30. Wilcox, R.A., Cole, M.H., Wong, D., et al.: Pedunculopontine nucleus deep brain stimulation produces sustained improvement in primary progressive freezing of gait. J. Neurol. Neurosurg. Psychiatry. 82, 1256–1259 (2011). https://doi.org/10.1136/jnnp.2010.213462

    Article  Google Scholar 

  31. Cheung, S.W., Racine, C.A., Henderson-Sabes, J., et al.: Phase I trial of caudate deep brain stimulation for treatment-resistant tinnitus. J. Neurosurg. 1, 1–10 (2019). https://doi.org/10.3171/2019.4.JNS19347

    Article  Google Scholar 

  32. Larson, P.S., Cheung, S.W.: A stroke of silence: tinnitus suppression following placement of a deep brain stimulation electrode with infarction in area LC: case report. J. Neurosurg. 118, 192–194 (2013). https://doi.org/10.3171/2012.9.JNS12594

    Article  Google Scholar 

  33. Howell, B., Choi, K.S., Gunalan, K., et al.: Quantifying the axonal pathways directly stimulated in therapeutic subcallosal cingulate deep brain stimulation. Hum. Brain Mapp. 40, 889–903 (2019). https://doi.org/10.1002/hbm.24419

    Article  Google Scholar 

  34. Mayberg, H.S., Lozano, A.M., Voon, V., et al.: Deep brain stimulation for treatment-resistant depression. Neuron. 45, 651–660 (2005). https://doi.org/10.1016/j.neuron.2005.02.014

    Article  Google Scholar 

  35. Widge, A.S., Zorowitz, S., Basu, I., et al.: Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nat. Commun. 10, 1536 (2019). https://doi.org/10.1038/s41467-019-09557-4

    Article  Google Scholar 

  36. Wal, J.M. van der, Bergfeld, I.O., Lok, A., et al.: Long-term deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression. J. Neurol. Neurosurg. Psychiatry. 91, 189–195 (2020). https://doi.org/10.1136/jnnp-2019-321758

    Article  Google Scholar 

  37. Whiting, A.C., Sutton, E.F., Walker, C.T., et al.: Deep brain stimulation of the hypothalamus leads to increased metabolic rate in refractory obesity. World Neurosurg. 121, e867–e874 (2019). https://doi.org/10.1016/j.wneu.2018.10.002

    Article  Google Scholar 

  38. Ge, S., Chen, Y., Li, N., et al.: Deep brain stimulation of nucleus accumbens for methamphetamine addiction: two case reports. World Neurosurg. 122, 512–517 (2019). https://doi.org/10.1016/j.wneu.2018.11.056

    Article  Google Scholar 

  39. Müller, U.J., Sturm, V., Voges, J., et al.: Nucleus accumbens deep brain stimulation for alcohol addiction – safety and clinical long-term results of a pilot trial. Pharmacopsychiatry. 49, 170–173 (2016). https://doi.org/10.1055/s-0042-104507

    Article  Google Scholar 

  40. Nowacki, A., Moir, L., Owen, S.L., et al.: Deep brain stimulation of chronic cluster headaches: posterior hypothalamus, ventral tegmentum and beyond. Cephalalgia. 39, 1111–1120 (2019). https://doi.org/10.1177/0333102419839992

    Article  Google Scholar 

  41. Abreu, V., Vaz, R., Rebelo, V., et al.: Thalamic deep brain stimulation for neuropathic pain: efficacy at three years’ follow-up. Neuromodulation. 20, 504–513 (2017). https://doi.org/10.1111/ner.12620

    Article  Google Scholar 

  42. Yamgoue, Y., Pralong, E., Levivier, M., Bloch, J.: Deep brain stimulation of the Ventroposteromedial (VPM) thalamus 10 years after VPM thalamotomy to treat a recurrent facial pain. SFN. 94, 118–122 (2016). https://doi.org/10.1159/000444762

    Article  Google Scholar 

  43. Schiff, N.D.: Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci. 33, 1–9 (2010). https://doi.org/10.1016/j.tins.2009.11.002

    Article  Google Scholar 

  44. Baker, J.L., Ryou, J.-W., Wei, X.F., et al.: Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates. J. Neurophysiol. 116, 2383–2404 (2016). https://doi.org/10.1152/jn.01129.2015

    Article  Google Scholar 

  45. Lempka, S.F., Johnson, M.D., Miocinovic, S., et al.: Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clin. Neurophysiol. 121, 2128–2133 (2010). https://doi.org/10.1016/j.clinph.2010.04.026

    Article  Google Scholar 

  46. Butson, C.R., Maks, C.B., McIntyre, C.C.: Sources and effects of electrode impedance during deep brain stimulation. Clin. Neurophysiol. 117, 447–454 (2006). https://doi.org/10.1016/j.clinph.2005.10.007

    Article  Google Scholar 

  47. Lempka, S.F., Miocinovic, S., Johnson, M.D., et al.: In vivo impedance spectroscopy of deep brain stimulation electrodes. J. Neural Eng. 6, 046001 (2009). https://doi.org/10.1088/1741-2560/6/4/046001

    Article  Google Scholar 

  48. Miocinovic, S., Lempka, S.F., Russo, G.S., et al.: Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp. Neurol. 216, 166–176 (2009). https://doi.org/10.1016/j.expneurol.2008.11.024

    Article  Google Scholar 

  49. Rattay, F.: Analysis of models for external stimulation of axons. IEEE Trans. Biomed. Eng. BME. 33, 974–977 (1986). https://doi.org/10.1109/TBME.1986.325670

    Article  Google Scholar 

  50. Lehto, L.J., Slopsema, J.P., Johnson, M.D., et al.: Orientation selective deep brain stimulation. J. Neural Eng. 14, 016016 (2017). https://doi.org/10.1088/1741-2552/aa5238

    Article  Google Scholar 

  51. Slopsema, J.P., Peña, E., Patriat, R., et al.: Clinical deep brain stimulation strategies for orientation-selective pathway activation. J. Neural Eng. 15, 056029 (2018). https://doi.org/10.1088/1741-2552/aad978

    Article  Google Scholar 

  52. Xiao, Y., Peña, E., Johnson, M.D.: Theoretical optimization of stimulation strategies for a directionally segmented deep brain stimulation electrode array. IEEE Trans. Biomed. Eng. 63, 359–371 (2016). https://doi.org/10.1109/TBME.2015.2457873

    Article  Google Scholar 

  53. Anderson, D.N., Duffley, G., Vorwerk, J., et al.: Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. J. Neural Eng. 16, 016026 (2019). https://doi.org/10.1088/1741-2552/aae590

    Article  Google Scholar 

  54. McIntyre, C.C., Mori, S., Sherman, D.L., et al.: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin. Neurophysiol. 115, 589–595 (2004). https://doi.org/10.1016/j.clinph.2003.10.033

    Article  Google Scholar 

  55. Johnson, M.D., McIntyre, C.C.: Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. J. Neurophysiol. 100, 2549–2563 (2008). https://doi.org/10.1152/jn.90372.2008

    Article  Google Scholar 

  56. Ranck, J.B.: Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98, 417–440 (1975). https://doi.org/10.1016/0006-8993(75)90364-9

    Article  Google Scholar 

  57. Meissner, W.: Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain. 128, 2372–2382 (2005). https://doi.org/10.1093/brain/awh616

    Article  Google Scholar 

  58. Bar-Gad, I.: Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation. J. Neurosci. 24, 7410–7419 (2004). https://doi.org/10.1523/JNEUROSCI.1691-04.2004

    Article  Google Scholar 

  59. Dostrovsky, J.O., Levy, R., Wu, J.P., et al.: Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J. Neurophysiol. 84, 570–574 (2000). https://doi.org/10.1152/jn.2000.84.1.570

    Article  Google Scholar 

  60. Xiao, Y., Agnesi, F., Bello, E.M., et al.: Deep brain stimulation induces sparse distributions of locally modulated neuronal activity. Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-20428-8

  61. Miocinovic, S., Parent, M., Butson, C.R., et al.: Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J. Neurophysiol. 96, 1569–1580 (2006). https://doi.org/10.1152/jn.00305.2006

    Article  Google Scholar 

  62. Birdno, M.J., Kuncel, A.M., Dorval, A.D., et al.: Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J. Neurophysiol. 107, 364–383 (2011). https://doi.org/10.1152/jn.00906.2010

    Article  Google Scholar 

  63. Dorval, A.D., Russo, G.S., Hashimoto, T., et al.: Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. J. Neurophysiol. 100, 2807–2818 (2008). https://doi.org/10.1152/jn.90763.2008

    Article  Google Scholar 

  64. Grill, W.M., Snyder, A.N., Miocinovic, S.: Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport. 15, 1137–1140 (2004). https://doi.org/10.1097/01.wnr.0000125783.35268.9f

    Article  Google Scholar 

  65. Agnesi, F., Connolly, A.T., Baker, K.B., et al.: Deep brain stimulation imposes complex informational lesions. PLoS One. 8, e74462 (2013). https://doi.org/10.1371/journal.pone.0074462

    Article  Google Scholar 

  66. Hashimoto, T., Elder, C.M., Okun, M.S., et al.: Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J. Neurosci. 23, 1916–1923 (2003)

    Article  Google Scholar 

  67. McIntyre, C.C., Grill, W.M., Sherman, D.L., Thakor, N.V.: Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J. Neurophysiol. 91, 1457–1469 (2004). https://doi.org/10.1152/jn.00989.2003

    Article  Google Scholar 

  68. Johnson, M.D., Miocinovic, S., McIntyre, C.C., Vitek, J.L.: Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics. 5, 294–308 (2008). https://doi.org/10.1016/j.nurt.2008.01.010

    Article  Google Scholar 

  69. Agnesi, F., Muralidharan, A., Baker, K.B., et al.: Fidelity of frequency and phase entrainment of circuit-level spike activity during DBS. J. Neurophysiol. 114, 825–834 (2015). https://doi.org/10.1152/jn.00259.2015

    Article  Google Scholar 

  70. Kuhn, A.A., Kempf, F., Brucke, C., et al.: High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci. 28, 6165–6173 (2008)

    Article  Google Scholar 

  71. Neumann, W.-J., Turner, R.S., Blankertz, B., et al.: Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 16, 105–118 (2019). https://doi.org/10.1007/s13311-018-00705-0

    Article  Google Scholar 

  72. Sohal, V.S., Sun, F.T.: Responsive neurostimulation suppresses synchronized cortical rhythms in patients with epilepsy. Neurosurg. Clin. 22, 481–488 (2011). https://doi.org/10.1016/j.nec.2011.07.007

    Article  Google Scholar 

  73. Air, E.L., Ryapolova-Webb, E., de Hemptinne, C., et al.: Acute effects of thalamic deep brain stimulation and thalamotomy on sensorimotor cortex local field potentials in essential tremor. Clin. Neurophysiol. 123, 2232–2238 (2012). https://doi.org/10.1016/j.clinph.2012.04.020

    Article  Google Scholar 

  74. Cagnan, H., Pedrosa, D., Little, S., et al.: Stimulating at the right time: phase-specific deep brain stimulation. Brain. 140, 132–145 (2017). https://doi.org/10.1093/brain/aww286

    Article  Google Scholar 

  75. Krauss, J.K., Yianni, J., Loher, T.J., Aziz, T.Z.: Deep brain stimulation for dystonia. J. Clin. Neurophysiol. 21, 18–30 (2004)

    Article  Google Scholar 

  76. Cooper, S.E., Driesslein, K.G., Noecker, A.M., et al.: Anatomical targets associated with abrupt versus gradual washout of subthalamic deep brain stimulation effects on bradykinesia. PLoS One. 9, e99663 (2014). https://doi.org/10.1371/journal.pone.0099663

    Article  Google Scholar 

  77. Wu, Y.R., Levy, R., Ashby, P., et al.: Does stimulation of the GPi control dyskinesia by activating inhibitory axons? Mov. Disord. 16, 208–216 (2001). https://doi.org/10.1002/mds.1046

    Article  Google Scholar 

  78. Shen, K.-Z., Zhu, Z.-T., Munhall, A., Johnson, S.W.: Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation. Synapse. 50, 314–319 (2003). https://doi.org/10.1002/syn.10274

    Article  Google Scholar 

  79. Peng, L., Fu, J., Ming, Y., et al.: The long-term efficacy of STN vs GPi deep brain stimulation for Parkinson disease: a meta-analysis. Medicine (Baltimore). 97, e12153 (2018). https://doi.org/10.1097/MD.0000000000012153

    Article  Google Scholar 

  80. Frankemolle, A.M.M., Wu, J., Noecker, A.M., et al.: Reversing cognitive-motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming. Brain. 133, 746–761 (2010). https://doi.org/10.1093/Brain/Awp315

    Article  Google Scholar 

  81. Okun, M.S., Green, J., Saben, R., et al.: Mood changes with deep brain stimulation of STN and GPi: results of a pilot study. J. Neurol. Neurosurg. Psychiatry. 74, 1584–1586 (2003). https://doi.org/10.1136/jnnp.74.11.1584

    Article  Google Scholar 

  82. Gradinaru, V., Mogri, M., Thompson, K.R., et al.: Optical deconstruction of parkinsonian neural circuitry. Science. 324, 354–359 (2009). https://doi.org/10.1126/science.1167093

    Article  Google Scholar 

  83. Nambu, A., Takada, M., Inase, M., Tokuno, H.: Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J. Neurosci. 16, 2671–2683 (1996)

    Article  Google Scholar 

  84. Butson, C.R., Cooper, S.E., Henderson, J.M., et al.: Probabilistic analysis of activation volumes generated during deep brain stimulation. NeuroImage. 54, 2096–2104 (2011). https://doi.org/10.1016/j.neuroimage.2010.10.059

    Article  Google Scholar 

  85. Cooper, S.E., Noecker, A.M., Abboud, H., et al.: Return of bradykinesia after subthalamic stimulation ceases: relationship to electrode location. Exp. Neurol. 231, 207–213 (2011). https://doi.org/10.1016/j.expneurol.2011.06.010

    Article  Google Scholar 

  86. Xie, C.-L., Shao, B., Chen, J., et al.: Effects of neurostimulation for advanced Parkinson’s disease patients on motor symptoms: a multiple-treatments meta-analyses of randomized controlled trials. Sci. Rep. 6, 1–11 (2016). https://doi.org/10.1038/srep25285

    Article  Google Scholar 

  87. Follett, K.A., Weaver, F.M., Stern, M., et al.: Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 362, 2077–2091 (2010). https://doi.org/10.1056/NEJMoa0907083

    Article  Google Scholar 

  88. Mirza, S., Yazdani, U., Dewey III, R., et al.: Comparison of globus pallidus interna and subthalamic nucleus in deep brain stimulation for Parkinson disease: an institutional experience and review. Parkinsons Dis. 2017 (2017). https://doi.org/10.1155/2017/3410820

  89. Yelnik, J., Damier, P., Bejjani, B.P., et al.: Functional mapping of the human globus pallidus: contrasting effect of stimulation in the internal and external pallidum in Parkinson’s disease. Neuroscience. 101, 77–87 (2000). https://doi.org/10.1016/S0306-4522(00)00364-X

    Article  Google Scholar 

  90. Johnson, M.D., Zhang, J., Ghosh, D., et al.: Neural targets for relieving parkinsonian rigidity and bradykinesia with pallidal deep brain stimulation. J. Neurophysiol. 108, 567–577 (2012). https://doi.org/10.1152/jn.00039.2012

    Article  Google Scholar 

  91. Heck, C., King-Stephens, D., Massey, A., et al.: Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS system pivotal trial. Epilepsia. 55, 432 (2014)

    Article  Google Scholar 

  92. Morrell, M.: Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 77, 1295 (2011)

    Article  Google Scholar 

  93. Zangiabadi, N., Ladino, L.D., Sina, F., et al.: Deep brain stimulation and drug-resistant epilepsy: a review of the literature. Front. Neurol. 10 (2019). https://doi.org/10.3389/fneur.2019.00601

  94. Klinger, N.V., Mittal, S.: Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy. Clin. Neurol. Neurosurg. 140, 11–25 (2016). https://doi.org/10.1016/j.clineuro.2015.11.009

    Article  Google Scholar 

  95. Kessler, R.C., Berglund, P., Demler, O., et al.: Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch. Gen. Psychiatry. 62, 593–602 (2005). https://doi.org/10.1001/archpsyc.62.6.593

    Article  Google Scholar 

  96. Russo, S.J., Nestler, E.J.: The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013). https://doi.org/10.1038/nrn3381

    Article  Google Scholar 

  97. Fava, M., Davidson, K.G.: DEFINITION and epidemiology of treatment-resistant depression. Psychiatr. Clin. N. Am. 19, 179–200 (1996). https://doi.org/10.1016/S0193-953X(05)70283-5

    Article  Google Scholar 

  98. Lujan, J.L., Chaturvedi, A., McIntyre, C.C.: Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders. Front. Biosci. 13, 5892–5904 (2008)

    Article  Google Scholar 

  99. Schlaepfer, T.E., Bewernick, B.H., Kayser, S., et al.: Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol. Psychiatry. 73, 1204–1212 (2013). https://doi.org/10.1016/j.biopsych.2013.01.034

    Article  Google Scholar 

  100. Bewernick, B.H., Hurlemann, R., Matusch, A., et al.: Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol. Psychiatry. 67, 110–116 (2010). https://doi.org/10.1016/j.biopsych.2009.09.013

    Article  Google Scholar 

  101. Crowell, A.L., Riva-Posse, P., Holtzheimer, P.E., et al.: Long-term outcomes of subcallosal cingulate deep brain stimulation for treatment-resistant depression. AJP. 176, 949–956 (2019). https://doi.org/10.1176/appi.ajp.2019.18121427

    Article  Google Scholar 

  102. Schiff, N.D., Giacino, J.T., Kalmar, K., et al.: Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 448, 600–603 (2007). https://doi.org/10.1038/nature06041

    Article  Google Scholar 

  103. Putzke, J.D., Uitti, R.J., Obwegeser, A.A., et al.: Bilateral thalamic deep brain stimulation: midline tremor control. J. Neurol. Neurosurg. Psychiatry. 76, 684–690 (2005). https://doi.org/10.1136/jnnp.2004.041434

    Article  Google Scholar 

  104. Mitchell, K., Peichel, D., Wharen, R., et al.: Unilateral versus bilateral ventral intermediate nucleus deep brain stimulation for axial essential tremor symptoms (S18.003). Neurology. 90, S18.003 (2018)

    Google Scholar 

  105. Nazzaro, J.M., Lyons, K.E., Pahwa, R.: Chapter 13 – deep brain stimulation for essential tremor. In: Lozano, A.M., Hallett, M. (eds.) Handbook of Clinical Neurology, pp. 155–166. Elsevier (2013)

    Google Scholar 

  106. Rizzone, M.G., Ferrarin, M., Lanotte, M.M., et al.: The dominant-subthalamic nucleus phenomenon in bilateral deep brain stimulation for Parkinson’s disease: evidence from a gait analysis study. Front. Neurol. 8 (2017). https://doi.org/10.3389/fneur.2017.00575

  107. Alberts, J.L., Hass, C.J., Vitek, J.L., Okun, M.S.: Are two leads always better than one: an emerging case for unilateral subthalamic deep brain stimulation in Parkinson’s disease. Exp. Neurol. 214, 1–5 (2008). https://doi.org/10.1016/j.expneurol.2008.07.019

    Article  Google Scholar 

  108. Temel, Y., Kessels, A., Tan, S., et al.: Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat. Disord. 12, 265–272 (2006). https://doi.org/10.1016/j.parkreldis.2006.01.004

    Article  Google Scholar 

  109. Miyagi, Y., Shima, F., Sasaki, T.: Brain shift: an error factor during implantation of deep brain stimulation electrodes. J. Neurosurg. 107, 989–997 (2007). https://doi.org/10.3171/JNS-07/11/0989

    Article  Google Scholar 

  110. Sillay, K.A., Kumbier, L.M., Ross, C., et al.: Perioperative brain shift and deep brain stimulating electrode deformation analysis: implications for rigid and non-rigid devices. Ann. Biomed. Eng. 41, 293–304 (2013). https://doi.org/10.1007/s10439-012-0650-0

    Article  Google Scholar 

  111. Teplitzky, B.A., Zitella, L.M., Xiao, Y., Johnson, M.D.: Model-based comparison of deep brain stimulation array functionality with varying number of radial electrodes and machine learning feature sets. Front. Comput. Neurosci. 10 (2016). https://doi.org/10.3389/fncom.2016.00058

  112. Petrossians, A., Davuluri, N., Whalen, J.J., et al.: Improved biphasic pulsing power efficiency with Pt-Ir coated microelectrodes. MRS Online Proc. Library Archive. 1621, 249–257 (2014). https://doi.org/10.1557/opl.2014.267

    Article  Google Scholar 

  113. McCreery, D.B., Agnew, W.F., Yuen, T.G.H., Bullara, L.: Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng. 37, 996–1001 (1990). https://doi.org/10.1109/10.102812

    Article  Google Scholar 

  114. Rolston, J.D., Englot, D.J., Starr, P.A., Larson, P.S.: An unexpectedly high rate of revisions and removals in deep brain stimulation surgery: analysis of multiple databases. Parkinsonism Relat. Disord. 33, 72–77 (2016). https://doi.org/10.1016/j.parkreldis.2016.09.014

    Article  Google Scholar 

  115. Martens, H.C.F., Toader, E., Decré, M.M.J., et al.: Spatial steering of deep brain stimulation volumes using a novel lead design. Clin. Neurophysiol. 122, 558–566 (2011). https://doi.org/10.1016/j.clinph.2010.07.026

    Article  Google Scholar 

  116. Butson, C.R., McIntyre, C.C.: Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimul. 1, 7–15 (2008). https://doi.org/10.1016/j.brs.2007.08.004

    Article  Google Scholar 

  117. Gunalan, K., Howell, B., McIntyre, C.C.: Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation. NeuroImage. 172, 263–277 (2018). https://doi.org/10.1016/j.neuroimage.2018.01.015

    Article  Google Scholar 

  118. Warman, E., Grill, W., Durand, D.: Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. I.E.E.E. Trans. Biomed. Eng. 39, 1244–1254 (1993). https://doi.org/10.1109/10.184700

    Article  Google Scholar 

  119. Hunka, K., Suchowersky, O., Wood, S., et al.: Nursing time to program and assess deep brain stimulators in movement disorder patients. J. Neurosci. Nurs. 37, 204–210 (2005)

    Article  Google Scholar 

  120. Schüpbach, W.M.M., Chabardes, S., Matthies, C., et al.: Directional leads for deep brain stimulation: opportunities and challenges: directional leads for DBS. Mov. Disord. 32, 1371–1375 (2017). https://doi.org/10.1002/mds.27096

    Article  Google Scholar 

  121. Steigerwald, F., Müller, L., Johannes, S., et al.: Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov. Disord. 31, 1240–1243 (2016). https://doi.org/10.1002/mds.26669

    Article  Google Scholar 

  122. Xie, T., Kang, U.J., Warnke, P.: Effect of stimulation frequency on immediate freezing of gait in newly activated STN DBS in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 83, 1015–1017 (2012). https://doi.org/10.1136/jnnp-2011-302091

    Article  Google Scholar 

  123. McIntyre, C.C., Butson, C.R., Maks, C.B., Noecker, A.M.: Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface. In: 2006 international conference of the IEEE engineering in medicine and biology society, pp 893–895 (2006)

    Google Scholar 

  124. Chaturvedi, A., Luján, J.L., McIntyre, C.C.: Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation. J. Neural Eng. 10, 056023 (2013). https://doi.org/10.1088/1741-2560/10/5/056023

    Article  Google Scholar 

  125. Anderson, D.N., Osting, B., Vorwerk, J., et al.: Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. J. Neural Eng. 15, 026005 (2018). https://doi.org/10.1088/1741-2552/aaa14b

    Article  Google Scholar 

  126. Peña, E., Zhang, S., Deyo, S., et al.: Particle swarm optimization for programming deep brain stimulation arrays. J. Neural Eng. 14, 016014 (2017). https://doi.org/10.1088/1741-2552/aa52d1

    Article  Google Scholar 

  127. Peña, E., Zhang, S., Patriat, R., et al.: Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J. Neural Eng. 15, 066020 (2018). https://doi.org/10.1088/1741-2552/aae12f

    Article  Google Scholar 

  128. Connolly, A.T., Vetter, R.J., Hetke, J.F., et al.: A novel lead design for modulation and sensing of deep brain structures. I.E.E.E. Trans. Biomed. Eng. 63, 148–157 (2016). https://doi.org/10.1109/TBME.2015.2492921

    Article  Google Scholar 

  129. Contarino, M.F., Verhagen, R., Lourens, M., et al.: Directional steering: a novel approach to deep brain stimulation. Neurology. 83, 1163–1169 (2014). https://doi.org/10.1212/WNL.0000000000000823

    Article  Google Scholar 

  130. Tinkhauser, G., Pogosyan, A., Debove, I., et al.: Directional local field potentials: a tool to optimize deep brain stimulation. Mov. Disord. 33, 159–164 (2018). https://doi.org/10.1002/mds.27215

    Article  Google Scholar 

  131. Little, S., Tripoliti, E., Beudel, M., et al.: Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J. Neurol. Neurosurg. Psychiatry. 87, 1388–1389 (2016). https://doi.org/10.1136/jnnp-2016-313518

    Article  Google Scholar 

  132. Little, S., Pogosyan, A., Neal, S., et al.: Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 (2013). https://doi.org/10.1002/ana.23951

    Article  Google Scholar 

  133. Rosa, M., Arlotti, M., Ardolino, G., et al.: Adaptive deep brain stimulation in a freely moving parkinsonian patient. Mov. Disord. 30, 1003–1005 (2015). https://doi.org/10.1002/mds.26241

    Article  Google Scholar 

  134. Grahn, P.J., Mallory, G.W., Khurram, O.U., et al.: A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front. Neurosci. 8 (2014). https://doi.org/10.3389/fnins.2014.00169

  135. Cohn, J.F., Kruez, T.S., Matthews. I., et al.: Detecting depression from facial actions and vocal prosody. In: 2009 3rd international conference on affective computing and intelligent interaction and workshops, pp. 1–7 (2009)

    Google Scholar 

  136. Herron, J, Stanslaski, S., Chouinard, T., et al.: Bi-directional brain interfacing instrumentation. In: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2018)

    Google Scholar 

  137. Zhang, S., Connolly, A.T., Madden, L.R., et al.: High-resolution local field potentials measured with deep brain stimulation arrays. J. Neural Eng. 15, 046019 (2018). https://doi.org/10.1088/1741-2552/aabdf5

    Article  Google Scholar 

  138. Swann, N.C., Hemptinne, C. de, Thompson, M.C., et al.: Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J. Neural Eng. 15, 046006 (2018). https://doi.org/10.1088/1741-2552/aabc9b

    Article  Google Scholar 

  139. Graupe, D., Basu, I., Tuninetti, D., et al.: Adaptively controlling deep brain stimulation in essential tremor patient via surface electromyography. Neurol. Res. 32, 899–904 (2010). https://doi.org/10.1179/016164110X12767786356354

    Article  Google Scholar 

  140. Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extraction techniques in machine learning. In: 2014 science and information conference, pp. 372–378 (2014)

    Google Scholar 

  141. Arlotti, M., Rosa, M., Marceglia, S., et al.: The adaptive deep brain stimulation challenge. Parkinsonism Relat. Disord. 28, 12–17 (2016)

    Article  Google Scholar 

  142. Carron, R., Chaillet, A., Filipchuk, A., et al.: Closing the loop of deep brain stimulation. Front. Syst. Neurosci. 7 (2013). https://doi.org/10.3389/fnsys.2013.00112

  143. Santaniello, S., Fiengo, G., Glielmo, L., Grill, W.M.: Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 15–24 (2011). https://doi.org/10.1109/TNSRE.2010.2081377

    Article  Google Scholar 

  144. Grado, L.L., Johnson, M.D., Netoff, T.I.: Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease. PLoS Comput. Biol. 14, e1006606 (2018). https://doi.org/10.1371/journal.pcbi.1006606

    Article  Google Scholar 

  145. Tass, P.A.: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, 81–88 (2003). https://doi.org/10.1007/s00422-003-0425-7

    Article  MATH  Google Scholar 

  146. Adamchic, I., Hauptmann, C., Barnikol, U.B., et al.: Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Mov. Disord. 29, 1679–1684 (2014). https://doi.org/10.1002/mds.25923

    Article  Google Scholar 

  147. Wang, J., Nebeck, S., Muralidharan, A., et al.: Coordinated reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine non-human primate model of parkinsonism. Brain Stimul. 9, 609–617 (2016). https://doi.org/10.1016/j.brs.2016.03.014

    Article  Google Scholar 

  148. Stanslaski, S., Afshar, P., Cong, P., et al.: Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 410–421 (2012). https://doi.org/10.1109/TNSRE.2012.2183617

    Article  Google Scholar 

  149. Afshar, P., Khambhati, A., Stanslaski, S., et al.: A translational platform for prototyping closed-loop neuromodulation systems. Front Neural. Circuits. 6 (2013). https://doi.org/10.3389/fncir.2012.00117

  150. Rosin, B., Slovik, M., Mitelman, R., et al.: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 72, 370–384 (2011). https://doi.org/10.1016/j.neuron.2011.08.023

    Article  Google Scholar 

  151. Yoshida, F., Martinez-Torres, I., Pogosyan, A., et al.: Value of subthalamic nucleus local field potentials recordings in predicting stimulation parameters for deep brain stimulation in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 81, 885–889 (2010). https://doi.org/10.1136/jnnp.2009.190918

    Article  Google Scholar 

  152. Tan, H., Debarros, J., He, S., et al.: Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimul. 12, 858–867 (2019). https://doi.org/10.1016/j.brs.2019.02.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Johnson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brinda, A.K., Johnson, M.D. (2022). Mechanisms and Targeting of Deep-Brain Stimulation Therapies. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_133-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_133-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics