Skip to main content

Energy-Efficient Electrical Stimulation Systems

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Electrical stimulation occurs when a cell is excited by using voltage or current pulses. A specialized bioelectronic circuitry is needed to generate the pulse. These circuits consume a certain amount of power to drive the system. The stimulators are mostly implanted inside the body and, hence, impose a strict restriction on power consumption. Restriction on power consumption is key for the safe operation of the system; a large amount of power surge can irreversibly damage the cells and tissues. Hence special attention is given to make electrical stimulators energy efficient and safe. The chapter will overview electrical stimulation strategies, architectures, circuit methods, and applications of electrical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Accornero, N., Bini, G., Lenzi, G.L., Manfredi, M.: Selective activation of peripheral nerve fibre groups of different diameter by triangular shaped stimulus pulses. J. Physiol. 273(3), 539–560 (1977)

    Article  Google Scholar 

  2. Agnew, W.F., McCreery, D.B.: Considerations for safety with chronically implanted nerve electrodes. Epilepsia 31, S27–S32 (1990)

    Article  Google Scholar 

  3. Ahmadi, M.M., Jullien, G.A.: A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 3(3), 169–180 (2009)

    Article  Google Scholar 

  4. Altaf, M.A.B., Zhang, C., Yoo, J.: A 16-channel patient-specific seizure onset and termination detection soc with impedance-adaptive transcranial electrical stimulator. IEEE J. Solid-State Circuits 50(11), 2728–2740 (2015)

    Article  Google Scholar 

  5. Arfin, S.K., Sarpeshkar, R.: An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE Trans. Biomed. Circuits Syst. 6(1), 1–14 (2012)

    Article  Google Scholar 

  6. Azin, M., Guggenmos, D.J., Barbay, S., Nudo, R.J., Mohseni, P.: A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. IEEE J. Solid-State Circuits 46(4), 731–745 (2011)

    Article  Google Scholar 

  7. Azin, M., Mohseni, P.: A high-output-impedance current microstimulator for anatomical rewiring of cortical circuitry. In: 2008 IEEE International Symposium on Circuits and Systems, pp. 2502–2505. IEEE (2008)

    Google Scholar 

  8. Benabid, A.L.: Deep brain stimulation for parkinson’s disease. Current Opin. Neurobiol. 13(6), 696–706 (2003)

    Article  Google Scholar 

  9. Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Al-Khodairy, A., Corbet, T., Schnider, A., Schmidlin, T., Zhang, H., Bassolino, M., et al.: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9(1), 2421 (2018)

    Article  Google Scholar 

  10. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8(9), 1263–1268 (2005)

    Article  Google Scholar 

  11. Bronstein, J.M., Tagliati, M., McIntyre, C., Chen, R., Cheung, T., Hargreaves, E.L., Israel, Z., Moffitt, M., Montgomery, E.B., Stypulkowski, P., et al.: The rationale driving the evolution of deep brain stimulation to constant-current devices. Neuromodulation: Technol. Neural Interface 18(2), 85–89 (2015)

    Article  Google Scholar 

  12. Chae, M.S., Liu, W., Sivaprakasam, M.: Design optimization for integrated neural recording systems. IEEE J. Solid-State Circuits 43(9), 1931–1939 (2008)

    Article  Google Scholar 

  13. Chen, K., Lo, Y.-K., Liu, W.: A 37.6 mm 2 1024-channel high-compliance-voltage soc for epiretinal prostheses. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp 294–295. IEEE (2013)

    Google Scholar 

  14. Chun, H., Yang, Y., Lehmann, T.: Safety ensuring retinal prosthesis with precise charge balance and low power consumption. IEEE Trans. Biomed. Circuits Syst. 8(1), 108–118 (2013)

    Article  Google Scholar 

  15. Chun, H., Yang, Y., Lehmann, T.: Safety ensuring retinal prosthesis with precise charge balance and low power consumption. IEEE Trans. Biomed. Circuits Syst. 8(1), 108–118 (2014)

    Article  Google Scholar 

  16. Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  Google Scholar 

  17. Constandinou, T.G., Georgiou, J., Toumazou, C.: A partial-current-steering biphasic stimulation driver for vestibular prostheses. IEEE Trans. Biomed. Circuits Syst. 2(2), 106–113 (2008)

    Article  Google Scholar 

  18. Cooper, R.A.S., Wallenius, S.T., Smith, W.M., Ideker, R.E.: The effect of phase separation on biphasic waveform defibrillation. Pacing Clin. Electrophysiol. 16(3), 471–482 (1993)

    Article  Google Scholar 

  19. Fang, X., Wills, J., Granacki, J., LaCoss, J., Arakelian, A., Weiland, J.: Novel charge-metering stimulus amplifier for biomimetic implantable prosthesis. In: 2007 IEEE International Symposium on Circuits and Systems, pp. 569–572. IEEE (2007)

    Google Scholar 

  20. Fang, X., Wills, J., Granacki, J., LaCoss, J., Choma, J.: Cmos charge-metering microstimulator for implantable prosthetic device. In: 2008 51st Midwest Symposium on Circuits and Systems, pp. 826–829. IEEE (2008)

    Google Scholar 

  21. Fisher, R., Salanova, V., Witt, T., Worth, R., Henry, T., Gross, R., Oommen, K., Osorio, I., Nazzaro, J., Labar, D., et al.: Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5), 899–908 (2010)

    Article  Google Scholar 

  22. Formento, E., Minassian, K., Wagner, F., Mignardot, J.B., Le Goff-Mignardot, C.G., Rowald, A., Bloch, J., Micera, S., Capogrosso, M., Courtine, G.: Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 21(12), 1728 (2018)

    Article  Google Scholar 

  23. Germanovix, W., Toumazou, C.: Design of a micropower current-mode log-domain analog cochlear implant. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 47(10), 1023–1046 (2000)

    Article  Google Scholar 

  24. Ghovanloo, M., Najafi, K.: A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators. IEEE Trans. Biomed. Eng. 52(1), 97–105 (2005)

    Article  Google Scholar 

  25. Gilja, V., Chestek, C.A., Diester, I., Henderson, J.M., Deisseroth, K., Shenoy, K.V.: Challenges and opportunities for next-generation intracortically based neural prostheses. IEEE Trans. Biomed. Eng. 58(7), 1891–1899 (2011)

    Article  Google Scholar 

  26. Gracanin, F., Trnkoczy, A.: Optimal stimulus parameters for minimum pain in the chronic stimulation of innervated muscle. Arch. Phys. Med. Rehabil. 56(6), 243–249 (1975)

    Google Scholar 

  27. Greenwald, E., Masters, M.R., Thakor, N.V.: Implantable neurotechnologies: bidirectional neural interfaces – applications and vlsi circuit implementations. Med. Biol. Eng. Comput. 54(1), 1–17 (2016)

    Article  Google Scholar 

  28. Gudnason, G., Bruun, E., Haugland, M.: An implantable mixed analog/digital neural stimulator circuit. In: ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No. 99CH36349), vol. 5, pp. 375–378. IEEE (1999)

    Google Scholar 

  29. Gudnason, G., Bruun, E., Haugland, M.: An implantable mixed analog/digital neural stimulator circuit. In: ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No. 99CH36349), vol. 5, pp. 375–378. IEEE (1999)

    Google Scholar 

  30. Haas, M., Vogelmann, P., Ortmanns, M.: A neuromodulator frontend with reconfigurable class-b current and voltage controlled stimulator. IEEE Solid-State Circuits Lett. 1(3), 54–57 (2018)

    Article  Google Scholar 

  31. Hall, J.E.: Guyton and Hall Textbook of Medical Physiology e-Book. Elsevier Health Sciences, Philadelphia (2015)

    Google Scholar 

  32. Hopps, J.A., Bigelow, W.G.: Electrical treatment of cardiac arrest: a cardiac stimulator-defibrillator. Surgery 36(4), 833–849 (1954)

    Google Scholar 

  33. Hsu, W.-Y., Schmid, A.: Compact, energy-efficient high-frequency switched capacitor neural stimulator with active charge balancing. IEEE Trans. Biomed. Circuits Syst. 11(4), 878–888 (2017)

    Article  Google Scholar 

  34. Huang, C.Q., Carter, P.M., Shepherd, R.K.: Stimulus induced ph changes in cochlear implants: an in vitro and in vivo study. Ann. Biomed. Eng. 29(9), 791–802 (2001)

    Article  Google Scholar 

  35. Jezernik, S., Morari, M.: Energy-optimal electrical excitation of nerve fibers. IEEE Trans. Biomed. Eng. 52(4), 740–743 (2005)

    Article  Google Scholar 

  36. Jia, H., Cheng, X., Wang, X., Kumar, P., Shen, Z.J.: A novel monolithic self-synchronized rectifier. In: 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, pp. 907–912. IEEE (2008)

    Google Scholar 

  37. Jänig, W.: The Integrative Action of the Autonomic Nervous System. Neurobiology of Homeostasis. pp. i–iv. Cambridge University Press, Cambridge, (2006)

    Book  Google Scholar 

  38. Johnson, B.C., Gambini, S., Izyumin, I., Moin, A., Zhou, A., Alexandrov, G., Santacruz, S.R., Rabaey, J.M., Carmena, J.M., Muller, R.: An implantable 700 μw 64-channel neuromodulation IC for simultaneous recording and stimulation with rapid artifact recovery. In: 2017 Symposium on VLSI Circuits, pp. C48–C49. IEEE (2017)

    Google Scholar 

  39. Kaczmarek, K.A., Kramer, K.M., Webster, J.G., Radwin, R.G.: A 16-channel 8-parameter waveform electrotactile stimulation system. IEEE Trans. Biomed. Eng. 38(10), 933–943 (1991)

    Article  Google Scholar 

  40. Kelly, S.K., Wyatt, J.L.: A power-efficient neural tissue stimulator with energy recovery. IEEE Trans. Biomed. Circuits Syst. 5(1), 20–29 (2011)

    Article  Google Scholar 

  41. Khodabukus, A., Madden, L., Prabhu, N.K., Koves, T.R., Jackman, C.P., Muoio, D.M., Bursac, N.: Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 198, 259–269 (2019)

    Article  Google Scholar 

  42. Kim, C., Joshi, S., Courellis, H., Wang, J., Miller, C., Cauwenberghs, G.: A 92 db dynamic range sub-μv rms-noise 0.8 μw/ch neural-recording adc array with predictive digital autoranging. In: 2018 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 470–472. IEEE (2018)

    Google Scholar 

  43. Kligman, A.M.: The biology of the stratum corneum. In: The Epidermis, Academic Press, New York, pp. 387–433 (1964)

    Google Scholar 

  44. Koller, W., Pahwa, R., Busenbark, K., Hubble, J., Wilkinson, S., Lang, A., Tuite, P., Sime, E., Lazano, A., Hauser, R., et al.: High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann. Neurol.: Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 42(3), 292–299 (1997)

    Google Scholar 

  45. Lala, D., Spaulding, S.J., Burke, S.M., Houghton, P.E.: Electrical stimulation therapy for the treatment of pressure ulcers in individuals with spinal cord injury: a systematic review and meta-analysis. Int. Wound J. 13(6), 1214–1226 (2016)

    Article  Google Scholar 

  46. Laotaveerungrueng, N., Lahiji, R.R., Garverick, S.L., Mehregany, M.: A high-voltage, high-current cmos pulse generator asic for deep brain stimulation. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 1519–1522. IEEE (2010)

    Google Scholar 

  47. Lee, H.-M., Howell, B., Grill, W.M., Ghovanloo, M.: Stimulation efficiency with decaying exponential waveforms in a wirelessly powered switched-capacitor discharge stimulation system. IEEE Trans. Biomed. Eng. 65(5), 1095–1106 (2018)

    Google Scholar 

  48. Lee, H.-M., Kwon, K.Y., Li, W., Ghovanloo, M.: A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation. IEEE J. Solid-State Circuits 50(1), 360–374 (2015)

    Article  Google Scholar 

  49. Lee, S., Wang, H., Wang, J., Shi, Q., Yen, S.-C., Thakor, N.V., Lee, C.: Battery-free neuromodulator for peripheral nerve direct stimulation. Nano Energy 50, 148–158 (2018)

    Article  Google Scholar 

  50. Li, N., Jia, X., Murari, K., Parlapalli, R., Rege, A., Thakor, N.V.: High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast. J. Neurosci. Methods 176(2), 230–236 (2009)

    Article  Google Scholar 

  51. Limousin, P., Speelman, J.D., Gielen, F., Janssens, M., et al.: Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J. Neurol. Neurosurg. Psychiatry 66(3), 289–296 (1999)

    Article  Google Scholar 

  52. Lindinger, M.I., Heigenhauser, G.J.: Ion fluxes during tetanic stimulation in isolated perfused rat hindlimb. Am. J. Phys.-Regul. Integr. Comp. Phys. 254(1), R117–R126 (1988)

    Google Scholar 

  53. Liu, H., Zhu, L., Tang, H., Qiu, T.: Effects of high frequency electrical stimulation on nerve’s conduction of action potentials. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), vol. 3, pp. 1308–1311. IEEE (2011)

    Google Scholar 

  54. Liu, X., Demosthenous, A., Donaldson, N.: An integrated implantable stimulator that is fail-safe without off-chip blocking-capacitors. IEEE Trans. Biomed. Circuits Syst. 2(3), 231–244 (2008)

    Article  Google Scholar 

  55. Liu, X., Demosthenous, A., Donaldson, N.: Neural interfaces for implanted stimulators. In: Springer Handbook of Medical Technology, pp. 749–766. Springer, Berlin (2011)

    Google Scholar 

  56. Lo, Y.-K., Chang, C.-W., Kuan, Y.-C., Culaclii, S., Kim, B., Chen, K., Gad, P., Edgerton, V.R., Liu, W.: A 176-channel 0.5 cm 3 0.7 g wireless implant for motor function recovery after spinal cord injury. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC), pp. 382–383. IEEE (2016)

    Google Scholar 

  57. Luan, S., Constandinou, T.G.: A charge-metering method for voltage-mode neural stimulation. J. Neurosci. Methods 224, 39–47 (2014)

    Article  Google Scholar 

  58. Luft, A.R., Kaelin-Lang, A., Hauser, T.-K., Buitrago, M.M., Thakor, N.V., Hanley, D.F., Cohen, L.G.: Modulation of rodent cortical motor excitability by somatosensory input. Exp Brain Res. 142(4), 562–569 (2002)

    Article  Google Scholar 

  59. Luo, Z., Ker, M.-D.: A high-voltage-tolerant and precise charge-balanced neuro-stimulator in low voltage CMOS process. IEEE Trans. Biomed. Circuits Syst. 10(6), 1087–1099 (2016)

    Article  Google Scholar 

  60. Luo, Z., Ker, M.-D.: A high-voltage-tolerant and power-efficient stimulator with adaptive power supply realized in low-voltage cmos process for implantable biomedical applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 8(2), 178–186 (2018)

    Article  Google Scholar 

  61. Maghsoudloo, E., Rezaei, M., Sawan, M., Gosselin, B.: A new charge balancing scheme for electrical microstimulators based on modulated anodic stimulation pulse width. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2443–2446. IEEE (2016)

    Google Scholar 

  62. Mayberg, H.S., Lozano, A.M., Voon, V., McNeely, H.E., Seminowicz, D., Hamani, C., Schwalb, J.M., Kennedy, S.H.: Deep brain stimulation for treatment-resistant depression. Neuron 45(5), 651–660 (2005)

    Article  Google Scholar 

  63. Maybhate, A., Hu, C., Bazley, F.A., Yu, Q., Thakor, N.V., Kerr, C.L., All, A.H.: Potential long term benefits of acute hypothermia after spinal cord injury: assessments with somatosensory evoked potentials. Crit. Care Med. 40(2), 573 (2012)

    Article  Google Scholar 

  64. McIntyre, C.C., Grill, W.M., Sherman, D.L., Thakor, N.V.: Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J. Neurophysiol. 91(4), 1457–1469 (2004)

    Article  Google Scholar 

  65. McIntyre, C.C., Mori, S., Sherman, D.L., Thakor, N.V., Vitek, J.L.: Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin. Neurophysiol. 115(3), 589–595 (2004)

    Article  Google Scholar 

  66. McIntyre, C.C., Thakor, N.V.: Uncovering the mechanisms of deep brain stimulation for Parkinson’s disease through functional imaging, neural recording, and neural modeling. Crit. Rev.TM Biomed. Eng. 30(4–6), 249–282 (2002)

    Google Scholar 

  67. Melen, R.D., Meindl, J.D.: Electrocutaneous stimulation in a reading aid for the blind. IEEE Trans. Biomed. Eng. 18(1), 1–3 (1971)

    Article  Google Scholar 

  68. Merrill, D.R., Bikson, M., Jefferys, J.G.R.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141(2), 171–198 (2005)

    Article  Google Scholar 

  69. Merrill, D.R., Bikson, M., Jefferys, J.G.R.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141(2), 171–198 (2005)

    Article  Google Scholar 

  70. Merrill, D.R., Bikson, M., Jefferys, J.G.R.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141(2), 171–198 (2005)

    Article  Google Scholar 

  71. Miller, C.A., Abbas, P.J., Robinson, B.K., Rubinstein, J.T., Matsuoka, A.J.: Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation. Hear. Res. 130(1–2), 197–218 (1999)

    Article  Google Scholar 

  72. Nag, S., Jia, X., Thakor, N.V., Sharma, D.: Flexible charge balanced stimulator with 5.6 fc accuracy for 140 nc injections. IEEE Trans. Biomed. Circuits Syst. 7(3), 266–275 (2012)

    Google Scholar 

  73. Nag, S., Ng, K.A., Jagadeesan, R., Sheshadri, S., Delgado-Martinez, I., Bossi, S., Yen, S.-C., Thakor, N.V.: Neural prosthesis for motor function restoration in upper limb extremity. In: 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, pp. 388–391. IEEE (2014)

    Google Scholar 

  74. Nitsche, M.A., Paulus, W.: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527(3), 633–639 (2000)

    Article  Google Scholar 

  75. Noda, T., Nishimura, S., Nakano, Y., Terasawa, Y., Haruta, M., Sasagawa, K., Tokuda, T., Ohta, J.: Fabrication and in vivo demonstration of microchip-embedded smart electrode device for neural stimulation in retinal prosthesis. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2017)

    Google Scholar 

  76. Noorsal, E., Sooksood, K., Xu, H., Hornig, R., Becker, J., Ortmanns, M.: A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE J. Solid-State Circuits 47(1), 244–256 (2012)

    Article  Google Scholar 

  77. Olafsdottir, G.E., Serdijn, W.A., Giagka, V.: An energy-efficient, inexpensive, spinal cord stimulator with adaptive voltage compliance for freely moving rats. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2937–2940. IEEE (2018)

    Google Scholar 

  78. O’Leary, G., Groppe, D.M., Valiante, T.A., Verma, N., Genov, R.: Nurip: neural interface processor for brain-state classification and programmable-waveform neurostimulation. IEEE J. Solid-State Circuits 53(11), 3150–3162 (2018)

    Article  Google Scholar 

  79. Ortmanns, M.: Charge balancing in functional electrical stimulators: a comparative study. In: 2007 IEEE International Symposium on Circuits and Systems, pp. 573–576. IEEE (2007)

    Google Scholar 

  80. Ortmanns, M., Rocke, A., Gehrke, M., Tiedtke, H.-J.: A 232-channel epiretinal stimulator asic. IEEE J. Solid-State Circuits 42(12), 2946–2959 (2007)

    Article  Google Scholar 

  81. Palanker, D., Vankov, A., Huie, P., Baccus, S.: Design of a high-resolution optoelectronic retinal prosthesis. J. Neural Eng. 2(1), S105 (2005)

    Article  Google Scholar 

  82. Pan, H., Liang, Y.C., Oruganti, R.: Design of smart power synchronous rectifier. IEEE Trans. Power Electron. 14(2), 308–315 (1999)

    Article  Google Scholar 

  83. Patil, A.C., Thakor, N.V.: Implantable neurotechnologies: a review of micro-and nanoelectrodes for neural recording. Med. Biol. Eng. Comput. 54(1), 23–44 (2016)

    Article  Google Scholar 

  84. Poletto, C.J., Van Doren, C.L.: A high voltage, constant current stimulator for electrocutaneous stimulation through small electrodes. IEEE Trans. Biomed. Eng. 46(8), 929–936 (1999)

    Article  Google Scholar 

  85. Popovic, M.R., Masani, K., Micera, S.: Functional electrical stimulation therapy: recovery of function following spinal cord injury and stroke. In: Neurorehabilitation Technology, pp. 513–532. Springer, (2016)

    Google Scholar 

  86. Preda, F., Cavandoli, C., Lettieri, C., Pilleri, M., Antonini, A., Eleopra, R., Mondani, M., Martinuzzi, A., Sarubbo, S., Ghisellini, G., et al.: Switching from constant voltage to constant current in deep brain stimulation: a multicenter experience of mixed implants for movement disorders. Eur. J. Neurol. 23(1), 190–195 (2016)

    Article  Google Scholar 

  87. Rashidi, A., Laursen, K., Hosseini, S., Moradi, F.: An ultrasonically powered optogenetic microstimulators with power-efficient active rectifier and charge reuse capability. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2019)

    Google Scholar 

  88. Rodr\({\acute {\i }}\)guez, L., Rodriguez, P.A., Gómez, B., Netto, M.G., Crowell, M.D., Soffer, E.: Electrical stimulation therapy of the lower esophageal sphincter is successful in treating gerd: long-term 3-year results. Surg. Endosc. 30(7), 2666–2672 (2016)

    Google Scholar 

  89. Royer, S., Zemelman, B.V., Barbic, M., Losonczy, A., Buzsáki, G., Magee, J.C.: Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31(12), 2279–2291 (2010)

    Article  Google Scholar 

  90. Rubinstein, J.T., Miller, C.A., Mino, H., Abbas, P.J.: Analysis of monophasic and biphasic electrical stimulation of nerve. IEEE Trans. Biomed. Eng. 48(10), 1065–1070 (2001)

    Article  Google Scholar 

  91. Ruch, T.C., Fulton, J.F.: Medical physiology and biophysics. Acad. Med. 35(11), 1067 (1960)

    Google Scholar 

  92. Sahin, M., Tie, Y.: Non-rectangular waveforms for neural stimulation with practical electrodes. J. Neural Eng. 4(3), 227 (2007)

    Article  Google Scholar 

  93. Sanderson, J.E., Ibrahim, B., Waterhouse, D., Palmer, R.B.G.: Spinal electrical stimulation for intractable angina – long-term clinical outcome and safety. Eur. Heart J. 15(6), 810–814 (1994)

    Article  Google Scholar 

  94. Shahrokhi, F., Abdelhalim, K., Genov, R.: 128-channel fully differential digital neural recording and stimulation interface. In: 2009 IEEE International Symposium on Circuits and Systems, pp. 1249–1252. IEEE (2009)

    Google Scholar 

  95. Shaker, H.S., Tu, L.M., Robin, S., Arabi, K., Hassouna, M., Sawan, M., Elhilali, M.M.: Reduction of bladder outlet resistance by selective sacral root stimulation using high-frequency blockade in dogs: an acute study. J. Urol. 160(3 Part 1), 901–907 (1998)

    Google Scholar 

  96. Shepherd, R.K., Villalobos, J., Burns, O., Nayagam, D.A.X.: The development of neural stimulators: a review of preclinical safety and efficacy studies. J. Neural Eng. 15(4), 041004 (2018)

    Article  Google Scholar 

  97. Simpson, J., Ghovanloo, M.: An experimental study of voltage, current, and charge controlled stimulation front-end circuitry. In: 2007 IEEE International Symposium on Circuits and Systems, pp. 325–328. IEEE (2007)

    Google Scholar 

  98. Sit, J.-J., Sarpeshkar, R.: A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 na dc error for 1-ma full-scale stimulation. IEEE Trans. Biomed. Circuits Syst. 1(3), 172–183 (2007)

    Article  Google Scholar 

  99. Solomonow, M.: External control of the neuromuscular system. IEEE Trans. Biomed. Eng. 31(12), 752–763 (1984)

    Article  Google Scholar 

  100. Sooksood, K., Stieglitz, T., Ortmanns, M.: An active approach for charge balancing in functional electrical stimulation. IEEE Trans. Biomed. Circuits Syst. 4(3), 162–170 (2010)

    Article  Google Scholar 

  101. Suárez-Ántola, R.: Contributions to the study of optimal biphasic pulse shapes for functional electric stimulation: an analytical approach using the excitation functional. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2440–2443. IEEE (2007)

    Google Scholar 

  102. Tai, C., Wang, J., Wang, X., Roppolo, J.R., de Groat, W.C.: Voiding reflex in chronic spinal cord injured cats induced by stimulating and blocking pudendal nerves. Neurourol. Urodyn.: Off. J. Int. Continence Soc. 26(6), 879–886 (2007)

    Google Scholar 

  103. Tanner, J.A.: Reversible blocking of nerve conduction by alternating-current excitation. Nature 195(4842), 712 (1962)

    Article  Google Scholar 

  104. Tehovnik, E.J.: Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Methods 65(1), 1–17 (1996)

    Article  Google Scholar 

  105. Thompson, N., Mastitskaya, S., Holder, D.: Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve. J. Neurosci. Methods 325, 108325 (2019)

    Article  Google Scholar 

  106. Thurgood, B.K., Warren, D.J., Ledbetter, N.M., Clark, G.A., Harrison, R.R.: A wireless integrated circuit for 100-channel charge-balanced neural stimulation. IEEE Trans. Biomed. Circuits Syst. 3(6), 405–414 (2009)

    Article  Google Scholar 

  107. Washburn, S., Catlin, R., Bethel, K., Canlas, B.: Patient-perceived differences between constant current and constant voltage spinal cord stimulation systems. Neuromodulation: Technol. Neural Interface 17(1), 28–36 (2014)

    Article  Google Scholar 

  108. Williams, I., Constandinou, T.G.: An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(2), 129–139 (2013)

    Article  Google Scholar 

  109. Williams, J.C., Hippensteel, J.A., Dilgen, J., Shain, W., Kipke, D.R.: Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J. Neural Eng. 4(4), 410 (2007)

    Article  Google Scholar 

  110. Wongsarnpigoon, A., Grill, W.M.: Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. J. Neural Eng. 7(4), 046009 (2010)

    Article  Google Scholar 

  111. Wongsarnpigoon, A., Woock, J.P., Grill, W.M.: Efficiency analysis of waveform shape for electrical excitation of nerve fibers. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 319–328 (2010)

    Article  Google Scholar 

  112. Yao, Y., Gulari, M.N., Hetke, J.F., Wise, K.D.: A low-profile three-dimensional neural stimulating array with on-chip current generation. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 1994–1997. IEEE (2004)

    Google Scholar 

  113. Yip, M., Bowers, P., Noel, V., Chandrakasan, A., Stankovic, K.M.: Energy-efficient waveform for electrical stimulation of the cochlear nerve. Sci. Rep. 7(1), 13582 (2017)

    Article  Google Scholar 

  114. Yip, M., Jin, R., Nakajima, H.H., Stankovic, K.M., Chandrakasan, A.P.: A fully-implantable cochlear implant soc with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. IEEE J. Solid-State Circuits 50(1), 214–229 (2015)

    Article  Google Scholar 

  115. Yousif, N., Bayford, R., Liu, X.: The influence of reactivity of the electrode–brain interface on the crossing electric current in therapeutic deep brain stimulation. Neuroscience 156(3), 597–606 (2008)

    Article  Google Scholar 

  116. Zierhofer, C.M., Hochmair-Desoyer, I.J., Hochmair, E.S.: Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. Rehabil. Eng. 3(1), 112–116 (1995)

    Article  Google Scholar 

  117. Zorzos, A.N., Boyden, E.S., Fonstad, C.G.: Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35(24), 4133–4135 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Nag .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Banerjee, A., Nag, S. (2021). Energy-Efficient Electrical Stimulation Systems. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_104-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_104-2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics