Skip to main content

Microalgae as Nutraceutical for Achieving Sustainable Food Solution in Future

  • Chapter
  • First Online:
Microbial Biotechnology: Basic Research and Applications

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Of late, a spurt in the general awareness about the biological aspects of nutrition has been witnessed. The changing trend demands for high nutritional value products that can easily and rapidly be produced at large scales in a cost-effective manner. Microalgae constitutes a distinct group of unicellular photosynthetic organisms and a broad variety of eukaryotic algae containing a plethora of beneficial compounds such as carbohydrate, proteins, fatty acids, vitamins, carotenoids, phycobiliproteins, astaxanthin, and lutein. These compounds find application in the production of high-quality nutraceuticals that provide health benefits such as controlling blood pressure, boosting immune system, reducing coronary heart diseases, serving as anticancer agents, and acting as antioxidants. Besides, the benefits of using microalgae are its high productivity on arable and nonarable land, thus posing no threat to the agricultural crop production. Although the nutritional value and its commercialization is still in nascent stage, intense efforts are underway all over the world to explore untapped potential of microalgae that could lead to the solution of several problems through green technologies and open gateway to a multibillion dollar industry. This chapter gives an overview of microalgae and its diversity, nutritional value, and current challenges on its use as nutraceutical product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Baky HH, Shallan MA, El- Baroty G, El-Baz FK (2002) Volatile compounds of the microalga Chlorella vulgaris and their phytotoxic effect. Pak J Biol Sci 5(1):61–65

    Google Scholar 

  • Abdo SM, Mona HH, Waleed ME, Rawheya ASED, Gamila HA (2012) Antiviral activity of freshwater algae. J Appl Pharm Sci 2:21–25

    Google Scholar 

  • Abe K, Hattori H, Hirano M (2007) Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem 100:656–661

    CAS  Google Scholar 

  • Abidov M, Ramazanov Z, Seifulla R, Grachev S (2010) The effects of xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab 12(1):72–81

    CAS  PubMed  Google Scholar 

  • Achour HY, Doumandji A, Sadi S, Saadi S (2014) Evaluation of nutritional and sensory properties of bread enriched with Spirulina. Ann Food Sci Technol 15:270–275

    Google Scholar 

  • Adarme-Vega TC, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14–18

    CAS  PubMed  Google Scholar 

  • Adhikary SP (2000) A preliminary survey of algae of estuaries and coastal areas in Orissa. Seaweed Res Util 22:1–5

    Google Scholar 

  • Afify AEMR, El Bbaroty GS, El Baz FK, Abd El Baky HH, Murad AA (2018) Scendesmus obliquus: antioxidant and antiviral activity of proteins hydrolysed by three enzymes. J Genet Eng Biotechnol 16(2):399–408

    PubMed  PubMed Central  Google Scholar 

  • Ak B, Avsaroglu E, Isık O, Ozyurt G, Kafkas E, Etyemez M, Uslu L (2016) Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. Int J Eng Res Appl 6:30–38

    Google Scholar 

  • Algatech (2019) Corporate Website. http://www.algatech.com/. Accessed on 30 June 2019

  • Alsenani F, Ahmed F, Schenk PM (2015) Nutraceuticals from microalgae. In: Bagchi D, Preuss HG, Swaroop A (eds) Nutraceuticals and functional foods in human health and disease prevention. CRC Press, Boca Raton, pp 673–684

    Google Scholar 

  • Anas AR, Kisingi T, Umezawa T, Matsuda F, Campiteli MR, Quinn RJ, Okino T (2012) Thrombin inhibitors from the freshwater cyanobacterium Anabaena compacta. J Nat Prod 75:1546–1552

    CAS  PubMed  Google Scholar 

  • Arisz SA, van Himbergen JA, Musgrave A, van den Ende H, Munnik T (2000) Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry 53:265–270

    CAS  PubMed  Google Scholar 

  • Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC (2011) Angiogenesis and oxidative stress: common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci 63:1–9

    CAS  PubMed  Google Scholar 

  • Asthana RK, Tripathi D, Srivastava MK, Singh A, Singh AP et al (2009) Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. J Appl Phycol 21:81–88

    CAS  Google Scholar 

  • Ávila-Román J, Taleroa E, de los Reyesb C, Zubíab E, Motilvaa V, García-Mauriñoc S (2019) Cytotoxic activity of microalgal-derived oxylipins against human cancer cell lines and their impact on ATP levels. Nat Prod Commun 11:1871–1875

    Google Scholar 

  • Aziz N, Prasad R, Ibrahim AIM, Ahmed AIS (2017) Promising applications for the production of biofuels through algae. In: Patra JK, Vishnuprasad CN, Das G (eds) Microbial biotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 81–103

    Google Scholar 

  • Bafanaa A (2013) Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydr Polym 95:746–752

    Google Scholar 

  • Bagchi SN, Sondhi S, Agrawal KM, Banerjee S (2016) An angiotensin-converting enzyme-inhibitory metabolite with partial structure of microginin in cyanobacterium Anabaena fertilissima CCC597, producing fibrinolytic protease. J Appl Phycol 28:177–180

    CAS  Google Scholar 

  • Banker R, Carmeli S (1998) Tenuecyclamides A-D, cyclic hexapeptides from the cyanobacterium Nostoc spongiaformae var tenue. J Nat Prod 61:1248–1251

    CAS  PubMed  Google Scholar 

  • Barbosa MJ, Zijffers JW, Nisworo A, Vaes W, van Schoonhoven J, Wijffels RH (2005) Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique. Biotechnol Bioeng 89:233–242

    CAS  PubMed  Google Scholar 

  • Barsanti L, Gualtiery P (2006) Algae: anatomy, biochemistry and biotechnology. CRC Taylor & Francis, New York

    Google Scholar 

  • Batista AP, Gouveia L, Nunes MC, Franco JM, Raymundo A (2008) Microalgae biomass as a novel functional ingredient in mixed gel systems. In: Williams PA, Phillips GO (eds) Gums and stabilisers for the food industry. RSC Publishing, Cambridge, p 14

    Google Scholar 

  • Baudelet PH, Gagez AL, Berard JB, Juin C, Bridian N, Kaas R, Thiery V, Cadoret JP, Picot L (2013) Antiproliferative activity of Cyanophora paradoxa pigments in melanoma, breast and lung cancer cells. Mar Drugs 11:4390–4406

    PubMed  PubMed Central  Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Microalgal culture. Handbook. Blackwell, Oxford, pp 312–351

    Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210

    CAS  PubMed  Google Scholar 

  • Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578

    CAS  PubMed  Google Scholar 

  • Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455

    CAS  PubMed  Google Scholar 

  • BioReal (2019) Corporate Website. http://www.bioreal.se/index.php?page=1&id=5. Accessed on 30 June 2019

  • Bishop WM, Zubeck HM (2012) Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2:147

    Google Scholar 

  • Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266

    CAS  PubMed  Google Scholar 

  • Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33

    PubMed Central  Google Scholar 

  • Blue Biotech (2019) Blue Biotech Corporate Website. http://www.bluebiotech.de/. Accessed on 02 July 2019

  • Bong SC, Loh SP (2013) A study of fatty acid composition and tocopherol content of lipid extracted from marine microalgae, Nannochloropsis oculata and Tetraselmis suecica, using solvent extraction and supercritical fluid extraction. Int J Food Res 20:721–729

    CAS  Google Scholar 

  • Borowitzka MA (1988) Vitamins and fine chemicals from micro-algae. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 153–196

    Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture opportunities and constraints. J Appl Phycol 9:393–401

    Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae – their development and commercialisation. J Appl Phycol 25:743–756

    CAS  Google Scholar 

  • Boyera N, Galey I, Bernanrd BA (1998) Effect of vitamin C and its derivatives on collagen synthesis and cross-linking by normal human fibroblasts. Int J Cosmet Sci 20:151–158

    CAS  PubMed  Google Scholar 

  • Cabrita MT, Vale C, Rauter AP (2010) Halogenated compounds from marine algae. Mar Drugs 8(8):2301–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caporgno MP, Mathys A (2018) Trends in microalgae incorporation into innovative food products with potential health benefits. Front Nutr 5:58. https://doi.org/10.3389/fnut.2018.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carballo-Cardenas EC, Tuan PM, Janssen M, Wijffels RH (2003) Vitamin E (alpha-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomol Eng 20:139–147

    CAS  PubMed  Google Scholar 

  • Cardozo KH, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146:60–78

    PubMed  Google Scholar 

  • Carlsson AS, van Beilen JB, Möller R, Clayton D (2007) Micro- and macro-algae: utility for industrial applications. In: Bowles D (ed) Outputs from the EPOBIO: realising the economic potential of sustainable resources – bioproducts from non-food crops project. CNAP/CPL Press/University of York, York

    Google Scholar 

  • Carreto JI, Carignan MO, Daleo G, de Marco SG (1990) Occurrence of mycosporine-like amino acids in the red tide dinoflagellate Alexandrium excavatum: UV-protective compounds. J Plankton Res 12:909–921

    CAS  Google Scholar 

  • Ceron MC, Campos I, Sánchez JF, Acién FG, Molina E, Fernández-Sevilla JM (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J Agric Food Chem 56:11761–11766

    CAS  PubMed  Google Scholar 

  • Cha KH, Koo SY, Lee DU (2008) Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J Agric Food Chem 56:10521–10526

    CAS  PubMed  Google Scholar 

  • Chacòn -Lee TL, Gonźalez-Maríno GE (2010) Microalgae for “healthy” foods—possibilities and challenges. Compr Rev Food Sci Food Saf 9:655–675

    PubMed  Google Scholar 

  • Chattopadhyay P, Chatterjee S, Sen SK (2008) Biotechnological potential of natural food grade biocolorants. Afr J Biotechnol 7:2972–2985

    CAS  Google Scholar 

  • Chauhan B, Gopal Kumar G, Kalam N, Ansari SH (2013) Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res 4(1):4–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F (1998) Bioreactor technology for production of valuable algal products. Chin J Oceanol Limnol 16:84–90

    Google Scholar 

  • Chen F, Li HB, Wong RNS, Ji B, Jiang Y (2005) Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J Chromatogr 1064(2):183–186

    CAS  Google Scholar 

  • Chen B, You W, Huang J, Yu Y, Chen W (2010a) Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World J Microbiol Biotechnol 26:833–840

    CAS  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010b) A red-shifted chlorophyll. Science 329:1318–1319

    CAS  PubMed  Google Scholar 

  • Chen J, Wang Y, Benemann JR, Zhang X, Hu H, Qin S (2015) Microalgal industry in China: challenges and prospects. J Appl Phycol 28(2):715–725. https://doi.org/10.1007/s10811-015-0720-4

    Article  CAS  Google Scholar 

  • Cherrington JM, Strawn LM, Shawver LK (2000) New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv Cancer Res 79:1–38

    CAS  PubMed  Google Scholar 

  • Chiang IZ, Huang WY, Wu JT (2004) Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol 40:474–480

    CAS  Google Scholar 

  • Chidambara-Murthy KN, Vanitha A, Rajesha J, Mahadeva-Swamy M, Sowmya PR, Ravishankar GA (2005) In vivo antioxidant activity of carotenoids from Dunaliella salina—a green microalga. Life Sci 76:1382–1390

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  • Cho M, Lee H, Kang I, Won M, You S (2011) Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chem 27:999–1006

    Google Scholar 

  • Chronakis IS, Madsen M (2011) Algal proteins. In: Phillips GO, Williams PA (eds) Handbook of food proteins. Woodhead Publishing Series in Food Sciences, Technology Nutrition, Sawston, pp 353–394

    Google Scholar 

  • Chu WL (2012) Biotechnological applications of microalgae. Int e-J Sci Med Educ 6:24–37

    Google Scholar 

  • Coesel SN, Baumgartner AC, Teles LM, Ramos AA, Henriques NM, Cancela L, Varela JC (2008) Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol 10:602–611

    CAS  Google Scholar 

  • Cuvelier M-E (2001) Antioxidants. In: Morais R (ed) Functional foods: an introductory course. Escola Superior de Biotecnologia/UCP, Porto, pp 97–108

    Google Scholar 

  • Cyanotech (2019) Cyanotech annual report. www.cyanotech.com. Accessed on 30 June 2019

  • D’Souza FML, Loneragan NR (1999) Effects of monospecific and mixed algae diets on survival, development and fatty acid composition of penaeid prawn (Penaeus spp.) larvae. Mar Biol 133:621–633

    Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    CAS  Google Scholar 

  • Day AG, Brinkmann D, Franklin S, Espina K, Rudenko G, Roberts A, Howse KS (2009) Safety evaluation of a high-lipid algal biomass from Chlorella protothecoides. Regul Toxicol Pharmacol 55:166–180

    CAS  PubMed  Google Scholar 

  • de Jesus Raposo MF, de Morais RM, De Morais AM (2013) Health applications of bioactive compounds from marine microalgae. Life Sci 93(15):479–486

    PubMed  Google Scholar 

  • de Morais MG, da Silva Vaz B, de Morais EG, Vieira Costa JA (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int 2015:835761. https://doi.org/10.1155/2015/835761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries M, de Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci 128:1–11

    Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179

    CAS  PubMed  Google Scholar 

  • Demming-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Google Scholar 

  • Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756

    CAS  Google Scholar 

  • Dinu M, Vlasceanu G, Dune A, Rotaru G (2012) Researches concerning the growth of nutritive value of the bread products through the Spirulina adding. J Environ Prot Ecol 13:660–665

    CAS  Google Scholar 

  • Dionisio-Sese ML (2010) Aquatic microalgae as potential sources of UV-screening compounds. Philipp J Sci 139(1):5–16

    Google Scholar 

  • Domínguez-Bocanegra AR, Guerrero Legarreta I, Martinez Jeronimo F, Tomasini Campocosio A (2004) Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour Technol 92:209–214

    PubMed  Google Scholar 

  • Drag M, Salvensen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov Perspect 9:690–701

    CAS  Google Scholar 

  • Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272:717–722

    CAS  Google Scholar 

  • Duval B, Shetty K, Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566

    Google Scholar 

  • Earthrise (2019) Earthrise company website. www.earthrise.com. Accessed on 30 June 2019

  • Egeland ES, Eikrem W, Throndsen J, Wilhelm C, Zapata M, Liaaen-Jensen S (1995) Carotenoids from further prasinophytes. Biochem Syst Ecol 23:747–755

    CAS  Google Scholar 

  • Egeland ES, Guillard RRL, Liaaen-Jensen S (1997) Additional carotenoid prototype representatives and a general chemosystematic evaluation of carotenoids in Prasinophyceae (Chlorophyta). Phytochemistry 44:1087–1097

    CAS  Google Scholar 

  • EID Parry (2019) EID Parry Annual Report. www.eidparry.com. Accessed on 30 June 2019

  • EL-Baz FK, Aly HF, Khalil WKB, Booles H, Ali GH (2017) Antineurodegenerative activity of microalgae Dunaliella salina in rats with Alzheimer’s disease. Asian J Pharm Clin Res 10(1):134–139

    CAS  Google Scholar 

  • Eriksen NT (2008) Production of phycocyaninda pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    CAS  PubMed  Google Scholar 

  • Ersmark K, Del Valle JR, Hanessian S (2008) Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew Chem Int Ed 47:1202–1223

    CAS  Google Scholar 

  • Fabregas J, Herrero C (1986) Marine microalgae as a potential source of minerals in fish diets. Aquaculture 51:237–243

    Google Scholar 

  • Ferruzi MG, Blakeslee J (2007) Digestion, absorption, and cancer preventive activity of dietary chlorophyll derivatives. Nutr Res 27:1–12

    Google Scholar 

  • Flora Health (2019) Corporate Website. http://www.florahealth.com/home_usa.cfm. Accessed on 30 June 2019

  • Food and Agriculture Organization of the United Nations (2010) Algae-based biofuels: applications and co-products. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fox JM, Zimba PV (2018) Minerals and trace elements in microalgae. In: Microalgae in health and disease prevention. Academic, Cambridge, pp 177–193

    Google Scholar 

  • Fradique M, Batista AP, Nunes MC, Gouevia L, Bandarra NM, Raymundo A (2010) Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1. Preparation and evaluation. J Sci Food Agric 90:1656–1664

    CAS  PubMed  Google Scholar 

  • Francavilla M, Colaianna M, Zotti MG, Morgese M, Trotta P, Tucci P, Schiavone S, Cuomo V, Trabace L (2012) Extraction, characterization and in vivo neuromodulatory activity of phytosterols from microalga Dunaliella tertiolecta. Curr Med Chem 19(18):3058–3067

    CAS  PubMed  Google Scholar 

  • Fried A, Tietz A, Benamotz A, Eichenberger W (1982) Lipid-composition of the halotolerant alga Dunaliella bardawil. Biochim Biophys Acta 713:419–426

    CAS  Google Scholar 

  • Fu W, Gudmundsson O, Paglia G, Herjolfsson G, Andrésson OS, Palsson BØ, Brynjolfsson S (2013) Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol 97:2395–2403

    CAS  PubMed  Google Scholar 

  • Fuji Chemicals (2019) Corporate website. http://www.fujichemicals.co.jp/English/life_science_/about_astareal/index.htm. Accessed on 02 July 2019

  • Fujii K, Nakajima H, Ann Y (2008) Potential of Monoraphidium sp. GK12 for energy-saving astaxanthin production. J Chem Technol Biotechnol 83:1578–1584

    CAS  Google Scholar 

  • Gademann K, Portmann C (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12:326–341

    CAS  Google Scholar 

  • Galasso C, Gentile A, Orefice I, Ianora A, Bruno A, Noonan DM et al (2019) Microalgal derivatives as potential nutraceutical and food supplements for human health: a focus on cancer prevention and interception. Nutrients 11:1226. https://doi.org/10.3390/nu11061226

    Article  CAS  PubMed Central  Google Scholar 

  • Ganesan P, Matsubara K, Ohkubo T, Tanaka Y, Noda K, Sugawara T, Hirata T (2010) Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. Phytomedicine 17:1140–1144

    CAS  PubMed  Google Scholar 

  • Gangl D, Zedler JAZ, Rajkumar PD, Martinez EMR, Riseley A et al (2015) Biotechnological exploitation of microalgae. J Exp Bot 66(22):6975–6990

    CAS  PubMed  Google Scholar 

  • Gantar M, Svirčev Z (2008) Microalgae and cyanobacteria: food for thought. J Phycol 44:260–268

    PubMed  Google Scholar 

  • Garcia JL, de Vicenete M, Glan B (2017) Microalgae, old sustainable food and fashion nutraceuticals. Microbial biotechnology. John Wiley & Sons Ltd and Society for Applied Microbiology, Hoboken

    Google Scholar 

  • García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-b-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115(1):81–90

    PubMed  Google Scholar 

  • Giammanco M, Di Majo D, La Guardia M, Aiello S, Crescimannno M, Flandina C et al (2015) Vitamin D in cancer chemoprevention. Pharm Biol 53:1399–1434

    CAS  PubMed  Google Scholar 

  • Giner JL, Zhao H, Boyer GL, Satchwell MF, Andersen RA (2009) Sterol chemotaxonomy of marine pelagophyte algae. Chem Biodivers 26(7):1111–1130

    Google Scholar 

  • Ginsberg RH, Goebel WF, Horsfall FL (1947) Inhibition of mumps virus multiplication by a polysaccharide. Proc Soc Exp Biol Med 66:99–100

    CAS  PubMed  Google Scholar 

  • Goiris K, Muylaert K, Voorspoels S, Noten B, Paepe DD et al (2014) Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50(3):485–492

    Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    CAS  PubMed  Google Scholar 

  • Gouveia L, Raymundo A, Batista AP, Sousa I, Empis J (2006) Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. Eur Food Res Technol 222:362–367

    CAS  Google Scholar 

  • Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A (2007) Chlorella vulgaris biomass used as coloring source in traditional butter cookies. Innovative Food Sci Emerg Technol 8:433–436

    CAS  Google Scholar 

  • Gouveia L, Batista AP, Sousa I, Raymundo A, Bandarra NM (2008a) Microalgae in novel food products. In: Papadopoulos KN (ed) Food chemistry research developments. Nova Science Publishers Inc., Hauppauge, pp 75–112

    Google Scholar 

  • Gouveia L, Coutinho C, Mendonça E, Batista AP, Sousa I, Bandarra NM et al (2008b) Functional biscuits with PUFA- ω 3 from Isochrysis galbana. J Sci Food Agric 88:891–896

    CAS  Google Scholar 

  • Grobbelaar J (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15:209–215

    CAS  Google Scholar 

  • Gruber BM (2016) BMB-group vitamins: chemoprevention? Adv Clin Exp Med 25:561–568

    PubMed  Google Scholar 

  • Guarnieri MT, Pienkos PT (2015) Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res 123:255–263

    CAS  PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N (2010) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22(1):43–50

    CAS  Google Scholar 

  • Hanessian S, Del Valle JR, Xue Y, Blomberg N (2006) Total synthesis and structural confirmation of chlorodysinosin A. J Am Chem Soc 128(32):10491–10495

    CAS  PubMed  Google Scholar 

  • Hannach G, Sigleo AC (1998) Photoinduction of UV-absorbing compounds in six species of marine phytoplankton. Mar Ecol Prog Ser 174:207–222

    CAS  Google Scholar 

  • Hassimotto NMA, Genovese MI, Lajolo FM (2005) Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J Agric Food Chem 53(8):2928–2935

    CAS  PubMed  Google Scholar 

  • Hayashi T, Hayashi K, Maeda M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59:83–87

    CAS  PubMed  Google Scholar 

  • Hayashi K, Kanekiyo K, Ohta Y, Lee JB, Takenaka H, Hayashi T (2008) Anti influenza A virus activity of an acidic polysaccharide from a blue green alga Nostoc flagelliforme. Planta Med 74:PA34. https://doi.org/10.1055/s-0028-1084032

    Article  Google Scholar 

  • Hayato M, Masashi H, Tokutake S, Nobuyuk T, Teruo K, Kazuo M (2006) Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. Int J Mol Med 18:147–152

    Google Scholar 

  • Hayes M, Skomedal H, Skjanes K, Mazur-Marzec H, Torunska-Sitarz A, Catala M, Hosoglu MI, García-Vaquero M (2017) Microalgal proteins for feed, food and health. In: Gonzalez-Fernandez C, Munoz R (eds) Microalgae-based biofuels and bioproducts. Woodhead publishers Elsevier, Sawston, pp 348–368

    Google Scholar 

  • He J, Yang Y, Xu H, Zhang X, Li X-M (2005) Olanzapine attenuates the okadaic acid-induced spatial memory impairment and hippocampal cell death in rats. Neuropsychopharmacology 30(8):1511–1520

    CAS  PubMed  Google Scholar 

  • Hejazi MA, Wijffels RH (2003) Effect of light intensity on beta-carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biomol Eng 20:171–175

    CAS  PubMed  Google Scholar 

  • Helbling EW, Chalker BE, Dunlap WC, Osmund HH, Villafane VE (1996) Photoacclimation of Antarctic diatoms to solar ultraviolet radiation. J Exp Mar Biol Ecol 204:85–101

    Google Scholar 

  • Henderson RJ, Mackinlay EE (1999) Polyunsaturated fatty acid metabolism in the marine dinoflagellate Crypthecodinium cohnii. Phytochemistry 30(6):1781–1787

    Google Scholar 

  • Heo SJ, Jeon YJ (2009) Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B 95:101–107

    CAS  PubMed  Google Scholar 

  • Herrero M, Ibáñez E, Cifuentes A, Reglero G, Santoyo S (2006) Dunaliella salina microalga pressurized extracts as potential antimicrobials. J Food Prot 69:2471–2477

    CAS  PubMed  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    CAS  PubMed  Google Scholar 

  • Hossain AKM, Brennan MA, Mason SL, Guo X, Zeng XA, Brennan CS (2017) The effect of astaxanthin-rich microalgae Haematococcus pluvialis and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 6(57):1–10

    CAS  Google Scholar 

  • Hosseini Tafreshi A, Shariati M (2009) Dunaliella biotechnology: methods and applications. J Appl Microbiol 107(1):14–35

    CAS  PubMed  Google Scholar 

  • Huang J, Chen B, You W (2005) Studies on separation of extracellular polysaccharide from Porphyridium cruentum and its anti-HBV activity in vitro. Chin J Mar Drugs 24:18–21

    CAS  Google Scholar 

  • Ibañez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93(4):703–709

    PubMed  Google Scholar 

  • Ibáñez E, Mendiola JA, Rodríguez-Meizoso I, Señořans FS, Reglero G, Cifuentes A (2008) Antioxidants in plant foods and microalgae extracted using compressed fluids. Elec J Env Agricult Food Chem 7(8):3301–3309

    Google Scholar 

  • Ikeuchi M, Koyama T, Takahashi J, Yazawa K (2007) Effects of astaxanthin in obese mice fed a high-fat diet. Biosci Biotechnol Biochem 71(4):893–899

    CAS  PubMed  Google Scholar 

  • Ingebrigtsen RA, Hansen E, Andersen JH, Eilertsen HC (2016) Light and temperature effects on bioactivity in diatoms. J Appl Phycol 28:939–950

    CAS  PubMed  Google Scholar 

  • Ishida K, Nakagawa H, Murakami M (2000) Microcyclamide, a cytotoxic cyclic hexapeptide from the cyanobacterium Microcystis aeruginosa. J Nat Prod 63(9):1315–1317

    CAS  PubMed  Google Scholar 

  • Ismail A, Marjan ZM, Foong CW (2004) Total antioxidant activity and phenolic content in selected vegetables. Food Chem 87(4):581–586

    CAS  Google Scholar 

  • Jaime L, Mendiola JA, Ibañez E, Martin-Alvarez PJ, Cifuentes A, Reglero G, Señorans FJ (2007) β-carotene isomer composition of sub- and supercritical carbon dioxide extracts. Antioxidant activity measurement. J Agric Food Chem 55:10585–10590

    CAS  PubMed  Google Scholar 

  • Janssen MLE (2019) Cyanobacterial peptides beyond microcystins – a review on co-occurrence, toxicity, and challenges for risk assessment. Water Res 151:488–499

    CAS  PubMed  Google Scholar 

  • Jena M, Ratha SK, Adhikary SP (2005) Algal diversity changes in Kathajodi river after receiving sewage of Cuttack and its ecological implication. Indian Hydrobiol 8:67–74

    Google Scholar 

  • Jena M, Ratha SK, Adhikary SP (2008) Algal diversity in Rushikulya river, Orissa from origin till confluence to the sea. Indian Hydrobiol 11:9–24

    Google Scholar 

  • Jin E, Feth B, Melis A (2003) A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol Bioeng 81(1):115–124

    CAS  PubMed  Google Scholar 

  • Jin E, Lee CG, Polle JEW (2006) Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): biosynthesis, regulation, and biotechnology. J Microbiol Biotechnol 16:821–831

    CAS  Google Scholar 

  • Jungblut AD, Neilan BA (2006) Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Arch Microbiol 185:107–114

    CAS  PubMed  Google Scholar 

  • Kamath BS, Srikanta BM, Dharmesh SM, Sarada R, Ravishankar CA (2008) Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. Eur J Pharmacol 590:387–395

    CAS  PubMed  Google Scholar 

  • Kang CD, Lee JS, Park TH, Sim SJ (2005) Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol 68:237–241

    CAS  PubMed  Google Scholar 

  • Karsten U, Maier J, Garcia-Pichel F (1998) Seasonality in UV-absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat. Aquat Microb Ecol 16:37–44

    Google Scholar 

  • Karsten U, Lembcke S, Schumann R (2007) The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades. Planta 225:991–1000

    CAS  PubMed  Google Scholar 

  • Katircioglu H, Akin BS, Atici T (2004) Microalgal toxin(s): characteristics and importance. Afr J Biotechnol 3(12):667–674

    CAS  Google Scholar 

  • Kevin A, Andrade M, Lauritano C, Romano G, Ianora A (2018) Marine microalgae with anti-cancer properties. Mar Drugs 16(5):165. https://doi.org/10.3390/md16050165

    Article  CAS  Google Scholar 

  • Khalid MN, Shameel M, Ahmad VU, Shahzad S, Leghari SM (2010) Studies on the bioactivity and phycochemistry of Microcystis aeruginosa (Cyanophycota) from Sindh. Pak J Bot 42:2635–2646

    Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  • Kharkongar D, Ramanujam P (2014) Diversity and species composition of subaerial algal communities in forested area of Meghalaya, India. Int J Biodiversity 2014:1–10. https://doi.org/10.1155/2014/456202

    Article  Google Scholar 

  • Kim SM, Jung YH, Kwon O, Cha KH, Um BH (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166:1843–1855

    CAS  PubMed  Google Scholar 

  • Kleinegris DM, van Es MA, Janssen M, Brandenburg WA, Wijffels RH (2010) Carotenoid fluorescence in Dunaliella salina. J Appl Phycol 22(5):645–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlhase M, Pohl P (1988) Saturated and unsaturated sterols of nitrogen-fixing blue-green algae (cyanobacteria). Phytochemistry 27:1735–1740

    CAS  Google Scholar 

  • Komaristaya VP, Gorbulin OS (2006) Sporopollenin in the composition of cell walls of Dunalliela salina Teod. (Chlorophyta) zygotes. Int J Algae 8:43–52

    CAS  Google Scholar 

  • Koo SY, Hwang JH, Yang SH, Um JI, Hong KW, Kang K, Pan CH, Hwang KT, Kim SM (2019) Anti-obesity effect of standardized extract of microalga Phaeodactylum tricornutum containing fucoxanthin. Mar Drugs 17:311. https://doi.org/10.3390/md17050311

    Article  CAS  PubMed Central  Google Scholar 

  • Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    CAS  PubMed  Google Scholar 

  • Kumar D, Adhikary SP (2018) Exopolysaccharides from cyanobacteria and microalgae and their commercial application. Curr Sci 115(2):234–231

    CAS  Google Scholar 

  • Kumar M, Tripathi MK, Srivastava A, Gour JK, Singh RK, Tilak R, Asthana RK (2013a) Cyanobacteria, Lyngya aestuarii and Aphanothece bullosa as antifungal and antileishmanial drug resources. Asian Pac J Trop Biomed 3:458–463

    PubMed  PubMed Central  Google Scholar 

  • Kumar SR, Hosokawa M, Miyashita K (2013b) Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs 11:5130–5147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Dhar DW, Pabbi S, Kumar N, Walia S (2014) Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J Plant Physiol 19(2):184–188

    PubMed  PubMed Central  Google Scholar 

  • La Barre S, Potin P, Leblanc C, Delage L (2010) The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Mar Drugs 8(4):988–1010

    PubMed  PubMed Central  Google Scholar 

  • Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen KØ, Romano G, Ianora A (2016) Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities. Front Mar Sci 3:1–12. https://doi.org/10.3389/fmars.2016.00068

    Article  Google Scholar 

  • Leblond JD, Timofte HI, Roche SA, Porter NM (2011) Sterols of glaucocystophytes. Phycol Res 59:129–134

    CAS  Google Scholar 

  • Lee JH, Kim HS, Seo HH, Song MY, Kulkarni A, Choi YH, Kim KW, Moh SH (2015) Antiaging effects of algae-derived mycosporine-like amino acids (MAAs) on skin. In: Farage M, Miller K, Maibach H (eds) Textbook of aging skin. Springer, Berlin

    Google Scholar 

  • Lenoir-Wijnkoop I, Dapoigny M, Dubois D, van Ganse E, Gutiérrez-Ibarluzea I, Hutton J, Jones P, Mittendorf T, Poley MJ, Salminen S, Nuijten MJ (2010) Nutrition economics–characterising the economic and health impact of nutrition. Br J Nutr 105(1):157–166

    PubMed  PubMed Central  Google Scholar 

  • Leu S, Boussiba S (2014) Advances in the production of high-value products by microalgae. Indus Biotechnol 10:169–183

    CAS  Google Scholar 

  • Leya T, Rahn A, Lütz C, Remias D (2009) Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443

    CAS  PubMed  Google Scholar 

  • Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102(3):771–776

    CAS  Google Scholar 

  • Liang S, Liu X, Chen F, Chen Z (2004) Current microalgal health food R & D activities in China. In: Ang PO (ed) Asian Pacific Phycol. 21st century Prospect. Challenges. Springer, Dordrecht, pp 45–48

    Google Scholar 

  • Lin JY, Tang CY (2007) Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem 101(1):140–147

    CAS  Google Scholar 

  • Lin J, Huang L, Yu J, Xiang S, Wang J, Zhang J, Yan X, Cui W, He S, Wang Q (2016) Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro. Mar Drugs 14:67. https://doi.org/10.3390/md14040067

    Article  CAS  PubMed Central  Google Scholar 

  • Liu J, Chen F (2016) Biology and industrial applications of Chlorella: advances and prospects. Adv Biochem Eng Biotechnol 153:1–35

    PubMed  Google Scholar 

  • Liu BH, Lee YK (2000) Secondary carotenoids formation by the green alga Chlorococcum sp. J Appl Phycol 12:301–307

    CAS  Google Scholar 

  • Llewellyn CA, Airs RL (2010) Distribution and abundance of MAAs in 33 species of microalgae across 13 Classes. Mar Drugs 8(4):1273–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    CAS  PubMed  Google Scholar 

  • Luo X, Su P, Zhang W (2015) Advances in microalgae- derived phytosterols for functional food and pharmaceutical applications. Mar Drugs 13:4231–4254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2007a) Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin. J Oleo Sci 56(12):615–621

    CAS  PubMed  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Miyashita K (2007b) Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J Agric Food Chem 55:7701–7706

    CAS  PubMed  Google Scholar 

  • Mahendran S, Saravanan S, Vijayabaskar P, Anandapandian KTK, Shankar T (2013) Antibacterial potential of microbial exopolysaccharide from Ganoderma lucidum and Lysinibacillus fusiformis. Int J Recent Sci Res 4:501–505

    Google Scholar 

  • Malathi T, Babu MR, Mounika T, Snehalatha D, Rao BD (2014) Screening of cyanobacterial strains for antibacterial activity. Phykos 44:6–11

    Google Scholar 

  • Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 95:631–645. https://doi.org/10.1007/s00253-012-4398-0

    Article  CAS  Google Scholar 

  • Martinez-Fernandez E, Acosta-Salmon H, Southgate PC (2006) The nutritional value of seven species of tropical microalgae for blacklip pearl oyster (Pinctada margaritifera, L.) larvae. Aquaculture 257:491–503

    Google Scholar 

  • Mathew BR, Sankaranarayanan P, Nair C, Varghese T, Smanathon B et al (1995) Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr Cancer 24:197–202

    CAS  PubMed  Google Scholar 

  • Matsukawa R, Hotta M, Masuda Y, Chihara M, Karube I (2000) Antioxidants from carbon dioxide fixing Chlorella sorokiniana. J Appl Phycol 12:263–267

    CAS  Google Scholar 

  • Mayer AMS, Hamann MT (2005) Marine pharmacology in 2001–2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp Biochem Physiol Part C Toxicol Pharmacol 140:265–286

    Google Scholar 

  • Mazur-Marzec H, Kaczkowska MJ, Blaszczyk A, Ackaalan R, Spoof L, Meriluoto J (2013) Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar Drugs 11:1–19

    CAS  Google Scholar 

  • Medina AR, Grima EM, Giměnez AG, González MJI (1997) Lipase-catalyzed esterification of glycerol and polyunsaturated fatty acids from fish and microalgae oils. Biotechnol Adv 16:517–580

    Google Scholar 

  • Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334

    CAS  Google Scholar 

  • Mendiola JA, Maŕın FR, Herńandez SF, Arredondo BO, Sěnoŕans FJ, Ibánez E, Reglero G (2005) Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga. J Sep Sci 28:1031–1038

    CAS  PubMed  Google Scholar 

  • Mendiola JA, Torres CF, Martín-Alvarez PJ, Santoyo S, Toré A, Arredondo BO, Señoráns FJ, Cifuentes A, Ibáñez E (2007) Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. Eur Food Res Technol 224:505–510

    CAS  Google Scholar 

  • Mendiola JA, Santoyo S, Cifuentes A, Reglero G, Ibanez E, Senorans FJ (2008) Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina. J Food Prot 71:2138–2143

    CAS  PubMed  Google Scholar 

  • Merapharma (2019) Corporate website. https://www.merapharma.com/about-mera.html. Accessed on 02 July 2019

  • Mishra VK, Bacheti RK, Husen A (2011) Medicinal uses of chlorophyll: a critical overview. In: Le H, Salcedo E (eds) Chlorophyll: structure, function and medicinal. Uses Publisher, Nova Science Publishers, Inc, Hauppauge

    Google Scholar 

  • Mišurcová L, Buňka F, Vávra Ambrožová J, Machů L, Samek D, Kráčmar S (2014) Amino acid composition of algal products and its contribution to RDI. Food Chem 151:120–125

    PubMed  Google Scholar 

  • Mobin S, Alam F (2017) Some promising microalgal species for commercial applications: a review. Energy Procedia 110:510–517

    CAS  Google Scholar 

  • Moore RE, Patterson GML, Carmichael WW (1988) New pharmaceuticals from cultured blue green algae. In: Fautin DG (ed) Biomedical importance of marine organisms. California Academy of Sciences, San Francisco, pp 143–150

    Google Scholar 

  • Morinoto T, Nagatu A, Murakami N (1995) Anti-tumor promoting glyceroglycolipid from green alga Chlorella vulgaris. Phytochemistry 40:1433–1437

    Google Scholar 

  • Mudimu O, Rybalka N, Bauersachs T, Born J, Friedl T, Schulz R (2014) Biotechnological screening of microalgal and cyanobacterial strains for biogas production and antibacterial and antifungal effects. Metabolites 4:373–393

    PubMed  PubMed Central  Google Scholar 

  • Mukund S, Sivasubramanian V (2014) Anticancer activity of Oscillatoria terebriformis, cyanobacteria in human lung cancer cell line A549. Int J Appl Biol Pharm Technol 5:34–45

    Google Scholar 

  • Mulders KJM, Lamers PP, Martens DE, Wijffels RH (2014) Phototropic pigment production with microalgae: biological constraints and opportunities. J Phycol 50:229–242

    CAS  PubMed  Google Scholar 

  • Murakami M, Suzuki S, Itou Y, Kodani S, Ishida K (2000) New anabaenopeptins, potent carboxypeptidase-A inhibitors from the cyanobacterium Aphanizomenon flos-aquae. J Nat Prod 63:1280–1282

    CAS  PubMed  Google Scholar 

  • Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM et al (2013) Physiological and molecular analysis of carbon source supplementation and pH stress- induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Appl Microbiol Biotechnol 97:3625–3642

    CAS  PubMed  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Takahashi J, Sakurai A, Inaba Y, Suzuki E, Nihei S et al (2005) Some cyanobacteria synthesize semiamylopectin type α-Polyglucans instead of glycogen. Plant Cell Physiol 46(3):539–545

    CAS  PubMed  Google Scholar 

  • Nappo M, Berkov S, Massucco C, Di Maria V, Bastida J, Codina C et al (2012) Apoptotic activity of the marine diatom Cocconeis scutellum and eicosopentaenoic acid in BT20 cells. Pharm Biol 50:529–535

    CAS  PubMed  Google Scholar 

  • Ng DHP, Ng YK, Shen H, Lee YK (2015) Microalgal biotechnology: the way forward. In: Kim SK (ed) Handbook of marine microalgae. Elsevier, Amsterdam, pp 69–80

    Google Scholar 

  • Ngo DN, Kim MM, Kim SK (2006) Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr Polym 74:228–234

    Google Scholar 

  • Nicoletti M (2012) Nutraceuticals and botanicals: overview and perspectives. Int J Food Sci Nutr 63:2–6

    PubMed  Google Scholar 

  • Nose T (1972) Mineral requirements. Suisan Zoshoku 20:289–300

    Google Scholar 

  • Nunes-Alves C, Booty MG, Carpenter SM, Jayaraman P, Rothchild AC, Behar SM (2014) In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 12:289–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada T, Nakai M, Maeda H, Hosokawa M, Sashima T, Miyashita K (2008) Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. J Oleo Sci 57(6):345–351

    CAS  PubMed  Google Scholar 

  • Olaizola M (2005) The health benefits of Haematococcus astaxanthin: cardiovascular health. Agro Food Ind Hi-Tech 16:35–37

    CAS  Google Scholar 

  • Ozdemir G, Karabay NU, Dalay MC, Pazarbasi B (2004) Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother Res 18(9):754–757

    CAS  PubMed  Google Scholar 

  • Palozza P, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti FO, Calviello G (2005) Beta-carotene downregulates the steady-state and heregulin-alpha-induced COX-2 pathways in colon cancer cells. J Nutr 135:129–136

    CAS  PubMed  Google Scholar 

  • Palozza P, Torelli C, Boninsegna A, Simone R, Catalano A, Mele MC, Picci N (2009) Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett 283:108–117

    CAS  PubMed  Google Scholar 

  • Pane G, Cacciola G, Giacco E, Mariottini GL, Coppo E (2015) Assessment of the antimicrobial activity of algae extracts on bacteria responsible of external Otitis. Mar Drugs 13(10):6440–6452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pangestuti R, Kim SK (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3(4):255–266

    CAS  Google Scholar 

  • Parry Nutraceuticals (2019) Parry Nutraceuticals website. http://www.parrynutraceuticals.com/food-ingredients.Aspx

  • Pasquet V, Morisset P, Ihammouine S, Chepiedm A, Aumailley L, Berard JB et al (2011) Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar Drugs 9:819–831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac Int 15:1–9

    CAS  Google Scholar 

  • Pattanaik A, Sukla LB, Pradhan D, Shukla V (2019) Artificial intelligence and virtual environment for microalgal source for production of nutraceuticals. Biomed J Sci Tech Res 13(5):4362–4367. https://doi.org/10.26717/BJSTR.2019.13.002459

    Article  Google Scholar 

  • Pelah D, Sintov A, Cohen E (2004) The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J Microbiol Biotechnol 20:483–486

    CAS  Google Scholar 

  • Pen S, Scarone L, Manta E, Stewart L, Yardley V et al (2012) Synthesis of a Microcystis aeruginosa predicted metabolite with antimalarial activity. Bioorg Med Chem Lett 22(15):4994–4997

    Google Scholar 

  • Pereira H, Barreira L, Figueiredo F, Custodio L, Vizetto-Duarte C, Polo C et al (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10:1920–1935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pham DNT, Leclerc D, Levesque N, Deng L, Rozen R (2013) β-Carotene 15,15′-monooxygenase and its substrate β-carotene modulate migration and invasion in colorectal carcinoma cells. Am J Clin Nutr 98:413–422

    PubMed  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966

    CAS  Google Scholar 

  • Piorreck M, Baasch KH, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and bluegreen algae under different nitrogen regimes. Phytochemistry 23:207–216

    CAS  Google Scholar 

  • Plaza M, Herrero M, Cifuentes A, Ibanez E (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57:7159–7170

    CAS  PubMed  Google Scholar 

  • Plaza M, Santoyo S, Jaime L, Reina GG, Herrero M, Senorans FJ, Ibanez E (2010) Screening for bioactive compounds from algae. J Pharm Biomed Anal 51:450–455

    CAS  PubMed  Google Scholar 

  • Ploutno A, Carmeli S (2000) Nostocyclyne A. A novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. J Nat Prod 63:1524–1526

    CAS  PubMed  Google Scholar 

  • Poerschmann J, Spijkerman E, Langer U (2004) Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb Ecol 48:78–89

    CAS  PubMed  Google Scholar 

  • Ponomarenko LP, Stonik IV, Aizdaicher NA, Orlova TY, Popovskaya GI, Pomazkina GV, Stonik VA (2004) Sterols of marine microalgae Pyramimonas cf. cordata (Prasinophyta), Attheya ussurensis sp. nov. (Bacillariophyta) and a spring diatom bloom from Lake Baikal. Comp Biochem Physiol B Biochem Mol Biol 138:65–70

    CAS  PubMed  Google Scholar 

  • Portmann C, Blom JF, Gademann K, Juttner F (2008) Aerucyclamides A and B: isolation and synthesis of toxic ribosomal heterocyclic peptides from the cyanobacterium Microcystis aeruginosa PCC 7806. J Nat Prod 71(7):1193–1196

    CAS  PubMed  Google Scholar 

  • Prasanna R, Kaushik BD (2005) Algal diversity from morphology to molecules. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. IK International, New Delhi, pp 323–344

    Google Scholar 

  • Pratt R, Daniels TC, Eiler JJ, Gunnison JB, Kumler WD, Oneto JF et al (1944) Chlorellin, an antibacterial substance from Chlorella. Science 99:351–352

    CAS  PubMed  Google Scholar 

  • Pro Aigen Biotech (2019) https://www.indiamart.com/proalgen-biotech-limited/. Accessed on 30 June 2019

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    CAS  PubMed  Google Scholar 

  • Rabbani S, Beyer P, Lintig J, Hugueney P, Kleinig H (1998) Induced beta carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rafika C, Lamia T, Rym BD, Omeya EA, Ali Y, Khamissa G, Jihen BA, Hela O, Ouada HB (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54:831–838

    Google Scholar 

  • Rajasekaran A, Sivagnanam G, Xavier R (2008) Nutraceuticals as therapeutic agents: a review. Res J Pharm Technol 1:328–340

    CAS  Google Scholar 

  • Ranga RA, Vijaya RD, Ravishankar GA (2017) Secondary metabolites from algae for nutraceutical application. Novel Tech Nutr Food Sci 1(1). https://doi.org/10.31031/NTNF.2017.01.000503

  • Rao SD, Raghuramulu N (1996) Food chain as origin of vitamin D in fish. Comp Biochem Physiol Part A Physiol 114:15–19

    Google Scholar 

  • Raposo MFJ, Mendes-Pinto MM, Morais R (2001) Carotenoids, foodstuff and human health. In: Morais R (ed) Functional foods an introductory course. Universidade Católica Portuguesa—Escola Superior de Biotecnologia, Porto

    Google Scholar 

  • Raposo MFJ, de Morais RMSC, Bernardo de Morais AMM (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11(1):233–252

    PubMed  Google Scholar 

  • Raposo MF, de Morais AM, de Morais RM (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101:56–63

    CAS  PubMed  Google Scholar 

  • Raposo MFJ, Morais AMB, Morais RMS (2015) Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 13:2967–3028

    CAS  Google Scholar 

  • Rath J, Adhikary SP (2005) A check list of algae from Chilika Lake, Orissa. Nelumbo Bull Bot Surv India 47:101–114

    Google Scholar 

  • Rath B, Priyadarshani I (2013) Antibacterial and antifungal activity of marine cyanobacteria from Odisha coast. Int J Curr Trends Res 2:248–251

    Google Scholar 

  • Ratha SK, Naik K, Padhi SB (2003) Epiphytic algal diversity associated with different aquatic macrophytes of freshwater ponds in and around Berhampur University campus, Orissa. Nat Environ Pollut Technol 2:205–208

    Google Scholar 

  • Ratha SC, Prasanna R, Gupta V, Dhar DW, Saxena AK (2012) Bioprospecting and indexing the microalgal diversity of different ecological habitats of India. World J Microbiol Biotechnol 28:1657–1667

    PubMed  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    CAS  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268

    CAS  Google Scholar 

  • Ribalet F, Wichard T, Pohnert G, Ianora A, Miralto A, Casotti R (2007) Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 68:2059–2067

    CAS  PubMed  Google Scholar 

  • Riegger L, Robinson D (1997) Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antarctica. Mar Ecol Prog Ser 160:13–25

    Google Scholar 

  • Rodriguez-Garcia I, Guil-Guerrero JL (2008) Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chem 108:1023–1026

    CAS  PubMed  Google Scholar 

  • Rodriguez-Sanchez R, Ortiz-Butron R, Blas-Valdivia V, Hernandez-Garcia A, Cano-Europa E (2012) Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chem 135:2359–2365

    CAS  PubMed  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    CAS  PubMed  Google Scholar 

  • Roy KR, Arunasree KM, Dhoot A, Aparna R, Reddy GV, Vali S, Reddanna P (2007) C-phycocyanin inhibits 2-acetylaminofluorene-induced expression of MDR1 in mouse macrophage cells: ROS mediated pathway determined via combination of experimental and in silico analysis. Arch Biochem Biophys 459:169–177

    CAS  PubMed  Google Scholar 

  • Roy S, Llewellyn CA, Egeland ES, Johnson G (2011) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. Cambridge University Press, New York

    Google Scholar 

  • Sachindra N, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M et al (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55:8516–8522

    CAS  PubMed  Google Scholar 

  • Samantraray SM, Mallick AK, Padhy SB (2002) Chilika environment and its algal vegetation. Seaweed Res Util 24:13–17

    Google Scholar 

  • Sanchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729

    CAS  PubMed  Google Scholar 

  • Santiago-Morales IS, Trujillo-Valle L, Márquez-Rocha FJ, López Hernández JF (2018) Tocopherols, phycocyanin and superoxide dismutase from microalgae as potential food antioxidants. Appl Food Biotechnol 5:19–27

    CAS  Google Scholar 

  • Sathasivam R, Kermanee P, Roytrakul S, Juntawong N (2012) Isolation and molecular identification of β-carotene producing strains of Dunaliella salina and Dunaliella bardawil from salt soil samples by using species-specific primers and internal transcribed spacer (ITS) primers. Afr J Biotechnol 11(34):8425–8432

    Google Scholar 

  • Satoh A, Tsuji S, Okada Y, Murakami N, Urami M, Nakagawa K, Ishikura M, Katagiri M, Koga Y, Shirasawa T (2009) Preliminary clinical evaluation of toxicity and efficacy of a new astaxanthin-rich Haematococcus pluvialis extract. J Clin Biochem Nutr 44:280–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaraj G, Kaliamurthi S, Cakmak ZE, Cakmak T (2017) RuBisCO of microalgae as potential targets for nutraceutical peptides: a computational study. Biotechnology 16(4–6):130–144

    CAS  Google Scholar 

  • Semary NAE, Fouda M (2015) Anticancer activity of Cyanothece sp. strain extracts from Egypt: first record. Asian Pac J Trop Biomed 5:992–995

    CAS  Google Scholar 

  • Severes A, Nivas S, D’Souza L, Hegde S (2018) Diversity study of freshwater microalgae of some unexplored water bodies of a rapidly developing industrial region in India. J Algal Biomass Util 9(2):31–40

    Google Scholar 

  • Shaieb FA, Issa AA, Meragaa A (2014) Antimicrobial activity of crude extracts of cyanobacteria Nostoc commune and Spirulina platensis. Arch Biomed Sci 2:34–41

    Google Scholar 

  • Sheih IC, Fang TJ, Wu TK (2009a) Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem 115(1):279–284

    CAS  Google Scholar 

  • Sheih IC, Fang TJ, Wu TK, Lin PH (2009b) Anticancer and antioxidant activities of the peptide fraction from algae protein waste. J Agric Food Chem 58(2):1202–1207

    Google Scholar 

  • Shi XM, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    CAS  PubMed  Google Scholar 

  • Shi X, Wu Z, Chen F (2006) Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol Nutr Food Res 50:763–768

    CAS  PubMed  Google Scholar 

  • Shimoda H, Tanaka J, Shan S, Maoka T (2010) Antipigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J Pharm Pharmacol 62:1137–1145

    CAS  PubMed  Google Scholar 

  • Silvestro D, Andersen TG, Schaller H, Jensen PE (2013) Plant sterol metabolism. Δ7-sterol-C5-desaturase (STE1/DWARF7), Δ5,7-sterol-Δ7-reductase (DWARF5) and Δ24-sterol-Δ24-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. PLoS One 8:e564529. https://doi.org/10.1371/journal.pone.0056429

    Article  CAS  Google Scholar 

  • Singh UB, Sharma C (2014) Microalgal diversity of Sheer Khad (stream): a tributary of Sutlej River, Himachal Pradesh, India. J Res Plant Sci 3(1):235–241

    Google Scholar 

  • Singh P, Singh R, Jha A, Rasane P, Gautam AK (2015) Optimization of a process for high fibre and high protein biscuit. J Food Sci Technol 52:1394–1403

    CAS  PubMed  Google Scholar 

  • Sinha RP, Klisch M, Gröniger A, Häder DP (1998) Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. J Photochem Photobiol B Biol 47:83–94

    CAS  Google Scholar 

  • Smetana S, Sandmann M, Rohn S, Pleissner D, Heinz V (2017) Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour Technol 245(Pt A):162–170. https://doi.org/10.1016/j.biortech.2017.08.113

    Article  CAS  PubMed  Google Scholar 

  • Sonani RR, Rastogi RP, Patel R, Madamwar D (2016) Recent advances in production, purification and applications of phycobiliproteins. World J Biol Chem 7:100–109

    PubMed  PubMed Central  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    CAS  PubMed  Google Scholar 

  • Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501

    CAS  PubMed  Google Scholar 

  • Subudhi S (2017) Bioprospecting for algal based nutraceuticals and high value added compounds. J Pharm Pharm Sci 4(2):145–150. https://doi.org/10.15436/2377-1313.17.16511313.17.1651

    Article  Google Scholar 

  • Sugawara T, Matsubara K, Akagi R, Mori M, Hirata T (2006) Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. Agric Food Chem 54:9805–9810

    CAS  Google Scholar 

  • Suh SS, Kim SM, Kim JE, Hong JM, Lee SG, Youn UJ, Han SJ, Kim IC, Kim S (2017) Anticancer activities of ethanol extract from the Antarctic freshwater microalga, Botryidiopsidaceae sp. BMC Complement Altern Med 17:509. https://doi.org/10.1186/s12906-017-1991-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh A, Kumar RP, Dhanasekaran D, Thajuddin N (2012) Biodiversity of microalgae in Western a and Eastern Ghats, India. Pak J Biol Sci 15(19):919–928

    CAS  PubMed  Google Scholar 

  • Taira H, Aoki S, Yamanoha B, Taguchi S (2004) Daily variation in cellular content of UV-absorbing compounds mycosporine-like amino acids in the marine dinoflagellate Scrippsiella sweeneyae. J Photochem Photobiol B Biol 75:145–155

    CAS  Google Scholar 

  • Takeuchi A, Okano T, Tanda M, Kobayashi T (1991) Possible origin of extremely high contents of vitamin D3 in some kinds of fish liver. Comp Biochem Physiol A Physiol 100:483–487

    Google Scholar 

  • Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V (2015) Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar Drugs 13(10):6152–6209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor HR, Tikellis G, Robman LD, Mc Carty CA, Mc Neil JJ (2002) Vitamin E supplementation and macular degeneration: randomised controlled trial. BMJ 325(7354):11. https://doi.org/10.1136/bmj.325.7354.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson PG, Wright SW, Bolch CJS, Nichols PD, Skerratt JH, McMinn A (2004) Antarctic distribution, pigment and lipid composition, and molecular identification of the brine dinoflagellate Polarella glacialis (Dinophyceae). J Phycol 40:867–873

    CAS  Google Scholar 

  • Tokuşoglu Ö, Üunal MK (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68:1144–1148

    Google Scholar 

  • Tomaselli L (2003) Biodeterioration processes on inorganic substrata. Coalition 6:5–9

    Google Scholar 

  • Tramroy P (2011) Microalgae market outlook report website. CBDM.T-Market and Business Intelligence. http://www.microalgae-market.com/

  • Tsukui T, Baba N, Hosokawa M, Sashima T, Miyashit K (2009) Enhancement of hepatic docosahexaenoic acid and arachidonic acid contents in C57BL/6J mice by dietary fucoxanthin. Fish Sci 75:261–263

    CAS  Google Scholar 

  • Tukaj Z, Matusiak-Mikulin K, Lewandowska J, Szurkowski J (2003) Changes in the pigment patterns and the photosynthetic activity during a light-induced cell cycle of the green alga Scenedesmus armatus. Plant Physiol Biochem 41:337–344

    CAS  Google Scholar 

  • Udayan A, Arumugam M, Pandey A (2017) Nutraceuticals from algae and cyanobacteria. In: Algal green chem. Elsevier, Amsterdam, pp 65–89

    Google Scholar 

  • Uhlik DJ, Gowans CS (1974) Synthesis of nicotinic acid in Chlamydomonas eugametos. Int J Biochem 5:79–84

    CAS  Google Scholar 

  • Urzi C, Realini M (1998) Colour changes of Noto’s calcareous sandstone as related to its colonisation by microorganisms. Int Biodeterior Biodegrad 42(1):45–54

    Google Scholar 

  • US Nutra (2019) Corporate website. http://www.usnutra.com/. Accessed on 21 July 2019

  • USDA (2002) USA: dietary reference intakes and recommended dietary allowances. Nat Acad of Sciences. Available at: http://arborcom.com/frame/nutrc.htm. Accessed on 21 July 2019

  • Uttara B, Singh AV, Zamboni P, Mahajan R (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74. https://doi.org/10.2174/157015909787602823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela-Espinoza E, Millan-Nuñez R, Núñez-Cebrero F (2002) Protein, carbohydrate, lipid and chlorophyll a content of Isochrysis aff. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquac Eng 25(4):207–216

    Google Scholar 

  • Van Krimpen M, Bikker P, Van der Meer I, Van der Peet-Schwering C, Vereijken J (2013) Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products. Wageningen UR Livestock Research, Lelystad

    Google Scholar 

  • Vilchez C, Garbayo I, Lobato MV, Vega JM (1997) Microalgae-mediated chemicals production and wastes removal. Enzyme Microb Technol 20:562–572

    CAS  Google Scholar 

  • Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60(5):495–506

    CAS  PubMed  Google Scholar 

  • Wang L, Pan B, Sheng J, Xu J, Hu Q (2007) Antioxidant activity of Spirulina platensis extracts by supercritical carbon dioxide extraction. Food Chem 105:36–41

    CAS  Google Scholar 

  • Wang H, Peiris TH, Mowery A, Le Lay J, Gao Y, Greenbaum LE (2008) CCAAT/enhancer binding protein-beta is a transcriptional regulator of peroxisome-proliferator-activated receptor-gamma coactivator-1alpha in the regenerating liver. Mol Endocrinol 22:1596–1605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Goyal N, Hopkinson B (2009) Preparation of L-proline based aeruginosin 298-A analogs: optimisation of the P1-moiety. Bioorg Med Chem Lett 19:3798–3803

    CAS  PubMed  Google Scholar 

  • Washida K, Koyama T, Yamada K, Kitab M, Urmura D et al (2006) Karatungiols A and B two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett 47(15):2521–2525

    CAS  Google Scholar 

  • Watanabe M, Ikeuchi M (2013) Phycobilisome: architecture of a light-harvesting supercomplex. Phytother Res 116:265–276

    CAS  Google Scholar 

  • Waterbury JB (2006) The cyanobacteria—isolation, purification and identification. In: Dworkin M (ed) The prokaryotes—a handbook on the biology of bacteria, vol 4. Springer, New York, pp 1053–1073

    Google Scholar 

  • Welker M, von Dohren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    CAS  PubMed  Google Scholar 

  • Wijffels RH (2019) Algae for energy, http://www.knaw.nl/agenda/pdf/wijffels.pdf. Accessed on 02 July 2019

  • Wu Z, Dejtisakdi W, Kermanee P, Ma C, Arirob W, Sathasivam R, Juntawong N (2016) Outdoor cultivation of Dunaliella salina KU 11 using brine and saline lake water with raceway ponds in northeastern Thailand. Biotechnol Appl Biochem 64(6):938–943

    Google Scholar 

  • Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244

    CAS  PubMed  Google Scholar 

  • Xiong F, Komenda J, Kopecky J, Nedbal L (1997) Strategies of ultraviolet-B protection in microscopic algae. Physiol Plant 100:378–388

    CAS  Google Scholar 

  • Xiong FS, Kopecky J, Nedbal L (1999) The occurrence of UV-B absorbing mycosporine-like amino acids in freshwater and terrestrial microalgae (Chlorophyta). Aquat Bot 63:37–49

    CAS  Google Scholar 

  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res (Thessaloniki) 21(1):6. http://www.jbiolres.com/content/21/1/6/6

    Google Scholar 

  • Yabuta Y, Fujimura H, Kwak CS, Enomoto T, Wata-nabe F (2010) Antioxidant activity of the phycoeryth-robilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res 16:347–351

    CAS  Google Scholar 

  • Yook JS, Kim KA, Park JE, Lee SH, Cha YS (2015) Microalgal oil supplementation has an anti-obesity effect in c57bl/6j mice fed a high fat diet. Prev Nutr Food Sci 20(4):230–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan JP, Chen F, Liu X, Li XZ (2002) Carotenoid composition in the green microalga Chlorococcum. Food Chem 76:319–325

    CAS  Google Scholar 

  • Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165

    CAS  PubMed  Google Scholar 

  • Zhang CW, Cohen Z, Khozin-Goldberg I, Richmond A (2002) Characterization of growth and arachidonic acid production of Parietochloris incisa comb. Nov (Trebouxiophyceae, Chlorophyta). J Appl Phycol 14:453–460

    CAS  Google Scholar 

  • Zhang D, Wan M, del Rio-Chanona EA, Huang J, Wang W, Li Y, Vassiliadis VS (2016) Dynamic modelling of Haematococcus pluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors. Algal Res 13:69–78

    Google Scholar 

  • Zhekisheva M, Zarka A, Khozin-Goldberg I, Cohen Z, Boussiba S (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41:819–826

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, P. (2020). Microalgae as Nutraceutical for Achieving Sustainable Food Solution in Future. In: Singh, J., Vyas, A., Wang, S., Prasad, R. (eds) Microbial Biotechnology: Basic Research and Applications. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2817-0_5

Download citation

Publish with us

Policies and ethics