Skip to main content

The Atmospheric Infrared Sounder

  • Reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

Launched in May 2002, the Atmospheric Infrared Sounder (AIRS) measures the upwelling radiance of the atmosphere in 2378 spectral channels ranging from 3.75 to 15.4 μm with spectral resolution sufficient to provide detailed profiles of atmospheric temperature, water vapor, and trace gas species including O3, CO, SO2, CH4, CO2, N2O, and NH3. AIRS provided the first hyperspectral radiances to be assimilated into the operational weather forecast, and they continue to be assimilated into forecast models at NWP centers worldwide. AIRS provides a nearly circular 13.5 km footprint at nadir with a wide ±48.95° scan leading to global daily coverage for most places on Earth. This rapid revisit enables AIRS to provide critical data regarding atmospheric constituents in near real time, including location and concentration of mid-tropospheric CO from fires and SO2 from volcanic plumes. AIRS O3 products have been used to quantify the role of stratospheric intrusions and long-range pollution transport in high surface ozone events. The AIRS radiance spectra also contain information on long-lived climate forcers such as methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O), and CFC-11. AIRS has been shown to have good sensitivity to near surface concentrations of atmospheric ammonia, NH3. With a multi-decadal continuous record of hyperspectral infrared radiances, and the products generated from the radiances, the AIRS has gone beyond just a near-real-time weather instrument and has been demonstrated to be a valuable tool for studying climate trends in atmospheric temperature, water vapor, and trace gas species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Chahine MT, Pagano TS, Aumann HH, Atlas R, Barnet C, Blaisdell J, Chen L, Divakarla M, Fetzer EJ, Goldberg M et al (2006) AIRS: improving weather forecasting and providing new data on greenhouse gases. Bull Am Meteorol Soc 87:911–926. https://doi.org/10.1175/BAMS-87-7-911

    Article  Google Scholar 

  2. Le Marshall J, Jung J, Derber J, Chahine M, Treadon R, Lord SJ, Goldberg M, Wolf W, Liu HC, Joiner J et al (2006) Improving global analysis and forecasting with AIRS. Bull Am Meteorol Soc 87:891–894. https://doi.org/10.1175/BAMS-87-7-891

    Article  Google Scholar 

  3. Pierce DW, Barnett TP, Fetzer EJ, Gleckler PJ (2006) Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite system. Geophys Res Lett 33:L21701:1–L21701:5. https://doi.org/10.1029/2006GL027060

    Article  Google Scholar 

  4. Realmuto VJ, Berk A (2016) Plume tracker: interactive mapping of volcanic sulfur dioxide emissions with high-performance radiative transfer modeling. J Volcanol Geotherm Res 327:55–69. https://doi.org/10.1016/j.jvolgeores.2016.07.001

    Article  Google Scholar 

  5. Behrangi A, Fetzer EJ, Granger SL (2016) Early detection of drought onset using near surface temperature and humidity observed from space. Int J Remote Sens 37:3911–3923. https://doi.org/10.1080/01431161.2016.1204478

    Article  Google Scholar 

  6. Adame JA, Lope L, Hidalgo PJ, Sorribas M, Gutiérrez-Álvarez I, del Águila A, Saiz-Lopez A, Yela M (2018) Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fire in Doñana Natural Park, Spain. Sci Total Environ 645:710–720

    Article  Google Scholar 

  7. Susskind J, Schmidt GA, Lee JN, Iredell L (2019) Recent global warming as confirmed by AIRS. Environ Res Lett 14:044030:1–044030:10. https://doi.org/10.1088/1748-9326/aafd4e

    Article  Google Scholar 

  8. Morse PG, Bates JC, Miller CR, Chahine MT, O’Callaghan F, Aumann HH, Kamik AR. Development and test of the Atmospheric Infrared Sounder (AIRS) for the NASA Earth Observing System (EOS). In: Sensors, systems, and next-generation satellites III, Proceedings of remote sensing, Florence, Italy, 28 December 1999, vol 3870, pp 281–292. https://doi.org/10.1117/12.373196

  9. Pagano TS, Aumann H, Broberg S, Canas C, Manning E, Overoye K, Wilson R (2020) SI-traceability and measurement uncertainty of the atmospheric infrared sounder version 5 level 1B radiances. Remote Sens 12(1338). https://doi.org/10.3390/rs12081338

  10. Aumann HH, Broberg S, Manning E, Pagano T (2019) Radiometric stability validation of 17 years of AIRS data using sea surface temperatures. Geophys Res Lett 46:12504–12510. https://doi.org/10.1029/2019GL085098

    Article  Google Scholar 

  11. Strow LL, DeSouza-Machado S (2020) Establishment of AIRS climate-level radiometric stability using radiance anomaly retrievals of minor gases and SST. Atmos Meas Tech Discuss 2020:1–35. https://doi.org/10.5194/amt-2019-504

    Article  Google Scholar 

  12. Susskind J, Barnet CD, Blaisdell JM (2003) Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans Geosci Remote Sens 41(2):390–409. https://doi.org/10.1109/TGRS.2002.808236

    Article  Google Scholar 

  13. Smith N, Barnet CD (2019) Uncertainty characterization and propagation in the community long-term infrared microwave combined atmospheric product system (CLIMCAPS). Remote Sens 11:1227. https://doi.org/10.3390/rs11101227

    Article  Google Scholar 

  14. Smith N, Barnet CD (2020) CLIMCAPS observing capability for temperature, moisture, and trace gases from AIRS/AMSU and CrIS/ATMS. Atmos Meas Tech 13:4437–4459. https://doi.org/10.5194/amt-13-4437-2020

    Article  Google Scholar 

  15. Bowman K (2021) TROPESS forward stream level 2 products from AIRS: ozone. https://doi.org/10.5067/UCNJ6QV14YG3

  16. Irion FW, Kahn BH, Schreier MM, Fetzer EJ, Fishbein E, Fu D, Kalmus P, Wilson RC, Wong S, Yue Q (2018) Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS. Atmos Meas Tech 11:971–995. https://doi.org/10.5194/amt-11-971-2018

    Article  Google Scholar 

  17. DeSouza-Machado S, Strow LL, Tangborn A, Huang X, Chen X, Liu X, Wu W, Yang Q (2018) Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm. Atmos Meas Tech 11:529–550. https://doi.org/10.5194/amt-11-529-2018

    Article  Google Scholar 

  18. Warner JX, Wei Z, Strow LL, Dickerson RR, Nowak JB (2016) The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record. Atmos Chem Phys 16:5467–5479. https://doi.org/10.5194/acp-16-5467-2016

    Article  Google Scholar 

  19. Chen X, Huang X, Strow LL (2020) Near-global CFC-11 trends as observed by atmospheric infrared sounder from 2003 to 2018. J Geophys Res Atmos 125:e2020JD033051. https://doi.org/10.1029/2020JD033051

    Article  Google Scholar 

  20. Bian J, Gettelman A, Chen H, Pan LL (2007) Validation of satellite ozone profile retrievals using Beijing ozonesonde data. J Geophys Res 112:D06305. https://doi.org/10.1029/2006JD007502

    Article  Google Scholar 

  21. Monahan KP, Pan LL, McDonald AJ, Bodeker GE, Wei J, George SE, Barnet CD, Maddy E (2007) Validation of AIRS v4 ozone profiles in the UTLS using ozonesondes from Lauder, NZ and Boulder, USA. J Geophys Res 112:D17304. https://doi.org/10.1029/2006JD008181

    Article  Google Scholar 

  22. Dragani R, McNally AP (2013) Operational assimilation of ozone-sensitive infrared radiances at ECMWF. Q.J.R. Meteorol Soc 139:2068–2080. https://doi.org/10.1002/qj.2106

    Article  Google Scholar 

  23. Lin M, Fiore AM, Cooper OR, Horowitz LW, Langford AO, Hiram Levy II, Johnson BJ, Naik V, Oltmans SJ, Senff C (2012a) Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. J Geophys Res 117:D00V22. https://doi.org/10.1029/2012JD018151

    Article  Google Scholar 

  24. Knowland KE, Ott LE, Duncan BN, Wargan K (2017) Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 reanalysis. Geophys Res Lett 44:10,691–10,701. https://doi.org/10.1002/2017GL074532

    Article  Google Scholar 

  25. Berndt EB, Zavodsky BT, Folmer MJ (2016) Development and application of atmospheric infrared sounder ozone retrieval products for operational meteorology. IEEE Trans Geosci Remote Sens 54(2):958–967. https://doi.org/10.1109/TGRS.2015.2471259

    Article  Google Scholar 

  26. Fu D, Kulawik SS, Miyazaki K, Bowman KW, Worden JR, Eldering A, Livesey NJ, Teixeira J, Irion FW, Herman RL, Osterman GB, Liu X, Levelt PF, Thompson AM, Luo M (2018) Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation. Atmos Meas Tech 11:5587–5605. https://doi.org/10.5194/amt-11-5587-2018

    Article  Google Scholar 

  27. Miyazaki K, Bowman K, Sekiya T, Eskes H, Boersma F, Worden H, Livesey N, Payne VH, Sudo K, Kanaya Y, Takigawa M, Ogochi K (2020) Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005-2018. Earth Syst Sci Data 12:2223–2259. https://doi.org/10.5194/essd-12-2223-2020

    Article  Google Scholar 

  28. McMillan WW, Barnet C, Strow L, Chahine MT, McCourt ML, Warner JX, Novelli PC, Korontzi S, Maddy ES, Datta S (2005) Daily global maps of carbon monoxide from NASA's atmospheric infrared sounder. Geophys Res Lett 32:L11801. https://doi.org/10.1029/2004GL021821

    Article  Google Scholar 

  29. Warner JX, Wei Z, Strow LL, Barnet CD, Sparling LC, Diskin G, Sachse G (2010) Improved agreement of AIRS tropospheric carbon monoxide products with other EOS sensors using optimal estimation retrievals. Atmos Chem Phys 10:9521–9533. https://doi.org/10.5194/acp-10-9521-2010

    Article  Google Scholar 

  30. Bowman K (2021) TROPESS forward stream level 2 products from AIRS: carbon monoxide. https://doi.org/10.5067/F0JWR7KYETKA

  31. Buchholz RR, Worden HM, Park M, Francis G, Deeter MN, Edwards DP, Emmons LK, Gaubert B, Gille J, Martinez-Alonso S, Tang W, Kumar R, Drummond JR, Clerbaux C, George M, Coheur P-F, Hurtmans D, Bowman KW, Luo M, Payne VH, Worden JR, Chin M, Levy RC, Warner J, Wei Z, Kulawik SS (2021) Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone and background regions. Remote Sens Environ 256:112275. https://doi.org/10.1016/j.rse.2020.112275

    Article  Google Scholar 

  32. Worden HM, Deeter MN, Frankenberg C, George M, Nichitiu F, Worden J, Aben I, Bowman KW, Clerbaux C, Coheur PF, de Laat ATJ, Detweiler R, Drummond JR, Edwards DP, Gille JC, Hurtmans D, Luo M, Martínez-Alonso S, Massie S, Pfister G, Warner JX (2013) Decadal record of satellite carbon monoxide observations. Atmos Chem Phys 13:837–850. https://doi.org/10.5194/acp-13-837-2013

    Article  Google Scholar 

  33. Warner J, Carminati F, Wei Z, Lahoz W, Attié J-L (2013) Tropospheric carbon monoxide variability from AIRS under clear and cloudy conditions. Atmos Chem Phys 13:12469–12479. https://doi.org/10.5194/acp-13-12469-2013

    Article  Google Scholar 

  34. Kloss C, Berthet G, Sellitto P, Ploeger F, Bucci S, Khaykin S, Jégou F, Taha G, Thomason LW, Barret B, Le Flochmoen E, von Hobe M, Bossolasco A, Bègue N, Legras B (2019) Transport of the 2017 Canadian wildfire plume to the tropics via the Asian monsoon circulation. Atmos Chem Phys 19:13547–13567. https://doi.org/10.5194/acp-19-13547-2019

    Article  Google Scholar 

  35. Lin M, Fiore AM, Horowitz LW, Cooper OR, Naik V, Holloway J, Johnson BJ, Middlebrook AM, Oltmans SJ, Pollack IB, Ryerson TB, Warner JX, Wiedinmyer C, Wilson J, Wyman B (2012) Transport of Asian ozone pollution into surface air over the western United States in spring. J Geophys Res 117:D00V07. https://doi.org/10.1029/2011JD016961

    Article  Google Scholar 

  36. Alvarado MJ, Logan JA, Mao J, Apel E, Riemer D, Blake D, Cohen RC, Min K-E, Perring AE, Browne EC, Wooldridge PJ, Diskin GS, Sachse GW, Fuelberg H, Sessions WR, Harrigan DL, Huey G, Liao J, Case-Hanks A, Jimenez JL, Cubison MJ, Vay SA, Weinheimer AJ, Knapp DJ, Montzka DD, Flocke FM, Pollack IB, Wennberg PO, Kurten A, Crounse J, St. Clair JM, Wisthaler A, Mikoviny T, Yantosca RM, Carouge CC, Le Sager P (2010) Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. Atmos Chem Phys 10:9739–9760. https://doi.org/10.5194/acp-10-9739-2010

    Article  Google Scholar 

  37. Kopacz M, Jacob DJ, Fisher JA, Logan JA, Zhang L, Megretskaia IA, Yantosca RM, Singh K, Henze DK, Burrows JP, Buchwitz M, Khlystova I, McMillan WW, Gille JC, Edwards DP, Eldering A, Thouret V, Nedelec P (2010) Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmos Chem Phys 10:855–876. https://doi.org/10.5194/acp-10-855-2010

    Article  Google Scholar 

  38. Fisher JA, Jacob DJ, Purdy MT, Kopacz M, Le Sager P, Carouge C, Holmes CD, Yantosca RM, Batchelor RL, Strong K, Diskin GS, Fuelberg HE, Holloway JS, Hyer EJ, McMillan WW, Warner J, Streets DG, Zhang Q, Wang Y, Wu S (2010) Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide. Atmos Chem Phys 10:977–996. https://doi.org/10.5194/acp-10-977-2010

    Article  Google Scholar 

  39. Kim PS, Jacob DJ, Liu X, Warner JX, Yang K, Chance K, Thouret V, Nedelec P (2013) Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources. Atmos Chem Phys 13:9321–9335. https://doi.org/10.5194/acp-13-9321-2013

    Article  Google Scholar 

  40. Jiang X, Li K-F, Liang M-C, Yung YL (2021) Impact of Amazonian fires on atmospheric CO2. Geophys Res Lett 48:e2020GL091875. https://doi.org/10.1029/2020GL091875

    Article  Google Scholar 

  41. Thomas HE, Matthew Watson I, Carn SA, Prata AJ, Realmuto VJ (2011) A comparison of AIRS, MODIS and OMI sulphur dioxide retrievals in volcanic clouds. Geomat Nat Haz Risk 2(3):217–232. https://doi.org/10.1080/19475705.2011.564212

    Article  Google Scholar 

  42. Hillger D, Seaman C, Liang C, Miller S, Lindsey D, Kopp T (2014) Suomi NPP VIIRS Imagery evaluation. J Geophys Res Atmos 119:6440–6455. https://doi.org/10.1002/2013JD021170

    Article  Google Scholar 

  43. Theys N, De Smedt I, Yu H, Danckaert T, van Gent J, Hörmann C, Wagner T, Hedelt P, Bauer H, Romahn F, Pedergnana M, Loyola D, Van Roozendael M (2017) Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 precursor: algorithm theoretical basis. Atmos Meas Tech 10:119–153. https://doi.org/10.5194/amt-10-119-2017

    Article  Google Scholar 

  44. Carn SA, Strow LL, de Souza-Machado S, Edmonds Y, Hannon S (2005) Quantifying tropospheric volcanic emissions with AIRS: the 2002 eruption of Mt. Etna (Italy). Geophys Res Lett 32(2):L02301. https://doi.org/10.1029/2004GL021034

    Article  Google Scholar 

  45. Prata AJ, Bernardo C (2007) Retrieval of volcanic SO2 column abundance from atmospheric infrared sounder data. J Geophys Res 112:D20204. https://doi.org/10.1029/2006JD007955

    Article  Google Scholar 

  46. Carn SA, Clarisse L, Prata AJ (2016) Multi-decadal satellite measurements of global volcanic degassing. J Volcanol Geotherm Res 311:99–134. https://doi.org/10.1016/j.jvolgeores.2016.01.002

    Article  Google Scholar 

  47. Carn S, Fioletov V, McLinden C et al (2017) A decade of global volcanic SO2 emissions measured from space. Sci Rep 7:44095. https://doi.org/10.1038/srep44095

    Article  Google Scholar 

  48. Prata F, Lynch M (2019) Passive earth observations of volcanic clouds in the atmosphere. Atmos 10(4):42. https://doi.org/10.3390/atmos10040199

    Article  Google Scholar 

  49. Tournigand P-Y, Cigala V, Lasota E, Hammouti M, Clarisse L, Brenot H, Prata F, Kirchengast G, Steiner AK, Biondi R (2020) A multi-sensor satellite-based archive of the largest SO2 volcanic eruptions since 2006. Earth Syst Sci Data 12:3139–3159. https://doi.org/10.5194/essd-12-3139-2020

    Article  Google Scholar 

  50. Prata F, Woodhouse M, Huppert HE, Prata A, Thordarson T, Carn S (2017) Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption. Atmos Chem Phys 17:10709–10732. https://doi.org/10.5194/acp-17-10709-2017

    Article  Google Scholar 

  51. Kulawik SS, Worden JR, Payne VH, Fu D, Wofsy SC, McKain K, Sweeney C, Daube BC Jr, Lipton A, Polonsky I, He Y, Cady-Pereira KE, Dlugokencky EJ, Jacob DJ, Yin Y (2021) Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements. Atmos Meas Tech 14:335–354. https://doi.org/10.5194/amt-14-335-2021

    Article  Google Scholar 

  52. Zou M, Xiong X, Wu Z, Li S, Zhang Y, Chen L (2019) Increase of atmospheric methane observed from space-borne and ground-based measurements. Remote Sens 11:964. https://doi.org/10.3390/rs11080964

    Article  Google Scholar 

  53. Xiong X, Barnet C, Maddy E, Wei J, Liu X, Pagano TS, Sensing R, Xiong X, Barnet C, Maddy E, Wei J, Liu X, Pagano TS (2010) Seven years’ observation of mid-upper tropospheric methane from Atmospheric Infrared Sounder. Remote Sens 2(11):2509–2530

    Article  Google Scholar 

  54. Xiong X, Barnet CD, Zhuang Q, Machida T, Sweeney C, Patra PK (2010) Mid-upper tropospheric methane in the high Northern Hemisphere: Spaceborne observations by AIRS, aircraft measurements, and model simulations. J Geophys Res Atmos (1984–2012) 115:D19

    Google Scholar 

  55. Xiong X, Barnet C, Wei J, Maddy E (2009) Information-based mid-upper tropospheric methane derived from atmospheric infrared sounder (AIRS) and its validation. Atmos Chem Phys Discuss 9(4):16331–16360

    Google Scholar 

  56. Xiong X, Houweling S, Wei J, Maddy E, Sun F, Barnet C (2009) Methane plume over South Asia during the monsoon season: satellite observation and model simulation. Atmos Chem Phys 9(3):783–794

    Article  Google Scholar 

  57. Xiong X, Barnet C, Maddy E, Sweeney C, Liu X, Zhou L, Goldberg M (2008) Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). J Geophys Res Biogeosci (2005–2012) 113:G3

    Google Scholar 

  58. Jiang X, Yung YL (2019) Global patterns of carbon dioxide variability from satellite observations. Annu Rev Earth Planet Sci 47(1):225–245

    Article  Google Scholar 

  59. Xun et al (2017) Influence of droughts on mid-tropospheric CO2. Remote Sens 9(8):852. https://doi.org/10.3390/rs9080852

    Article  Google Scholar 

  60. Frankenberg C, Kulawik SS, Wofsy SC, Chevallier F, Daube B, Kort EA, O’Dell C, Olsen ET, Osterman G (2016) Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide. Atmos Chem Phys 16:7867–7878. https://doi.org/10.5194/acp-16-7867-2016

    Article  Google Scholar 

  61. Jiang X, Olsen ET, Pagano TS, Hui S, Yung YL (2015) Modulation of Midtropospheric CO2 by the South Atlantic Walker Circulation. J Atmos Sci 72:2241–2247. https://doi.org/10.1175/JAS-D-14-0340.1

    Article  Google Scholar 

  62. Pagano TS, Olsen ET, Nguyen H et al (2014) Global variability of midtropospheric carbon dioxide as measured by the Atmospheric Infrared Sounder. J Appl Remote Sens 8(1):084984. https://doi.org/10.1117/1.JRS.8.084984

    Article  Google Scholar 

  63. Larrabee Strow L, Imbiriba B, Ott L, Pawson S (2013) Evaluation of a new middle-lower tropospheric CO2 product using data assimilation. Atmos Chem Phys 13(9):4487–4500

    Article  Google Scholar 

  64. Jiang X, Wang J, Olsen ET, Pagano T, Chen LL, Yung YL (2013) Influence of stratospheric sudden warming on AIRS midtropospheric CO2. J Atmos Sci 70:2566–2573. https://doi.org/10.1175/JAS-D-13-064.1

    Article  Google Scholar 

  65. Pagano TS, Chahine MT, Olsen ET (2011) Seven years of observations of mid-tropospheric CO2 from the atmospheric infrared sounder. Acta Astronaut 69(7):355–359

    Article  Google Scholar 

  66. Strow LL, Hannon SE (2008) A 4-year zonal climatology of lower tropospheric CO2 derived from ocean-only Atmospheric Infrared Sounder observations. J Geophys Res Atmos (1984–2012) 113:D18

    Google Scholar 

  67. Chahine M, Barnet C, Olsen ET, Chen L, Maddy E (2005) On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys Res Lett 32(22). article number L22803

    Google Scholar 

  68. Xiong X, Maddy ES, Barnet C, Gambacorta A, Patra PK, Sun F, Goldberg M (2014) Retrieval of nitrous oxide from atmospheric infrared sounder: characterization and validation. J Geophys Res Atmos 119. https://doi.org/10.1002/2013JD021406

  69. Warner JX, Dickerson RR, Wei, Z, Strow LL, Wang Y, Liang Q (2017) Increased atmospheric ammonia over the world's major agricultural areas detected from space. Geophys Res Lett 44:2875–2884. https://doi.org/10.1002/2016GL072305. Chahine MT, Pagano TS, Aumann HH, Atlas R, Barnet C, Blaisdell J, Chen L, Divakarla M, Fetzer EJ, Goldberg M, et al. (2006) AIRS: improving weather forecasting and providing new data on greenhouse gases. Bull Am Meteorol Soc 87:911–926. https://doi.org/10.1175/BAMS-87-7-911

Download references

Acknowledgments

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Pagano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pagano, T.S., Payne, V.H. (2023). The Atmospheric Infrared Sounder. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_64

Download citation

Publish with us

Policies and ethics