Skip to main content

Characterizing Aerosol from Space with the MODerate-resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua Satellites

  • Reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

Aerosols, the small, suspended liquid and solid particles in the atmosphere, have myriad effects on climate, weather, and air quality. When the NASA Earth-Observing System’s (EOS) Terra and Aqua satellites launched in 1999 and 2002, they each included advanced sensors that have been used for aerosol research. In particular, the MODerate-resolution Imaging Spectroradiometer (MODIS) deployed on both satellites, has provided key data relating to aerosol loading and relative aerosol type on the global scale. Three different algorithms, known as “Dark Target,” “Deep Blue,” and “MAIAC,” use different subsets of MODIS measurements and different assumptions to create various products such as Aerosol Optical Depth (AOD), fine mode fraction (FMF), and single scattering albedo (SSA). Although all three derive AOD in cloud-free conditions, each algorithm has different strengths and weaknesses in different areas of the globe and under different conditions. Here, we provide a short summary of each algorithm, description of products, and basic information about downloading and using the products. We also provide some examples of how MODIS aerosol products are used. Finally, we add a quick discussion about how these algorithms and products will continue after MODIS leaves orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  2. IPCC (2021) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) . Cambridge University Press. In Press

    Google Scholar 

  3. Koren I, Martins JV, Remer LA, Afargan H (2008) Smoke invigoration versus inhibition of clouds over the Amazon. Science 321:946–949. https://doi.org/10.1126/science.1159185

    Article  Google Scholar 

  4. Quaas J, Boucher O, Bellouin N, Kinne S (2008) Satellite-based estimate of the direct and indirect aerosol climate forcing. J Geophys Res 113:D05204. https://doi.org/10.1029/2007JD008962

    Article  Google Scholar 

  5. McDuffie E, Martin R, Yin H, Brauer M (2021) Global burden of disease from major air pollution sources (GBD MAPS): a global approach. Research report 210. Health Effects Institute, Boston

    Google Scholar 

  6. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman Y, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET – a federated instrument network and data archive for aerosol characterization. Rem Sens Environ 66:1–16. https://doi.org/10.1016/S0034-4257(98)00031-5

    Article  Google Scholar 

  7. Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104(D24):31333–31349. https://doi.org/10.1029/1999JD900923

    Article  Google Scholar 

  8. Lenoble J, Remer LA, Tanré D (2013) Aerosol remote sensing. Springer, Berlin/Heidelberg, 390 pp. https://doi.org/10.1007/978-3-642-17725-5

    Book  Google Scholar 

  9. Kokhanovsky AA, de Leeuw G (2009) Satellite aerosol remote sensing over land. Springer, Berlin/Heidelberg. 388 pp. https://doi.org/10.1007/978-3-540-69397-0

    Book  Google Scholar 

  10. https://modis.gsfc.nasa.gov/about/. Accessed 18 Jan 2022

  11. https://misr.jpl.nasa.gov/Mission/misrInstrument/. Accessed 18 Jan 2022

  12. Salomonson VV, Barnes WL, Maymon PW, Montgomery HE, Ostrow H (1989) MODIS – advance facility instrument for studies of the earth as a system. IEEE Trans Geosci Remote Sens 27:145–153. https://doi.org/10.1109/36.20292

    Article  Google Scholar 

  13. King MD, Kaufman YJ, Menzel WP, Tanré D (1992) Remote sensing of cloud, aerosol and water vapor properties from the MODerate resolution imaging Specrometer (MODIS). IEEE Trans Geosci Remote Sens 30:2–27. https://doi.org/10.1109/36.124212

    Article  Google Scholar 

  14. Kaufman YJ, Tanré D, Remer LA, Vermote E, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102:17051–17067. https://doi.org/10.1029/96JD03988

    Article  Google Scholar 

  15. Tanré D, Kaufman YJ, Herman M, Mattoo S (1997) Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J Geophys Res 102:16971–16988. https://doi.org/10.1029/96JD03437

    Article  Google Scholar 

  16. Meskhidze N, Remer LA, Platnick S, Negrón Juárez R, Lichtenberger AM, Aiyyer AR (2009) Exploring the differences in cloud properties observed by the Terra and Aqua MODIS sensors. Atmos Chem Phys 9:3461–3475. https://doi.org/10.5194/acp-9-3461-2009

    Article  Google Scholar 

  17. Remer LA, Mattoo S, Levy RC, Heidinger A, Pierce RB, Chin M (2012) Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution. Atmos Meas Tech 5:1823–1840. https://doi.org/10.5194/amt-5-1823-2012

    Article  Google Scholar 

  18. https://darktarget.gsfc.nasa.gov/. Accessed 18 Jan 2022

  19. Remer LA, Levy RC, Mattoo S, Tanré D, Gupta P, Shi Y, Sawyer V, Munchak LA, Zhou Y, Kim M, Ichoku C, Patadia F, Li R-R, Gassó S, Kleidman RG, Holben BN (2020) The dark target algorithm for observing the global aerosol system: past, present, and future. Remote Sens 12(18):2900. https://doi.org/10.3390/rs12182900

    Article  Google Scholar 

  20. Hsu NC, Tsay S-C, King MD, Herman J (2004) Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Remote Sens 42:557–569. https://doi.org/10.1109/TGRS.2004.824067

    Article  Google Scholar 

  21. Hsu NC, Jeong MJ, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, Huang J, Tsay S-C (2013) Enhanced deep blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos 118:9296–9315. https://doi.org/10.1002/jgrd.50712

    Article  Google Scholar 

  22. Lyapustin A, Wang Y, Laszlo I, Kahn R, Korkin S, Remer L, Levy R, Reid JS (2011) Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J Geophys Res Atmos 116(D03211). https://doi.org/10.1029/2010JD014986

  23. https://deepblue.gsfc.nasa.gov. Accessed 18 Jan 2022

  24. https://modis-land.gsfc.nasa.gov/MAIAC.html. Accessed 18 Jan 2022

  25. https://atmosphere-imager.gsfc.nasa.gov. Accessed 18 Jan 2022

  26. Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li R-R, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62(4):947–973. https://doi.org/10.1175/JAS3385.1

    Article  Google Scholar 

  27. Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6:2989–3034. https://doi.org/10.5194/amt-6-2989-2013

    Article  Google Scholar 

  28. Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging Spectroradiometer spectral reflectance. J Geophys Res 112:D13211. https://doi.org/10.1029/2006JD007811

    Article  Google Scholar 

  29. Levy RC, Remer LA, Dubovik O (2007) Global aerosol optical properties and application to moderate resolution imaging Spectroradiometer aerosol retrieval over land. J Geophys Res 112:D13210. https://doi.org/10.1029/2006JD007815

    Article  Google Scholar 

  30. Kaufman YJ, Boucher O, Tanré D, Chin M, Remer LA, Takemura T (2005) Aerosol anthropogenic component estimated from satellite data. Geophys Res Lett 32:L17804. https://doi.org/10.1029/2005GL023125

    Article  Google Scholar 

  31. Kaufman YJ, Koren I, Remer LA, Tanré D, Ginoux P, Fan S (2005) Dust transport and deposition observed from the Terra-moderate resolution imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res 110:D10S12. https://doi.org/10.1029/2003JD004436

    Article  Google Scholar 

  32. Remer, L. A., Mattoo, S., Levy, R. C., and Munchak, L. A.: MODIS 3 km aerosol product: algorithm and global perspective, Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, 2013

  33. Munchak LA, Levy RC, Mattoo S, Remer LA, Holben BN, Shafer JS, Hostetler CA, Ferrare RA (2013) MODIS 3 km aerosol product: algorithm and global perspective. Atmos Meas Tech 6(7):1829–1844. https://doi.org/10.5194/amt-6-1829-2013

    Article  Google Scholar 

  34. Sayer AM, Munchak LA, Hsu NC, Levy RC, Bettenhausen C, Jeong MJ (2014) MODIS collection 6 aerosol products: comparison between Aqua’s e-deep blue, dark target, and “merged” data sets, and usage recommendations. J Geophys Res Atmos 119(24):13,965–13,989. https://doi.org/10.1002/2014JD022453

    Article  Google Scholar 

  35. Jethva H, Torres O, Yoshida Y (2019) Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America. Atmos Meas Tech 12(8):4291–4307. https://doi.org/10.5194/amt-12-4291-2019

    Article  Google Scholar 

  36. https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/science-domain/aerosol/. Accessed 18 Jan 2022

  37. https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/science-domain/l3-atmosphere/. Accessed 18 Jan 2022

  38. https://aeronet.gsfc.nasa.gov. Accessed 18 Jan 2022

  39. Giles DM, Sinyuk A, Sorokin MG, Schafer JS, Smirnov A, Slutsker I, Eck TF, Holben BN, Lewis JR, Campbell JR, Welton EJ, Korkin SV, Lyapustin AI (2019) Advancements in the aerosol robotic network (AERONET) version 3 database – automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos Meas Tech 12:169–209. https://doi.org/10.5194/amt-12-169-2019

    Article  Google Scholar 

  40. Martins VS, Lyapustin A, de Carvalho LA, Barbosa CCF, Novo EMLDM (2017) Validation of high-resolution MAIAC aerosol product over South America. J Geophys Res Atmos 122(14):7537–7559. https://doi.org/10.1002/2016JD026301

    Article  Google Scholar 

  41. Smirnov A, Holben BN, Slutsker I, Giles DM, McClain CR, Eck TF, Sakerin SM, Macke A, Croot P, Zibordi G, Quinn PK (2009) Maritime aerosol network as a component of aerosol robotic network. J Geophys Res Atmos 114:D06204. https://doi.org/10.1029/2008JD011257

    Article  Google Scholar 

  42. https://lpdaac.usgs.gov/products/mcd19a2v006/. Accessed 18 Jan 2022

  43. https://earthdata.nasa.gov/. Accessed 18 Jan 2022

  44. https://appliedsciences.nasa.gov/what-we-do/capacity-building/arset. Accessed 18 Jan 2022

  45. https://www.loc.gov/preservation/digital/formats/fdd/fdd000332.shtml. Accessed 18 Jan 2022

  46. Levy RC, Leptoukh G, Kahn RA, Zubko V, Gopalan A, Remer LA (2009) A critical look at deriving monthly aerosol optical depth from satellite data. IEEE Trans Geosci Remote Sens 47(8):2942–2956. https://doi.org/10.1109/TGRS.2009.2013842

    Article  Google Scholar 

  47. https://worldview.earthdata.nasa.gov/. Accessed 18 Jan 2022

  48. Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM (2004) Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos Environ 38:2495–2509. https://doi.org/10.1016/j.atmosenv.2004.01.039

    Article  Google Scholar 

  49. van Donkelaar A, Martin RV, Park RJ (2006) Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J Geophys Res 111(D21201). https://doi.org/10.1029/2005JD006996

  50. Hammer MS, van Donkelaar A, Li C, Lyapustin A, Sayer AM, Hsu N-C, Levy RC, Garay MJ, Kalashnikova OV, Kahn RA, Brauer M, Apte JS, Henze DK, Zhang L, Zhang Q, Ford B, Pierce JR, Martin RV (2020) Global estimates and long-term trends of fine particulate matter concentrations (1998–2018). Environ Sci Technol 54(13):7879–7890. https://doi.org/10.1021/acs.est.0c01764

    Article  Google Scholar 

  51. Hsu NC, Lee J, Sayer AM, Kim W, Bettenhausen C, Tsay SC (2019) VIIRS deep blue aerosol products over land: extending the EOS long-term aerosol data records. J Geophys Res Atmos 124(7):4026–4053. https://doi.org/10.1029/2018JD029688

    Article  Google Scholar 

  52. Sawyer V, Levy RC, Mattoo S, Cureton G, Shi Y, Remer LA (2020) Continuing the MODIS dark target aerosol time series with VIIRS. Remote Sens 12(2):308. https://doi.org/10.3390/rs12020308

    Article  Google Scholar 

  53. Lyapustin A, Go S, Korkin S, Wang Y, Torres O, Jethva H, Marshak A (2021) Retrievals of aerosol optical depth and spectral absorption from DSCOVR EPIC. Front Remote Sens 2:645794. https://doi.org/10.3389/frsen.2021.645794

    Article  Google Scholar 

  54. Gupta P, Levy RC, Mattoo S, Remer LA, Holz RE, Heidinger AK (2019) Retrieval of aerosols over Asia from the advanced Himawari imager: expansion of temporal coverage of the global dark target aerosol product. Atmos Meas Tech 12:6557–6577. https://doi.org/10.5194/amt-12-6557-2019

    Article  Google Scholar 

Download references

Acknowledgments

This work was a “labor of love” which included participation by the entire Dark Target aerosol retrieval team. As co-authors, L. Remer, Y. Shi, and R. Kleidman took the lead for text and figures while helping to consolidate contributions by group members Pawan Gupta, Mijin Kim, Yaping Zhou, Virginia Sawyer and Santiago Gassó. Without Shana Mattoo, our group’s lead-programmer for 40 years, we would have no aerosol product. And without the late Yoram Kaufman, we may not have had a roadmap for creating such a product. This work was funded by NASA, currently under Senior Review (Algorithm Maintenance) support.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Robert C. Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Levy, R.C., Remer, L.A., Shi, Y., Kleidman, R.G., The Dark Target Team. (2023). Characterizing Aerosol from Space with the MODerate-resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua Satellites. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_60

Download citation

Publish with us

Policies and ethics