Skip to main content

Regional and Urban Air Quality in the Americas

  • Reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

The Americas encompass a broad range of geographical and climatic environments that affect air quality in addition to diverse socioeconomic and political factors. In North America, countries have undergone similar urban migrations and economic growth while curbing overall emissions and setting similar goals for air quality standards. This has led to dramatic air quality improvements over the last 40 years, but progress has slowed in the last decade as more stringent standards have been adopted and additional incremental progress in air quality has become difficult to achieve. In Central and South America and the Caribbean, information on air quality conditions is more uneven with countries acting more independently. Thus, countries of the Americas still face diverse air quality challenges that span from urban to rural settings. Those challenges are driven by unique combinations of emissions sources along with meteorological and geographical conditions.

The information presented in this chapter has been organized according to the different points of view each region and country in the Americas have adopted to improve their air quality. In some cases, there are joint efforts, and in others, the actions of each country are mentioned to improve the air that surrounds it, according to its resources and priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. https://www.epa.gov/clean-air-act-overview

  2. https://www.canada.ca/en/environment-climate-change/campaigns/50-years-environmental-action/eccc-timeline/pollution-prevention.html

  3. DuMars CT, Rio Del Beltran SM (1988) A survey of the air and water quality Laws of Mexico, 28 Nat. Resources J 787. https://www.jstor.org/stable/24883517

  4. World Bank Data Catalog, Population Estimates and Projections, version 7. https://datacatalog.worldbank.org/search/dataset/0037655/Population-Estimates-and-Projections

  5. Henríquez C, Qüense J, Villarroel C, Mallea C (2019) Urban climates in Latin America, 281–308. https://doi.org/10.1007/978-3-319-97013-4_11

  6. Piña WA (2014) Urbanization: concepts, trends and analysis in three Latin American cities. Miscellanea Geographica 18:5–15. https://doi.org/10.2478/mgrsd-2014-0020

    Article  Google Scholar 

  7. Sanchez-Rodriguez R, Bonilla A (2007) Urbanization, global environmental change, and sustainable development in Latin America. IAI, INE, UNEP, São José dos Campos 9

    Google Scholar 

  8. Socioeconomic Data and Applications Center (sedac). https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11

  9. Beck H, Zimmermann N, McVicar T et al (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214. https://doi.org/10.1038/sdata.2018.214

    Article  Google Scholar 

  10. World Health Organization (2022) WHO ambient air quality database 2022 update, Status report. https://www.who.int/publications/m/item/who-air-quality-database-2022

  11. Adamowicz V, Dales R, Hale BA, Hrudey SE, Krupnick A, Lippman M, McConnell J, Renzi P (2004) Report of an expert panel to review the socio-economic models and related components supporting the development of Canada-wide standards (CWS) for particulate matter (PM) and ozone to the Royal Society of Canada. https://doi.org/10.1080/10937400490253238

  12. https://www.epa.gov/environmental-economics/benefits-and-costs-clean-air-act-1970-1990-1997

  13. https://www.epa.gov/environmental-economics/benefits-and-costs-clean-air-act-1990-2010-epa-report-congress-1999

  14. Control of Photochemical Oxidants – Technical Basis and Implications of Recent Findings (1975) EPA-450/2-75-005. Available at https://nepis.epa.gov/

  15. Decreto-112, Establece Norma Primaria de Calidad de Aire Para Ozono (O3), 6 March 2003, Ministerio Secreataría General de la Presidencia – Ley Chile – Biblioteca del Congreso Nacional (bcn.cl). Available at https://www.bcn.cl/leychile/navegar?idNorma=208198 and Decreto-12, Establece Norma Primaria de Calidad Ambiental Para Material Particulado Fino Respirable MP 2,5, 9 May 2011, Ministerio del Medio Ambiente – Ley Chile – Biblioteca del Congreso Nacional (bcn.cl), available at https://www.bcn.cl/leychile/navegar?idNorma=1025202

  16. de Ambiente y Desarrollo Sostenible, M. Resolución 2254 de 01 Nov 2017. Por la Cual se Adopta la Norma de Calidad de Aire Ambiente y se Dictan Otras Disposiciones; Technical Report; República de Colombia: Bogotá, Colombia, 2017. Available at http://www.ideam.gov.co/documents/51310/527391/2.+Resoluci%C3%B3n+2254+de+2017+-+Niveles+Calidad+del+Aire..pdf/c22a285e-058e-42b6-aa88-2745fafad39f

  17. Air Quality Standards. Available at https://cetesb.sp.gov.br/ar/padroes-de-qualidade-do-ar/; based on State Decree No. 59113 of 23 April 2013. Available at https://cetesb.sp.gov.br/qualidade-ar/wp-content/uploads/sites/28/2013/12/decreto-59113de230413.pdf

  18. Air Quality Standards. Available at https://www.buenosaires.gob.ar/agenciaambiental/control-ambiental/laboratorio-ambiental/calidad-de-aire; based on Law No. 1356 of the City of Buenos Aires, available at https://www.buenosaires.gob.ar/sites/gcaba/files/documents/ley_1356.pdf

  19. Parrish DD, Singh HB, Molina L, Madronich S (2011) Air quality progress in North American megacities: a review. Atmos Environ 45:7015–7025. https://doi.org/10.1016/j.atmosenv.2011.09.039

    Article  Google Scholar 

  20. Parrish DD, Xu J, Croes B et al (2016) Air quality improvement in Los Angeles—perspectives for developing cities. Front Environ Sci Eng 10:11. https://doi.org/10.1007/s11783-016-0859-5

    Article  Google Scholar 

  21. Molina LT, Velasco E, Retama A, Zavala M (2019) Experience from integrated air quality Management in the Mexico City Metropolitan Area and Singapore. Atmos 10(9):512. https://doi.org/10.3390/atmos10090512

    Article  Google Scholar 

  22. https://www.epa.gov/outdoor-air-quality-data

  23. https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b

  24. http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBhnmI=%27&opcion=Zg==

  25. Toro C, Foley K, Simon H, Henderson B, Baker KR, Eyth A, Timin B, Appel W, Luecken D, Beardsley M, Sonntag D, Possiel N, Roberts S (2021) Evaluation of 15 years of modeled atmospheric oxidized nitrogen compounds across the contiguous United States. Elementa Sci Anthropocene 9(1). https://doi.org/10.1525/elementa.2020.00158

  26. McDonald BC et al (2018) Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science. https://doi.org/10.1126/science.aaq0524

  27. Pusede SE, Cohen RC (2012) On the observed response of ozone to Nox and VOC reactivity reductions in San Joaquin Valley California 1995–present. Atmos Chem Phys 12:8323–8339. https://doi.org/10.5194/acp-12-8323-2012

    Article  Google Scholar 

  28. Jaffe DA, Cooper OR, Fiore AM, Henderson BH, Tonnesen GS, Russell AG, Henze DK, Langford AO, Lin M, Moore T (2018) Scientific assessment of background ozone over the U.S.: implications for air quality management. Elementa Sci Anthropocene 6:56. https://doi.org/10.1525/elementa.309

    Article  Google Scholar 

  29. Carabali G, Villanueva-Macias J, Ladino LA et al (2021) Characterization of aerosol particles during a high pollution episode over Mexico City. Sci Rep 11:22533. https://doi.org/10.1038/s41598-021-01873-4

    Article  Google Scholar 

  30. Schwela DH, Haq G (2020) Strengths and weaknesses of the WHO urban air pollutant database. Aerosol Air Qual Res 20:1026–1037. https://doi.org/10.4209/aaqr.2019.11.0605

    Article  Google Scholar 

  31. Castesana P, Diaz Resquin M, Huneeus N, Puliafito E, Darras S, Gómez D, Granier C, Osses Alvarado M, Rojas N, Dawidowski L (2022) PAPILA dataset: a regional emission inventory of reactive gases for South America based on the combination of local and global information. Earth Syst Sci Data 14:271–293. https://doi.org/10.5194/essd-14-271-2022

    Article  Google Scholar 

  32. Constantin J, Londonio A, Bajano H, Smichowski P, Gómez DR (2021) Plasma-based technique applied to the determination of 21 elements in ten size fractions of atmospheric aerosols. Microchem J 160(Part B). https://doi.org/10.1016/j.microc.2020.105736

  33. Diaz Resquin M, Santágata D, Gallardo L, Gómez D, Rössler C, Dawidowski L (2018) Local and remote black carbon sources in the Metropolitan Area of Buenos Aires. Atmos Environ 182:105–114., ISSN 1352-2310. https://doi.org/10.1016/j.atmosenv.2018.03.018

    Article  Google Scholar 

  34. Abrutsky R, Ibarra-Espinosa S, Matus P, Romero-Lankao P, Pereyra V, Dawidowski L (2013) Atmospheric pollution and mortality. A comparative study between two Latin American cities: Buenos Aires (Argentina) and Santiago (Chile). Int Environ Health 6:363–380. https://doi.org/10.1504/IJENVH.2013.056977

    Article  Google Scholar 

  35. Ferrero F, Abrutzky R, Ossorio MF, Torres F (2019) Effects of contamination and climate in the Pediatric Emergency Department visits for acute respiratory infection in the City of Buenos Aires. Arch Argent Pediatr 117(6):368–374. https://doi.org/10.5546/aap.2019.eng.368. English, Spanish. PMID: 31758878

    Article  Google Scholar 

  36. Diaz Resquin M, Lichtig P, Alessandrello D, De Oto M, Gómez D, Rössler C, Castesana P, Dawidowski L (2023) A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina. Earth System Sci Data 15:189–209. https://essd.copernicus.org/articles/15/189/2023/. https://doi.org/10.5194/essd-15-189-2023

    Article  Google Scholar 

  37. Bogo H, Negri M, San Román E (1999) Continuous measurement of gaseous pollutants in Buenos Aires city. Atmos Environ 33(16):2587–2598., ISSN 1352-2310. https://doi.org/10.1016/S1352-2310(98)00270-2

    Article  Google Scholar 

  38. Colman Lerner J, Morales A, Aguilar M, Giulni D, Orte M, Ditondo J, Dodero V, Massolo L, Sanchez E, Matamoros N, Porta A (2014) The effect of air pollution on children’s health: a comparative study between La Plata and Bahía Blanca, Buenos Aires Province, Argentina. WIT Trans Ecol Environ 181:659–670. ISBN = 9781845647629. https://doi.org/10.2495/EID140561

    Article  Google Scholar 

  39. García ME, Della Ceca LS, Micheletti MI, Piacentini RD, Ordano M, Reyes NJ, Buedo S, González JA (2018) Satellite and ground atmospheric particulate matter detection over Tucumán city, Argentina, space-time distribution, climatic and seasonal variability. AIMS Environ Sci 5(3):173–194. https://doi.org/10.3934/environsci.2018.3.173

    Article  Google Scholar 

  40. IBGE – Instituto Brasileiro de Geografia e Estatística (Brazilian Institute of Geography and Statistics) (2012) Censo Brasileiro de 2010, IBGE, Rio de Janeiro. https://www.ibge.gov.br/

  41. De Simoni W et al (2021) O Estado da Qualidade do Ar no Brasil (The status of air quality in Brazil), Working paper, WRI Brasil, São Paulo. https://www.wribrasil.org.br/publicacoes/o-estado-da-qualidade-do-ar-no-brasil

  42. Gioda A, Tonietto GB, de Leon AP (2019) Exposure to the use of firewood for cooking in Brazil and its relation with the health problems of the population, Ciênc. Saúde Coletiva 24:3079–3088

    Article  Google Scholar 

  43. Saldiva PHN, Lichtenfels AJFC, Paiva PSO, Barone IA, Martins MA, Massad E, Pereira JCR, Xavier VP, Singer JM, B¨ohm, G.M (1994) Association between air pollution and mortality due to respiratory diseases in children in São Paulo: a preliminary report. Environ Res 65(2):218–225. Elsevier BV. https://doi.org/10.1006/ENRS.1994.1033

    Article  Google Scholar 

  44. UNEP – United Nations Environment Programme Transport Unit: Patricia Kim and Elisa Dumitrescu (2010) Share the Road: Investment in Walking and Cycling Road Infrastructure, Report, ISBN: 978–92-807-3125-5

    Google Scholar 

  45. CETESB – COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (2022) Emissões Veiculares no Estado de São Paulo em 2021, CETESB Série Relatórios, São Paulo, Table 28. https://cetesb.sp.gov.br/veicular/wp-content/uploads/sites/6/2022/03/Relatorio-Emissoes-Veiculares-2020.pdf

  46. Brazilian Energy Balance 2022: Year 2021 (2022) Empresa de Pesquisa Energética – Rio de Janeiro: EPE. https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2022

  47. MMA – Ministério do Meio Ambiente (2014) 2° Inventário Nacional de Emissões Atmosféricas por veículos automotores rodoviários. https://iema-site-staging.s3.amazonaws.com/2014-05-27inventario2013.pdf

  48. ANTP – Associação Nacional de Transportes Público (2020) Sistema de Informações da Mobilidade Urbana da Associação Nacional de Transportes Público - SIMOB/ANTP, Relatório geral 2018. http://files.antp.org.br/simob/sistema-de-informacoes-da-mobilidade%2D%2Dsimob%2D%2D2018.pdf

  49. EPL – Empresa de Planejamento e Logística S.A (2016) Plano Nacional de Logística 2025 – PNL: Transporte inter-regional de carga no Brasil – Panorama 2015, EPL. https://portal.epl.gov.br/transporte-inter-regional-de-carga-no-brasil-panorama-201

  50. SEEG – Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa (2022) National database SEEG. http://seeg.eco.br

  51. de Azevedo T, Costa Junior C, Brandão Junior A et al (2018) SEEG initiative estimates of Brazilian greenhouse gas emissions from 1970 to 2015. Sci Data 5:180045. https://doi.org/10.1038/sdata.2018.45

    Article  Google Scholar 

  52. Brasil (1989) Resolução CONAMA n° 5, de 15 de junho de 1989, Estabelece os limites máximos de emissão de poluentes atmosféricos para fontes fixas. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=81

  53. Porto Silva Cavalcanti PM (2010) Modelo de Gestão da Qualidade do Ar – Abordagem Preventiva e Corretiva, PhD thesis, Pós-graduação em Planejamento Energético – PPE-COPPE, Universidade Federal do Rio de Janeiro. http://antigo.ppe.ufrj.br/ppe/production/tesis/paulina_maria.pdf

  54. Kawashima AB, Martins LD, Rafee SAA et al (2020) Development of a spatialized atmospheric emission inventory for the main industrial sources in Brazil. Environ Sci Pollut Res 27:35941–35951

    Article  Google Scholar 

  55. Janssens-Maenhout G, Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F et al (2019) EDGAR v4. 3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth System Sci Data 11(3):959–1002. https://doi.org/10.5194/essd-11-959-2019

    Article  Google Scholar 

  56. Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, van Aardenne JA et al (2018) Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4. 3.2. Earth Syst Sci Data 10(4):1987–2013. https://doi.org/10.5194/essd-10-1987-2018

    Article  Google Scholar 

  57. Brasil (2018) Resolução CONAMA n° 491, de 19 de novembro de 2018, Dispõe sobre padrões de qualidade do ar. Diário Oficial da união. Publicado em: 21/11/2018, Edição: 223, Seção: 1, Página: 155. Ministério do Meio Ambiente/Conselho Nacional do Meio Ambiente

    Google Scholar 

  58. CETESB (2022) Qualidade do ar no estado de São Paulo 2021, CETESB, São Paulo, ISSN: 0103-4103. https://cetesb.sp.gov.br/ar/publicacoes-relatorios

  59. Artaxo P, Fernandes ET, Martins JV, Yamasoe MA, Hobbs PV, Maenhaut W, Longo KM, Castanho A (1998) Large-scale aerosol source apportionment in Amazonia. J Geophys Res-Atmos 103:31837–31847. https://doi.org/10.1029/98JD02346

    Article  Google Scholar 

  60. Freitas S, Longo K, Dias MS (2005) Monitoring the transport of biomass burning emissions in South America. Environ Fluid Mech 5:135–167. https://doi.org/10.1007/s10652-005-0243-7

    Article  Google Scholar 

  61. Hoelzemann JJ, Longo KM, Fonseca RM, do Rosário NME, Elbern H, Freitas SR, Pires C (2009) Regional representativity of AERONET observation sites during the biomass burning season in South America determined by correlation studies with MODIS Aerosol Optical Depth. J Geophys Res 114:D13301. https://doi.org/10.1029/2008JD010369

    Article  Google Scholar 

  62. Rosário NÉD, Sena ET, Yamasoe MA (2022) South American 2020 regional smoke plume: intercomparison with previous years, impact on solar radiation, and the role of Pantanal biomass burning season. Atmos Chem Phys 22:15021–15033. https://doi.org/10.5194/acp-22-15021-2022

    Article  Google Scholar 

  63. Duarte EDSF, Franke P, Lange AC, Friese E, da Silva Lopes FJ, da Silva JJ, dos Reis JS, Landulfo E, Cláudio Moises Santos e Silva, Elbern H, Hoelzemann JJ (2021) Evaluation of atmospheric aerosols in the metropolitan area of São Paulo simulated by the regional EURAD-IM model on high-resolution. Atmos Pollut Res 12(2):451–469., ISSN 1309-1042. https://doi.org/10.1016/j.apr.2020.12.006

    Article  Google Scholar 

  64. Perez-Martinez P, Andrade MF, Miranda RM (2015) Traffic-related air quality trends in São Paulo, Brazil. J Geophys Res Atmos 120(12):6290e6304. https://doi.org/10.1002/2014JD022812

    Article  Google Scholar 

  65. de Almeida Albuquerque TT, Andrade MF, Ynoue RY, Moreira DM, Andreão WL, Dos Santos FS et al (2018) WRF-SMOKECMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data. Environ Sci Pollut Res Int 25(36):36555–36569

    Article  Google Scholar 

  66. Andrade MF, Kumar P, Freitas ED, Ynoue RY, Martins J, Martins LD, Nogueira T, Perez-Martinez P, Miranda RM, Albuquerque TT, Gonçalves FLT, Oyama B, Zhang Y (2017) Air quality in the megacity of São Paulo: evolution over the last 30 years and future perspectives. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2017.03.051

  67. Judd LM, Al-Saadi JA, Janz SJ, Kowalewski MG, Pierce RB, Szykman JJ, Valin LC, Swap R, Cede A, Mueller M, Tiefengraber M, Abuhassan N, Williams D (2019) Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data. Atmos Meas Tech 12:6091–6111. https://doi.org/10.5194/amt-12-6091-2019

    Article  Google Scholar 

  68. Andrade MF, Ynoue RY, Freitas ED, Todesco E, Vara Vela A, Ibarra S, Martins LD, Martins JA, Carvalho VSB (2015) Air quality forecasting system for southeastern Brazil. Front Environ Sci. https://doi.org/10.3389/fenvs.2015.00009

  69. Fearnside PM (1990) Deforestation in Brazilian Amazonia. In: Woodwellm G (ed) The Earth in transition: patterns and processes of biotic impoverishment, Cambridge University Press, p 211

    Google Scholar 

  70. Malhi Y et al (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172

    Article  Google Scholar 

  71. Van Marle MJE et al (2017) Fire and deforestation dynamics in Amazonia (1973–2014). Glob Biogeochem Cycles 31:24–38

    Article  Google Scholar 

  72. Libonati R, Pereira JMC, Da Camara CC et al (2021) Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon. Sci Rep 11:4400. https://doi.org/10.1038/s41598-021-82158-8

    Article  Google Scholar 

  73. Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv Biol 19:680–688. https://doi.org/10.1111/j.1523-1739.2005.00697.x

    Article  Google Scholar 

  74. Barlow J, Berenguer E, Carmenta R, França F (2020) Clarifying Amazonia’s burning crisis. Glob Chang Biol 26:319–321

    Article  Google Scholar 

  75. Libonati R et al (2020) Rescue Brazil’s burning Pantanal wetlands. Nature 588:217–219. https://doi.org/10.1038/d41586-020-03464-1

    Article  Google Scholar 

  76. Staal A et al (2020) Feedback between drought and deforestation in the Amazon. Environ Res Lett 15:044024

    Article  Google Scholar 

  77. Libonati R, Geirinhas JL, Silva PS, Monteiro dos Santos D, Rodrigues JA, Russo A, Peres LF, Narcizo L, Gomes MER, Rodrigues AP, DaCamara CC, Pereira JMC, Trigo RM (2022) Drought–heatwave nexus in Brazil and related impacts on health and fires: a comprehensive review. Ann N Y Acad Sci 1517:44–62. https://doi.org/10.1111/nyas.14887

    Article  Google Scholar 

  78. Prins EM, Menzel WP (1992) Geostationary satellite detection of biomass burning in South America. Int J Remote Sens 13:2783–2799. https://doi.org/10.1080/01431169208904081

    Article  Google Scholar 

  79. Ferreira MDP, Coelho AB (2015) Desmatamento Recente nos Estados da Amazônia Legal: uma análise da contribuição dos preços agrícolas e das políticas governamentais. Rev Econ Sociol Rural 53(1). https://doi.org/10.1590/1234-56781806-9479005301005

  80. Libonati R et al (2022) Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal. Environ Res Lett 17:015005. https://doi.org/10.1088/1748-9326/ac462e

    Article  Google Scholar 

  81. de Araujo JM, Évora do Rosário NM (2020) Atmospheric pollution associated with particulate matter in the State of São Paulo: an analysis from satellite data. Brazilian J Environ Sci 55(1):32–47. https://doi.org/10.5327/Z2176-947820200552

    Article  Google Scholar 

  82. HRW – Human Rights Watch, IPAM -Instituto de Pesquisa Ambiental da Amazônia, IEPS – Instituto de Estudos para Políticas de Saúde (2020) O ar é insuportável: Os impactos das queimadas associadas ao desmatamento da Amazônia brasileira na saúde. https://ipam.org.br/wp-content/uploads/2020/08/brazil0820pt_web.pdf

  83. Saide PE, Mena-Carrasco M, Tolvett S, Hernandez P, Carmichael GR (2016) Air quality forecasting for winter-time PM2.5 episodes occurring in multiple cities in central and southern Chile. J Geophys Res Atmos 121(1):558–575. https://doi.org/10.1002/2015JD023949

    Article  Google Scholar 

  84. Lapere R, Menut L, Mailler S, Huneeus N (2020) Soccer games and record breaking PM2.5 pollution events in Santiago, Chile. Atmos Chem Phys 20:4681–4694

    Article  Google Scholar 

  85. Solís R, Richard Toro A, Gomez L, Vélez-Pereira AM, López M, Fleming ZL, Fierro N, Manuel Leiva G (2022) Long-term airborne particle pollution assessment in the city of Coyhaique, Patagonia, Chile. Urban Clim 43:101144. https://doi.org/10.1016/j.uclim.2022.101144

    Article  Google Scholar 

  86. Huneeus N, Urquiza A, Gayó E, Osses M, Arriagada R, Valdés M, Álamos N, Amigo C, Arrieta D, Basoa K, Billi M, Blanco G, Boisier JP, Calvo R, Casielles I, Castro M, Chahuán J, Christie D, Cordero L, Correa V, Cortés J, Fleming Z, Gajardo N, Gallardo L, Gómez L, Insunza X, Iriarte P, Labraña J, Lambert F, Muñoz A, Opazo M, O’Ryan R, Osses A, Plass M, Rivas M, Salinas S, Santander S, Seguel R, Smith P, Tolvett S (2020) El aire que respiramos: pasado, presente y futuro – Contaminación atmosférica por MP2,5 en el centro y sur de Chile. Centro de Ciencia del Clima y la Resiliencia (CR)2. 102 pp. Available at www.cr2.cl/contaminacion/

    Google Scholar 

  87. Mazzeo A, Huneeus N, Ordoñez C, Orfanoz-Cheuquelaf A, Menut L, Mailler S, Valari M, Denier van der Gon H, Gallardo L, Muñoz R, Donoso R, Galleguillos M, Osses M, Tolvett S (2018) Impact of residential combustion and transport emissions on air pollution in Santiago during winter. Atmos Environ 190(June):195–208. https://doi.org/10.1016/j.atmosenv.2018.06.043

    Article  Google Scholar 

  88. Seguel RJ, Gallardo L, Fleming ZL et al (2020) Two decades of ozone standard exceedances in Santiago de Chile. Air Qual Atmos Health 13:593–605. https://doi.org/10.1007/s11869-020-00822-w

    Article  Google Scholar 

  89. Menares C, Gallardo L, Kanakidou M, Seguel R, Huneeus N (2020) Increasing trends (2001–2018) in photochemical activity and secondary aerosols in Santiago, Chile. Tellus Ser B Chem Phys Meteorol 72(1):1–18. https://doi.org/10.1080/16000889.2020.1821512

    Article  Google Scholar 

  90. Álamos N, Huneeus N, Opazo M, Osses M, Puja S, Pantoja N, Denier van der Gon H, Schueftan A, Reyes R, Calvo R (2022) High-resolution inventory of atmospheric emissions from transport, industrial, energy, mining and residential activities in Chile. Earth Syst Sci Data 14:361–379. https://doi.org/10.5194/essd-14-361-2022

    Article  Google Scholar 

  91. Schueftan A, Sommerhoff J, González AD (2016) Firewood demand and energy policy in South-Central Chile. Energy Sustain Dev 33:26–35. https://doi.org/10.1016/j.esd.2016.04.004

    Article  Google Scholar 

  92. Schueftan A, González AD (2013) Reduction of firewood consumption by households in south-Central Chile associated with energy efficiency programs. Energy Policy 63:823–832. https://doi.org/10.1016/j.enpol.2013.08.097

    Article  Google Scholar 

  93. Reyes R, Nelson H, Navarro F, Retes C (2015) The firewood dilemma: human health in a broader context of well-being in Chile. Energy Sustain Dev 28:75–87. https://doi.org/10.1016/j.esd.2015.07.005

    Article  Google Scholar 

  94. MMA (Ministerio del Medio Ambiente) (2012) Planes de Descontaminatcion Atmosférica Estrategia 2014–2018, Santiago, Chile, p. 18. Downloaded from https://mma.gob.cl/planes-de-descontaminacion-atmosferica-estrategia-2014-2018/

  95. Ostro BD, Eskeland GS, Sanchez JM, Feyzioglu T (1999) Air pollution and health effects: a study of medical visits among children in Santiago, Chile. Environ Health Perspect 107(1):69–73. https://doi.org/10.1289/ehp.9910769

    Article  Google Scholar 

  96. Cakmak S, Dales RE, Vidal CB (2007) Air pollution and mortality in Chile: susceptibility among the elderly. Environ Health Perspect 115(4):524–527. https://doi.org/10.1289/ehp.9567

    Article  Google Scholar 

  97. Cakmak S, Dales RE, Angelica Rubio M, Blanco Vidal C (2011) The risk of dying on days of higher air pollution among the socially disadvantaged elderly. Environ Res 111(3):388–393. https://doi.org/10.1016/j.envres.2011.01.003

    Article  Google Scholar 

  98. Prieto-Parra L, Yohannessen K, Brea C, Vidal D, Ubilla CA, Ruiz-Rudolph P (2017) Air pollution, PM2.5composition, source factors, and respiratory symptoms in asthmatic and nonasthmatic children in Santiago, Chile. Environ Int 101:190–200. https://doi.org/10.1016/j.envint.2017.01.021

    Article  Google Scholar 

  99. Ilabaca M, Olaeta I, Campos E, Villaire J, Tellez-Rojo MM, Romieu I (1999) Association between levels of fine particulate and emergency visits for pneumonia and other respiratory illnesses among children in Santiago, Chile. J Air Waste Manage Assoc 49(9):154–163. https://doi.org/10.1080/10473289.1999.10463879

    Article  Google Scholar 

  100. Russ T, Murianni L, Icaza G, Slachevsky A, Starr J (2016) Geographical variation in dementia mortality in Italy, New Zealand, and Chile: the impact of latitude, vitamin D, and air pollution. Dement Geriatr Cogn Disord 42(1–2):31–41. https://doi.org/10.1159/000447449

    Article  Google Scholar 

  101. Belalcazar LC, Dávila P, Rojas A, … Rojas N (2015) Bus rapid transit systems: diesel or electricity? A case study in Bogota, Colombia. In: Proceedings of the air and waste management association’s annual conference and exhibition, AWMA

    Google Scholar 

  102. Quiroz-Arcentales L, Hernández-Flórez LJ, Calderón CAA et al (2013) Enfermedad y síntomas respiratorios en niños de cinco municipios carboníferos del Cesar, Colombia. Revista de Salud Pública 15:66–79

    Google Scholar 

  103. Ramírez O, Sánchez de la Campa AM, Amato F et al (2018) Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ Pollut 233:142–155. https://doi.org/10.1016/j.envpol.2017.10.045

    Article  Google Scholar 

  104. González CM, Gómez CD, Rojas NY et al (2017) Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city. Atmos Environ 152:279–289. https://doi.org/10.1016/j.atmosenv.2016.12.048

    Article  Google Scholar 

  105. Mateus-fontecha L, Vargas-burbano A, Jimenez R, Rojas NY (2022) Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions. Atmos Chem Phys 22:8473–8495. https://doi.org/10.5194/acp-22-8473-2022

    Article  Google Scholar 

  106. Ballesteros-González K, Sullivan AP, Morales-Betancourt R (2020) Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Sci Total Environ 739:139755. https://doi.org/10.1016/j.scitotenv.2020.139755. Epub 2020 Jun 5. PMID: 32758934

  107. Hernandez AJ, Morales-Rincon LA, Wu D et al (2019) Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmos Environ 205:1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051

    Article  Google Scholar 

  108. Mendez-Espinosa JF, Belalcazar LC, Morales Betancourt R (2019) Regional air quality impact of northern South America biomass burning emissions. Atmos Environ 203:131–140. https://doi.org/10.1016/j.atmosenv.2019.01.042

    Article  Google Scholar 

  109. Rincón-Riveros JM, Rincón-Caro MA, Sullivan AP et al (2020) Long-term brown carbon and smoke tracer observations in Bogotá, Colombia: association with medium-range transport of biomass burning plumes. Atmos Chem Phys 20:7459–7472. https://doi.org/10.5194/acp-20-7459-2020

    Article  Google Scholar 

  110. Mendez-Espinosa JF, Rojas NY, Vargas J et al (2020) Air quality variations in Northern South America during the COVID-19 lockdown. Sci Total Environ 749:141621. https://doi.org/10.1016/j.scitotenv.2020.141621

    Article  Google Scholar 

  111. Sokhi RS, Singh V, Querol X et al (2021) A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environ Int J 157:1–25. https://doi.org/10.1016/j.envint.2021.106818

    Article  Google Scholar 

  112. Seguel RJ, Gallardo L, Osses M et al (2022) Photochemical sensitivity to emissions and local meteorology in Bogotá, Santiago, and São Paulo: an analysis of the initial COVID-19 lockdowns. Elementa: Sci Anthropocene 10:44. https://doi.org/10.1525/elementa.2021.00044

    Article  Google Scholar 

  113. Sokhi RS, Singh V, Querol X et al (2021) A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Environment International journal 157:1–25. https://doi.org/10.1016/j.envint.2021.106818

    Article  Google Scholar 

  114. Seguel RJ, Gallardo L, Osses M et al (2022) Photochemical sensitivity to emissions and local meteorology in Bogotá, Santiago, and São Paulo: an analysis of the initial COVID-19 lockdowns. Elementa: Science of the Anthropocene 10:44. https://doi.org/10.1525/elementa.2021.00044

    Article  Google Scholar 

  115. Stauffer RM, Thompson AM (2015) Bay breeze climatology at two sites along the Chesapeake bay from 1986–2010: implications for surface ozone. J Atmos Chem 72:355–372. https://doi.org/10.1007/s10874-013-9260-y

    Article  Google Scholar 

  116. Geddes JA, Wang B, Li D (2021) Ozone and nitrogen dioxide pollution in a coastal urban environment: the role of sea breezes, and implications of their representation for remote sensing of local air quality. J Geophys Res Atmos 126:e2021JD035314. https://doi.org/10.1029/2021JD035314

    Article  Google Scholar 

  117. Li G, Bei N, Zavala M, Molina LT (2014) Ozone formation along the California–Mexican border region during Cal–Mex 2010 field campaign. Atmos Environ 88:370–389. https://doi.org/10.1016/j.atmosenv.2013.11.067

    Article  Google Scholar 

  118. Li W, Wang Y, Bernier C, Estes M (2020) Identification of sea breeze recirculation and its effects on ozone in Houston, TX, during DISCOVER-AQ 2013. J Geophys Res Atmos 125:e2020JD033165. https://doi.org/10.1029/2020JD033165

    Article  Google Scholar 

  119. Cleary PA, Dickens A, McIlquham M, Sanchez M, Geib K, Hedberg C, Hupy J, Watson MW, Fuoco M, Olson ER, Pierce RB, Stanier C, Long R, Valin L, Conley S, Smith M (2022) Impacts of lake breeze meteorology on ozone gradient observations along Lake Michigan shorelines in Wisconsin. Atmos Environ 269. https://doi.org/10.1016/j.atmosenv.2021.118834

  120. Hastie DR, Narayan J, Schiller C, Niki H, Shepson PB, Sills DML, Taylor PA, Moroz WJ, Drummond JW, Reid N, Taylor R, Roussel PB, Melo OT (1999) Observational evidence for the impact of the lake breeze circulation on ozone concentrations in Southern Ontario. Atmos Environ 33:323–335. https://doi.org/10.1016/S1352-2310(98)00199-X

    Article  Google Scholar 

  121. Blaylock BK, Horel JD, Crosman ET (2017) Impact of Lake breezes on summer ozone concentrations in the Salt Lake Valley. J Appl Meteorol Climatol 56:353–370. https://doi.org/10.1175/JAMC-D-16-0216.1

    Article  Google Scholar 

  122. Vizuete W, Nielsen-Gammon J, Dickey J, Couzo E, Blanchard C, Breitenbach P, Rasool QZ, Byun D (2022) Meteorological based parameters and ozone exceedances in Houston and other cities in Texas. JWAMA 72(9):969–984. https://doi.org/10.1080/10962247.2022.2064004

    Article  Google Scholar 

  123. Reddy PJ, Pfister GG (2016) Meteorological factors contributing to the interannual variability of midsummer surface ozone in Colorado, Utah, and other western U.S. states. J Geophys Res Atmos 121:2434–2456. https://doi.org/10.1002/2015JD023840

    Article  Google Scholar 

  124. Molina LT et al (2009) Air quality, weather and climate in Mexico City, WMO Bulletin n° : Vol 58 (1) – 2009. https://public.wmo.int/en/bulletin/air-quality-weather-and-climate-mexico-city

  125. Lin M, Fiore A, Horowitz L et al (2015) Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions. Nat Commun 6:7105. https://doi.org/10.1038/ncomms8105

    Article  Google Scholar 

  126. Dempsey F (2014) Observations of stratospheric O3 intrusions in air quality monitoring data in Ontario, Canada. Atmos Environ 98:111–122. https://doi.org/10.1016/j.atmosenv.2014.08.024

    Article  Google Scholar 

  127. Ahmadov R, McKeen S, Trainer M, Banta R, Brewer A, Brown S, Edwards PM, de Gouw JA, Frost GJ, Gilman J, Helmig D, Johnson B, Karion A, Koss A, Langford A, Lerner B, Olson J, Oltmans S, Peischl J, Pétron G, Pichugina Y, Roberts JM, Ryerson T, Schnell R, Senff C, Sweeney C, Thompson C, Veres PR, Warneke C, Wild R, Williams EJ, Yuan B, Zamora R (2015) Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US. Atmos Chem Phys 15:411–429. https://doi.org/10.5194/acp-15-411-2015

    Article  Google Scholar 

  128. Hallar AG, Brown SS, Crosman E, Barsanti KC, Cappa CD, Faloona I, Fast J, Holmes HA, Horel J, Lin J, Middlebrook A, Mitchell L, Murphy J, Womack CC, Aneja V, Baasandorj M, Bahreini R, Banta R, Bray C, Brewer A, Caulton D, de Gouw J, De Wekker SF, Farmer DK, Gaston CJ, Hoch S, Hopkins F, Karle NN, Kelly JT, Kelly K, Lareau N, Lu K, Mauldin RL III, Mallia DV, Martin R, Mendoza DL, Oldroyd HJ, Pichugina Y, Pratt KA, Saide PE, Silva PJ, Simpson W, Stephens BB, Stutz J, Sullivan A (2021) Coupled air quality and boundary-layer meteorology in Western U.S. basins during winter: design and rationale for a comprehensive study. Bull Amer Met Soc 102(10):E2012–E2033. https://doi.org/10.1175/BAMS-D-20-0017.1

    Article  Google Scholar 

  129. https://www.nrcan.gc.ca/sites/nrcan/files/energy/energy_fact/2021-2022/PDF/section6_Energy-factbook_december9_en_accessible.pdf

  130. Brook JR, Cober SG, Freemark M, Harner T, Li SM, Liggio J, Makar P, Pauli B (2019) Advances in science and applications of air pollution monitoring: a case study on oil sands monitoring targeting ecosystem protection. J Air Waste Manage Assoc 69(6):661–709. https://doi.org/10.1080/10962247.2019.1607689

    Article  Google Scholar 

  131. https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/files/pdf/2014/14-0173EnergyMarketFacts_e.pdf

  132. https://natural-resources.canada.ca/sites/nrcan/files/energy/energy_fact/2021-2022/PDF/section6_Energy-factbook_december9_en_accessible.pdf

  133. https://www.eia.gov/energyexplained/natural-gas/where-our-natural-gas-comes-from.php

  134. https://www.eia.gov/todayinenergy/detail.php?id=25372

  135. McDonald-Buller E et al (2021) Emissions and air quality implications of upstream and midstream oil and gas operations in Mexico. Atmosphere-basel 12:1696

    Article  Google Scholar 

  136. Pétron G et al (2014) A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin. J Geophys Res Atmos 119:6836–6852. https://doi.org/10.1002/2013JD021272

    Article  Google Scholar 

  137. Hecobian A et al (2019) Air toxics and other volatile organic compound emissions from unconventional oil and gas development. Env Sci Tech Lett 6:720–726. https://doi.org/10.1021/acs.estlett.9b00591

    Article  Google Scholar 

  138. Majid A, Martin MV, Lamsal LN, Duncan BN (2017) A decade of changes in nitrogen oxides over regions of oil and natural gas activity in the United States. Elementa Sci Anthropocene 5:76. https://doi.org/10.1525/elementa.259

    Article  Google Scholar 

  139. Lindaas J, Farmer DK, Pollack IB, Abeleira A, Flocke F, Fischer EV (2019) Acyl peroxy nitrates link oil and natural gas emissions to high ozone abundances in the Colorado front range during summer 2015. J Geophys Res Atmos 124:2336–2350. https://doi.org/10.1029/2018JD028825

    Article  Google Scholar 

  140. Pozzer A, Schultz MG, Helmig D (2020) Impact of U.S. oil and natural gas emission increases on surface ozone is most pronounced in the Central United States. Environ Sci Technol 54(19):12423–12433. https://doi.org/10.1021/acs.est.9b06983

    Article  Google Scholar 

  141. Konkel L (2017) In the neighborhood of 18 million: estimating how many people live near oil and gas wells. Environ Health Perspect 125(12):124003. https://doi.org/10.1289/EHP2553

    Article  Google Scholar 

  142. Raheja G, Harper L, Hoffman A, Gorby Y, Freese L, O’Leary B, Deron N, Smith S, Auch T, Goodwin M, Westervelt DM (2022) Community-based participatory research for low-cost air pollution monitoring in the wake of unconventional oil and gas development in the Ohio River valley: empowering impacted residents through community science. Environ Res Lett 17(2022):065006. https://doi.org/10.1088/1748-9326/ac6ad6

    Article  Google Scholar 

  143. Foster KR, Davidson C, Tanna RN, Spink D (2019) Introduction to the virtual special issue monitoring ecological responses to air quality and atmospheric deposition in the Athabasca Oil Sands region the Wood Buffalo environmental Association’s Forest health monitoring program. Sci Total Environ 686:345–359. https://doi.org/10.1016/j.scitotenv.2019.05.353

    Article  Google Scholar 

  144. Vega E, Ramirez O, Sanchez-Reyna G, Chow JC, Watson JG, Lopez-Veneroni D, Jaimes-Palomera M (2022) Volatile organic compounds and carbonyls pollution in Mexico City and an urban industrialized area of Central Mexico. Aerosol Air Qual Res 22. https://doi.org/10.4209/aaqr.210386

  145. Jobson BT, Berkowitz CM, Kuster WC, Goldan PD, Williams EJ, Fesenfeld FC, Apel EC, Karl T, Lonneman WA, Riemer D (2004) Hydrocarbon source signatures in Houston, Texas: influence of the petrochemical industry. J Geophys Res 109:D24305. https://doi.org/10.1029/2004JD004887

    Article  Google Scholar 

  146. Parrish DD et al (2009) Overview of the second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico atmospheric composition and climate study (GoMACCS). J Geophys Res 114:D00F13. https://doi.org/10.1029/2009JD011842

    Article  Google Scholar 

  147. Zhou W, Cohan DS, Henderson BH (2014) Slower ozone production in Houston, Texas following emission reductions: evidence from Texas Air Quality Studies in 2000 and 2006. Atmos Chem Phys 14:2777–2788. https://doi.org/10.5194/acp-14-2777-2014

    Article  Google Scholar 

  148. Douglas E. Five Texas refineries polluted above federal limit on cancer-causing benzene last year, report found. The Texas Tribune, 12 May 2022. https://www.texastribune.org/2022/05/12/texas-refineries-benzene/

  149. Echeverria RS, Jimenez ALA, Barrera M, Alvarez PS, Palomera MJ, Hernandez EG, Gay D (2020) Sulfur and nitrogen compounds in wet atmospheric deposition on the coast of the Gulf of Mexico from 2003 to 2015. Sci Total Environ 700:134419. https://doi.org/10.1016/j.scitotenv.2019.134419

    Article  Google Scholar 

  150. Balch JK, Bradley BA, Abatzoglou JT, Mahood AL (2017) Human-started wildfires expand the fire niche across the United States. PNAS 114(11):2946–2951. https://doi.org/10.1073/pnas.1617394114

    Article  Google Scholar 

  151. Jain P, Wang X, Flannigan MD (2017) Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int J Wildland Fire 26:1009–1020. https://doi.org/10.1071/WF17008

    Article  Google Scholar 

  152. Wang X, Parisien M-A, Taylor SW, Candau J-N, Stralberg D, Marshall GA, Little JM, Flannigan MD (2017) Projected changes in daily fire spread across Canada over the next century. Environ Res Lett 12. https://doi.org/10.1088/1748-9326/aa5835

  153. México. Comisión Nacional Forestal. Manejo de fuego. https://monitor_apoyos.cnf.gob.mx/animacion_incendios

    Google Scholar 

  154. Canada. https://www.nifc.gov/fire-information/statistics

  155. United States. https://ciffc.net/en/ext/hectares-by-year

  156. Barrett K, McGuire AD, Hoy EE, Kasischke ES (2011) Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity. Ecol Appl 21(7):2380–2396. https://doi.org/10.1890/10-0896.1

    Article  Google Scholar 

  157. Rooney B, Wang Y, Jiang JH, Zhao B, Zeng Z-C, Seinfeld JH (2020) Air quality impact of the Northern California camp fire of November 2018. Atmos Chem Phys 20:14597–14616. https://doi.org/10.5194/acp-20-14597-2020

    Article  Google Scholar 

  158. Childs ML, Li J, Wen J, Heft-Neal S, Driscoll A, Wang S, Gould CF, Qiu M, Burney J, Burke M (2022) Daily local-level estimates of ambient wildfire smoke PM2.5 for the contiguous US. Environ Sci Technol 56(19):13607–13621. https://doi.org/10.1021/acs.est.2c02934

    Article  Google Scholar 

  159. Larsen AE, Reich BJ, Ruminski M, Rappold AG (2018) Impacts of fire smoke plumes on regional air quality, 2006–2013. J Expo Sci Environ Epidemiol 28(4):319–327. https://doi.org/10.1038/s41370-017-0013-x

    Article  Google Scholar 

  160. Schnieider SR, Lee K, Santos G, Abbatt JPD (2021) Air quality data approach for defining wildfire influence: impacts on PM2.5, NO2, CO, and O3 in Western Canadian cities. Environ Sci Technol 55(20):13709–13717. https://doi.org/10.1021/acs.est.1c04042

    Article  Google Scholar 

  161. Jaffe DA, Ninneman M, Chan HC (2022) NOx and O3 trends at U.S. non-attainment areas for 1995–2020: influence of COVID-19 reductions and wildland fires on policy-relevant concentrations. J Geophys Res 127:e2021JD036385. https://doi.org/10.1029/2021JD036385

    Article  Google Scholar 

  162. Wentworth GR, Aklilu YA, Landis MS, Hsu Y-M (2018) Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone. Atmos Environ 178:19–30. https://doi.org/10.1016/j.atmosenv.2018.01.013

    Article  Google Scholar 

  163. Roberts JM, Veres PR, Cochran AK, Warneke C, Burling IR, Yokelson RJ, Lerner B, Gilman JB, Kuster WC, Fall R, de Gouw J (2011) Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. PNAS 108(22):8966–8971. https://doi.org/10.1073/pnas.1103352108

    Article  Google Scholar 

  164. O’Dell K, Hornbrook RS, Permar W, Levin EJT, Garofalo LA, Apel EC, Blake NJ, Jarnot A, Pothier MA, Farmer DK, Hu L, Campos T, Ford B, Pierce JR, Fischer EV (2020) Hazardous air pollutants in fresh and aged Western US wildfire smoke and implications for long-term exposure. Environ Sci Technol 54(19):11838–11847. https://doi.org/10.1021/acs.est.0c04497

    Article  Google Scholar 

  165. Zoogman P et al (2017) Tropospheric emissions: monitoring of pollution (TEMPO). J Quant Spectrosc Radiat Transf 186:17–39. https://doi.org/10.1016/j.jqsrt.2016.05.008

    Article  Google Scholar 

  166. Gallagher CL, Holloway T (2020) Integrating air quality and public health benefits in U.S. decarbonization strategies. Front Public Health. https://doi.org/10.3389/fpubh.2020.563358

  167. Zhao B, Wang T, Jiang Z, Gu Y, Liou K-N, Kalandiyur N, Gao Y, Zhu Y (2019) Air quality and health cobenefits of different deep decarbonization pathways in California. Environ Sci Technol 53(12):7163–7171. https://doi.org/10.1021/acs.est.9b02385

    Article  Google Scholar 

  168. Zhu S, Mac Kinnon M, Carlos-Carlos A et al (2022) Decarbonization will lead to more equitable air quality in California. Nat Commun 13:5738. https://doi.org/10.1038/s41467-022-33295-9

    Article  Google Scholar 

  169. Gallagher CL, Holloway T (2022) U.S. decarbonization impacts on air quality and environmental justice. Environ Res Lett 17:114018. https://doi.org/10.1088/1748-9326/ac99ef

    Article  Google Scholar 

  170. Leech JA, Nelson WC, Burnett RT, Aaron S, Raizenne ME (2002) It’s about time: a comparison of Canadian and American time–activity patterns. J Expo Sci Environ Epidemiol 12(6):427–432. https://doi.org/10.1038/sj.jea.7500244

    Article  Google Scholar 

  171. Arkouli M, Ulke AG, Endlicher W, Baumbach G, Schultz E, Vogt U, Müller M, Dawidowski L, Faggi A, Wolf-Benning U, Scheffknecht G (2010) Distribution and temporal behavior of particulate matter over the urban area of Buenos Aires. Atmos Pollut Res 1(1):1–8., ISSN 1309-1042. https://doi.org/10.5094/APR.2010.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Peralta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Peralta, O. et al. (2023). Regional and Urban Air Quality in the Americas. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_15

Download citation

Publish with us

Policies and ethics