Skip to main content

Kinetic Modeling of Solid, Liquid and Gas Biofuel Formation from Biomass Pyrolysis

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Pyrolysis

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 10))

Abstract

Modeling of biomass pyrolysis can be understood as several critical multicomponent, multiphase and multiscale processes. The characterization of the biomass and selection of the reference species of cellulose, hemicellulose, lignins and extractives have a major effect on the results. Intrinsic differences exist between hardwood, softwood and grass/cereals and must be taken into account. Thermochemical processes such as pyrolysis, gasification and combustion involve several kinetic mechanisms, first in the solid phase for the devolatilization of the biomass, then in the gas phase for the secondary reactions of released products, and finally for the heterogeneous reactions of the char residue. These mechanisms involve a large number of chemical species and reactions and make modeling computationally intensive. For reactor-scale simulations, mechanistic equations need to be simplified, while maintaining their descriptive capability. For example, lumping procedures can allow detailed compositions of oil, gas and char residue to be obtained. In this chapter, the catalytic effect of ash on pyrolysis products is discussed. Secondary or successive gas phase reactions of pyrolysis products complete the kinetic model and allow optimal conditions for bio-oil production to be determined. On the scale of both the particle and the reactor, mathematical modeling of the thermochemical process requires descriptions of coupled transport and kinetic processes. Examples and comparisons with experimental data are used to show the validation and the reliability of a general model. Additional examples for the application of models are taken from the large-scale German project Oxyflame, which works on combustion of solid fuels in oxy-fuel atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Bi:

Biot number

\( \hat{C} \) :

specific heat

Da :

Darcy tensor

\( \mathcal{D} \) :

diffusion coefficient

g:

gravitational acceleration

h :

heat exchange coefficient

\( \hat{h} \) :

specific mass enthalpy

I:

Identity matrix

j :

gas diffusive flux

k c :

convective mass exchange coefficient

k R :

rate constant

\( \dot{m} \) :

mass flow rate

n:

outward pointing unit normal

NC :

number of species

N p :

number of particles

p :

pressure

Py :

pyrolysis number

q :

conductive heat flux

q rad :

radiative heat flux

\( {\dot{Q}}_R \) :

reaction heat

r:

radius

S :

surface

T :

temperature

t :

time

Th:

Thiele number

u :

velocity

u :

relative velocity

v:

diffusion velocity of gas species

V :

volume

ε:

solid porosity

λ:

thermal conductivity

μ:

dynamic viscosity

ξ:

emissivity

ρ:

density

ω:

mass fraction

\( {\dot{\Omega}}_k \) :

net formation rate

∇:

nabla – vector differential operator

⊗:

vertex position

bulk:

region outside the particle

G:

gas phase

(I) :

interface

S:

solid phase

eff:

effective

J:

species solid

k:

species gas

p:

particle

References

  1. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048.

    Article  CAS  Google Scholar 

  2. Oasmaa A, Sundqvist T, Kuoppala E, Garcia-Perez M, Solantausta Y, Lindfors C, Paasikallio V. Controlling the phase stability of biomass fast pyrolysis bio-oils. Energy Fuels. 2015;29:4373–81. https://doi.org/10.1021/acs.energyfuels.5b00607.

    Article  CAS  Google Scholar 

  3. Olah GA, Goeppert A, Prakash GKS. Beyond oil and gas: the methanol economy. Weinheim: Wiley; 2009.

    Book  Google Scholar 

  4. Ardolino F, Arena U. Biowaste-to-biomethane: an LCA study on biogas and syngas roads. Waste Manag. 2019;87:441–53. https://doi.org/10.1016/j.wasman.2019.02.030.

    Article  CAS  Google Scholar 

  5. Arena U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 2012;32:625–39. https://doi.org/10.1016/j.wasman.2011.09.025.

    Article  CAS  Google Scholar 

  6. Leckner B. Process aspects in combustion and gasification waste-to-energy (WtE) units. Waste Manag. 2015;37:13–25. https://doi.org/10.1016/j.wasman.2014.04.019.

    Article  CAS  Google Scholar 

  7. Basu P. Biomass gasification, pyrolysis and torrefaction: practical design and theory. 2nd ed. Boston: Academic Press; 2013.

    Google Scholar 

  8. Ranzi E, Debiagi PEA, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note I: kinetic mechanism of biomass pyrolysis. ACS Sustain Chem Eng. 2017;5:2867–81. https://doi.org/10.1021/acssuschemeng.6b03096.

    Article  CAS  Google Scholar 

  9. Ranzi E, Debiagi PEA, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note II: secondary gas-phase reactions and bio-oil formation. ACS Sustain Chem Eng. 2017;5:2882–96. https://doi.org/10.1021/acssuschemeng.6b03098.

    Article  CAS  Google Scholar 

  10. Mettler MS, Vlachos DG, Dauenhauer PJ. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci. 2012;5:7797–809. https://doi.org/10.1039/C2EE21679E.

    Article  CAS  Google Scholar 

  11. Ranzi E, Corbetta M, Manenti F, Pierucci S. Kinetic modeling of the thermal degradation and combustion of biomass. Chem Eng Sci. 2014;110:2–12. https://doi.org/10.1016/j.ces.2013.08.014.

    Article  CAS  Google Scholar 

  12. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S. Chemical kinetics of biomass pyrolysis. Energy Fuels. 2008;22:4292–300. https://doi.org/10.1021/ef800551t.

    Article  CAS  Google Scholar 

  13. Debiagi PEA, Gentile G, Cuoci A, Frassoldati A, Ranzi E, Faravelli T. Yield, composition and active surface area of char from biomass pyrolysis. Chem Eng Trans. 2018;65:97–102. https://doi.org/10.3303/CET1865017.

    Article  Google Scholar 

  14. Dente M, Ranzi E, Goossens AG. Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO). Comput Chem Eng. 1979;3:61–75. https://doi.org/10.1016/0098-1354(79)80013-7.

    Article  CAS  Google Scholar 

  15. Ranzi E, Sogaro A, Gaffuri P, Pennati G, Faravelli T. A wide range modeling study of methane oxidation. Combust Sci Technol. 1994;96:279–325. https://doi.org/10.1080/00102209408935359.

    Article  CAS  Google Scholar 

  16. Debiagi P, Gentile G, Cuoci A, Frassoldati A, Ranzi E, Faravelli T. A predictive model of biochar formation and characterization. J Anal Appl Pyrolysis. 2018;134:326–35. https://doi.org/10.1016/j.jaap.2018.06.022.

    Article  CAS  Google Scholar 

  17. ECN (2014) Phyllis2: database for biomass and waste - Energy research Centre of the Netherlands

    Google Scholar 

  18. Demirbas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci. 2004;30:219–30. https://doi.org/10.1016/j.pecs.2003.10.004.

  19. Grottola CM, Giudicianni P, Ragucci R (2019) Compositional and thermogravimetric analysis of walnut shells. Biomass samples from the DFG TRR-129 “Oxyflame” project.

    Google Scholar 

  20. Ferreiro AI, Giudicianni P, Grottola CM, Rabaçal M, Costa M, Ragucci R. Unresolved issues on the kinetic modeling of pyrolysis of woody and nonwoody biomass fuels. Energy Fuels. 2017;31:4035–44. https://doi.org/10.1021/acs.energyfuels.6b03445.

    Article  CAS  Google Scholar 

  21. Debiagi PEA, Pecchi C, Gentile G, Frassoldati A, Cuoci A, Faravelli T, Ranzi E. Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis. Energy Fuels. 2015;29:6544–55. https://doi.org/10.1021/acs.energyfuels.5b01753.

    Article  CAS  Google Scholar 

  22. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(80):804–7. https://doi.org/10.1126/science.1137016.

    Article  CAS  Google Scholar 

  23. Grønli MG. A theoretical and experimental study of the thermal degradation of biomass. Trondheim: Norges teknisk-naturvitenskapelige universitet trondheim; 1996.

    Google Scholar 

  24. Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci. 2017;62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004.

    Article  Google Scholar 

  25. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem. 2010;58:9043–53. https://doi.org/10.1021/jf1008023.

    Article  CAS  Google Scholar 

  26. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy. 2010;34:290–301. https://doi.org/10.1016/j.biombioe.2009.10.018.

    Article  CAS  Google Scholar 

  27. Lewis AD, Fletcher TH. Prediction of sawdust pyrolysis yields from a flat-flame burner using the CPD model. Energy Fuels. 2013;27:942–53. https://doi.org/10.1021/ef3018783.

    Article  CAS  Google Scholar 

  28. Dhahak A, Bounaceur R, Le Dreff-Lorimier C, Schmidt G, Trouve G, Battin-Leclerc F. Development of a detailed kinetic model for the combustion of biomass. Fuel. 2019;242:756–74. https://doi.org/10.1016/j.fuel.2019.01.093.

    Article  CAS  Google Scholar 

  29. Papari S, Hawboldt K. A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew Sustain Energy Rev. 2015;52:1580–95. https://doi.org/10.1016/j.rser.2015.07.191.

    Article  CAS  Google Scholar 

  30. Galgano A, Di Blasi C, Horvat A, Sinai Y. Experimental validation of a coupled solid- and gas-phase model for combustion and gasification of wood logs. Energy Fuels. 2006;20:2223–32. https://doi.org/10.1021/ef060042u.

    Article  CAS  Google Scholar 

  31. Galgano A, Di Blasi C, Ritondale S, Todisco A. Numerical simulation of the glowing combustion of moist wood by means of a front-based model. Fire Mater. 2014;38:639–58. https://doi.org/10.1002/fam.2203.

    Article  CAS  Google Scholar 

  32. Yuen RKK, Yeoh GH, de Vahl DG, Leonardi E. Modelling the pyrolysis of wet wood - II. Three-dimensional cone calorimeter simulation. Int J Heat Mass Transf. 2007;50:4387–99. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.018.

    Article  CAS  Google Scholar 

  33. Ding Y, Wang C, Lu S. Modeling the pyrolysis of wet wood using fire FOAM. Energy Convers Manag. 2015;98:500–6. https://doi.org/10.1016/j.enconman.2015.03.106.

    Article  CAS  Google Scholar 

  34. Haberle I, Skreiberg Ø, Łazar J, Haugen NEL. Numerical models for thermochemical degradation of thermally thick woody biomass, and their application in domestic wood heating appliances and grate furnaces. Prog Energy Combust Sci. 2017;63:204–52. https://doi.org/10.1016/j.pecs.2017.07.004.

    Article  Google Scholar 

  35. Gronli MG, Melaaen MC. Mathematical model for wood pyrolysis-comparison of experimental measurements with model predictions. Energy Fuels. 2000;14:791–800. https://doi.org/10.1021/ef990176q.

    Article  CAS  Google Scholar 

  36. Sand U, Sandberg J, Larfeldt J, Bel Fdhila R. Numerical prediction of the transport and pyrolysis in the interior and surrounding of dry and wet wood log. Appl Energy. 2008;85:1208–24. https://doi.org/10.1016/j.apenergy.2008.03.001.

    Article  Google Scholar 

  37. Sadhukhan AK, Gupta P, Goyal T, Saha RK. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis. Bioresour Technol. 2008;99:8022–6. https://doi.org/10.1016/j.biortech.2008.03.047.

    Article  CAS  Google Scholar 

  38. Kwiatkowski K, Bajer K, Celińska A, Dudyński M, Korotko J, Sosnowska M. Pyrolysis and gasification of a thermally thick wood particle - effect of fragmentation. Fuel. 2014;132:125–34. https://doi.org/10.1016/j.fuel.2014.04.057.

    Article  CAS  Google Scholar 

  39. Miller RS, Bellan J. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust Sci Technol. 1997;126:97–137. https://doi.org/10.1080/00102209708935670.

    Article  CAS  Google Scholar 

  40. Bradbury AGW, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose. J Appl Polym Sci. 1979;23:3271–80. https://doi.org/10.1002/app.1979.070231112.

    Article  CAS  Google Scholar 

  41. Vinu R, Broadbelt LJ. A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci. 2012;5:9808–26. https://doi.org/10.1039/c2ee22784c.

    Article  CAS  Google Scholar 

  42. Zhou X, Nolte MW, Mayes HB, Shanks BH, Broadbelt LJ. Experimental and mechanistic modeling of fast pyrolysis of neat glucose-based carbohydrates. 1. Experiments and development of a detailed mechanistic model. Ind Eng Chem Res. 2014;53:13274–89. https://doi.org/10.1021/ie502259w.

    Article  CAS  Google Scholar 

  43. Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ. The alpha-bet(a) of glucose pyrolysis: computational and experimental investigations of 5-hydroxymethylfurfural and levoglucosan formation reveal implications for cellulose pyrolysis. ACS Sustain Chem Eng. 2014;2:1461–73. https://doi.org/10.1021/sc500113m.

    Article  CAS  Google Scholar 

  44. Zhou X, Li W, Mabon R, Broadbelt LJ. A mechanistic model of fast pyrolysis of hemicellulose. Energy Environ Sci. 2018;11:1240–60. https://doi.org/10.1039/c7ee03208k.

    Article  CAS  Google Scholar 

  45. Mayes HB, Broadbelt LJ. Unraveling the reactions that unravel cellulose. J Phys Chem A. 2012;116:7098–106. https://doi.org/10.1021/jp300405x.

    Article  CAS  Google Scholar 

  46. Seshadri V, Westmoreland PR. Concerted reactions and mechanism of glucose pyrolysis and implications for cellulose kinetics. J Phys Chem A. 2012;116:11997–2013. https://doi.org/10.1021/jp3085099.

    Article  CAS  Google Scholar 

  47. Horton SR, Mohr RJ, Zhang Y, Petrocelli FP, Klein MT. Molecular-level kinetic modeling of biomass gasification. Energy Fuels. 2016;30:1647–61. https://doi.org/10.1021/acs.energyfuels.5b01988.

    Article  CAS  Google Scholar 

  48. Yanez AJ, Natarajan P, Li W, Mabon R, Broadbelt LJ. Coupled structural and kinetic model of lignin fast pyrolysis. Energy Fuels. 2018;32:1822–30. https://doi.org/10.1021/acs.energyfuels.7b03311.

    Article  CAS  Google Scholar 

  49. Westmoreland PR. Pyrolysis kinetics for lignocellulosic biomass-to-oil from molecular modeling. Curr Opin Chem Eng. 2019;23:123–9. https://doi.org/10.1016/j.coche.2019.03.011.

    Article  Google Scholar 

  50. Corbetta M, Frassoldati A, Bennadji H, Smith K, Serapiglia MJ, Gauthier G, Melkior T, Ranzi E, Fisher EM. Pyrolysis of centimeter-scale woody biomass particles: kinetic modeling and experimental validation. Energy and Fuels. 2014;28:3884–98. https://doi.org/10.1021/ef500525v.

    Article  CAS  Google Scholar 

  51. Gorensek MB, Shukre R, Chen CC. Development of a thermophysical properties model for flowsheet simulation of biomass pyrolysis processes. ACS Sustain Chem Eng. 2019;7:9017–27. https://doi.org/10.1021/acssuschemeng.9b01278.

    Article  CAS  Google Scholar 

  52. Shen D, Jin W, Hu J, Xiao R, Luo K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: structures, pathways and interactions. Renew Sustain Energy Rev. 2015;51:761–74. https://doi.org/10.1016/j.rser.2015.06.054.

    Article  CAS  Google Scholar 

  53. Antal MJ, Varhegyi G. Cellulose pyrolysis kinetic: the current state of knowledge. Ind Eng Chem Res. 1995;34:703–17. https://doi.org/10.1021/ie00042a001.

    Article  CAS  Google Scholar 

  54. Lédé J. Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis. 2012;94:17–32. https://doi.org/10.1016/j.jaap.2011.12.019.

    Article  CAS  Google Scholar 

  55. Burnham AK, Zhou X, Broadbelt LJ. Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy Fuels. 2015;29:2906–18. https://doi.org/10.1021/acs.energyfuels.5b00350.

    Article  CAS  Google Scholar 

  56. Dussan K, Dooley S, Monaghan R. Integrating compositional features in model compounds for a kinetic mechanism of hemicellulose pyrolysis. Chem Eng J. 2017;328:943–61. https://doi.org/10.1016/j.cej.2017.07.089.

    Article  CAS  Google Scholar 

  57. Frassoldati A, Cuoci A, Faravelli T, Niemann U, Ranzi E, Seiser R, Seshadri K. An experimental and kinetic modeling study of n-propanol and iso-propanol combustion. Combust Flame. 2010;157:2–16. https://doi.org/10.1016/j.combustflame.2009.09.002.

    Article  CAS  Google Scholar 

  58. Jakab E, Faix O, Till F, Székely T. Thermogravimetry/mass spectrometry study of six lignins within the scope of an international round robin test. J Anal Appl Pyrolysis. 1995;35:167–79. https://doi.org/10.1016/0165-2370(95)00907-7.

    Article  CAS  Google Scholar 

  59. Antal MJ, Várhegyi G, Jakab E. Cellulose pyrolysis kinetics: revisited. Ind Eng Chem Res. 1998;37:1267–75. https://doi.org/10.1021/ie970144v.

    Article  CAS  Google Scholar 

  60. Williams PT, Besler S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy. 1996;7:233–50. https://doi.org/10.1016/0960-1481(96)00006-7.

    Article  CAS  Google Scholar 

  61. Milosavljevic I, Suuberg EM. Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind Eng Chem Res. 1995;34:1081–91. https://doi.org/10.1021/ie00043a009.

    Article  CAS  Google Scholar 

  62. Caballero JA, Conesa JA, Font R, Marcilla A. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrolysis. 1997;42:159–75. https://doi.org/10.1016/S0165-2370(97)00015-6.

    Article  CAS  Google Scholar 

  63. Moore AM The effect of biomass characteristics on bio-oil produced via fast pyrolysis. M.Sc. thesis, North Carolina State University. 2015.

    Google Scholar 

  64. Pasangulapati V (2012) Devolatilization characteristics of cellulose, hemicellulose, lignin and the selected biomass during thermochemical gasification: experiment and modeling studies. Oklahoma State University

    Google Scholar 

  65. Debiagi PEA A kinetic model of thermochemical conversion of biomass. Ph.D. thesis, Politecnico di Milano. (2018).

    Google Scholar 

  66. Wolfrum EJ, Lorenz AJ, DeLeon N. Correlating detergent fiber analysis and dietary fiber analysis data for corn stover collected by NIRS. Cellulose. 2009;16:577–85. https://doi.org/10.1007/s10570-009-9318-9.

    Article  CAS  Google Scholar 

  67. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass: laboratory analytical procedure (LAP); Issue Date 7/17/2005.9. https://doi.org/NREL/TP-510-42621

  68. Rowell RM. Handbook of wood chemistry and wood composites. Boca Raton: CRC Press; 2012.

    Book  Google Scholar 

  69. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT. In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels. 2006;20:388–93. https://doi.org/10.1021/ef0580117.

    Article  CAS  Google Scholar 

  70. Senneca O, Cerciello F, Heuer S, Ammendola P. Slow pyrolysis of walnut shells in nitrogen and carbon dioxide. Fuel. 2018;225:419–25. https://doi.org/10.1016/j.fuel.2018.03.094.

    Article  CAS  Google Scholar 

  71. Giudicianni P, Gargiulo V, Grottola CM, Alfè M, Ragucci R. Effect of alkali metal ions presence on the products of xylan steam assisted slow pyrolysis. Fuel. 2018;216:36–43. https://doi.org/10.1016/j.fuel.2017.11.150.

    Article  CAS  Google Scholar 

  72. Tufano GL, Stein OT, Kronenburg A, Gentile G, Stagni A, Frassoldati A, Faravelli T, Kempf AM, Vascellari M, Hasse C. Fully-resolved simulations of coal particle combustion using a detailed multi-step approach for heterogeneous kinetics. Fuel. 2019;240:75–83. https://doi.org/10.1016/j.fuel.2018.11.139.

    Article  CAS  Google Scholar 

  73. Ranzi E, Pierucci S, Aliprandi PC, Stringa S. Comprehensive and detailed kinetic model of a traveling grate combustor of biomass. Energy Fuels. 2011;25:4195–205. https://doi.org/10.1021/ef200902v.

    Article  CAS  Google Scholar 

  74. Stark AK, Bates RB, Zhao Z, Ghoniem AF. Prediction and validation of major gas and tar species from a reactor network model of air-blown fluidized bed biomass gasification. Energy Fuels. 2015;29:2437–52. https://doi.org/10.1021/ef5027955.

    Article  CAS  Google Scholar 

  75. Dussan K, Dooley S, Monaghan RFD. A model of the chemical composition and pyrolysis kinetics of lignin. Proc Combust Inst. 2019;37:2697–704. https://doi.org/10.1016/j.proci.2018.05.149.

    Article  CAS  Google Scholar 

  76. Anca-Couce A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci. 2016;53:41–79. https://doi.org/10.1016/j.pecs.2015.10.002.

    Article  Google Scholar 

  77. Anca-Couce A, Obernberger I. Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction. Fuel. 2016;167:158–67. https://doi.org/10.1016/j.fuel.2015.11.062.

    Article  CAS  Google Scholar 

  78. Yu J, Paterson N, Blamey J, Millan M. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel. 2017;191:140–9. https://doi.org/10.1016/j.fuel.2016.11.057.

    Article  CAS  Google Scholar 

  79. Giudicianni P, Cardone G, Sorrentino G, Ragucci R. Hemicellulose, cellulose and lignin interactions on Arundo donax steam assisted pyrolysis. J Anal Appl Pyrolysis. 2014;110:138–46. https://doi.org/10.1016/j.jaap.2014.08.014.

    Article  CAS  Google Scholar 

  80. Lin F, Waters CL, Mallinson RG, Lobban LL, Bartley LE. Relationships between biomass composition and liquid products formed via pyrolysis. Front Energy Res. 2015;3:45. https://doi.org/10.3389/fenrg.2015.00045.

    Article  Google Scholar 

  81. Lv D, Xu M, Liu X, Zhan Z, Li Z, Yao H. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process Technol. 2010;91:903–9. https://doi.org/10.1016/j.fuproc.2009.09.014.

    Article  CAS  Google Scholar 

  82. Arora JS, Chew JW, Mushrif SH. Influence of alkali and alkaline-earth metals on the cleavage of glycosidic bond in biomass pyrolysis: a DFT study using cellobiose as a model compound. J Phys Chem A. 2018;122:7646–58. https://doi.org/10.1021/acs.jpca.8b06083.

    Article  CAS  Google Scholar 

  83. Zhou X, Mayes HB, Broadbelt LJ, Nolte MW, Shanks BH. Fast pyrolysis of glucose-based carbohydrates with added NaCl part 2: validation and evaluation of the mechanistic model. AIChE J. 2016;62:778–91. https://doi.org/10.1002/aic.15107.

    Article  CAS  Google Scholar 

  84. Zhu C, Maduskar S, Paulsen AD, Dauenhauer PJ. Alkaline-earth-metal-catalyzed thin-film pyrolysis of cellulose. ChemCatChem. 2016;8:818–29. https://doi.org/10.1002/cctc.201501235.

    Article  CAS  Google Scholar 

  85. Patwardhan PR, Satrio JA, Brown RC, Shanks BH. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol. 2010;101:4646–55. https://doi.org/10.1016/j.biortech.2010.01.112.

    Article  CAS  Google Scholar 

  86. Collard F-X, Blin J, Bensakhria A, Valette J. Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J Anal Appl Pyrolysis. 2012;95:213–26. https://doi.org/10.1016/j.jaap.2012.02.009.

    Article  CAS  Google Scholar 

  87. Rutkowski P. Pyrolysis of cellulose, xylan and lignin with the K2CO3 and ZnCl2 addition for bio-oil production. Fuel Process Technol. 2011;92:517–22. https://doi.org/10.1016/j.fuproc.2010.11.006.

    Article  CAS  Google Scholar 

  88. Giudicianni P, Gargiulo V, Alfè M, Ragucci R, Ferreiro AI, Rabaçal M, Costa M. Slow pyrolysis of xylan as pentose model compound for hardwood hemicellulose: a study of the catalytic effect of Na ions. J Anal Appl Pyrolysis. 2019;137:266–75. https://doi.org/10.1016/j.jaap.2018.12.004.

    Article  CAS  Google Scholar 

  89. Trubetskaya A, Timko MT, Umeki K. Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents. Appl Energy. 2020;257:113897. https://doi.org/10.1016/j.apenergy.2019.113897.

    Article  CAS  Google Scholar 

  90. Nzihou A, Stanmore B, Lyczko N, Minh DP. The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: a review. Energy. 2019;170:326–37. https://doi.org/10.1016/j.energy.2018.12.174.

  91. Guo D, Wu S, Liu B, Yin X, Yang Q. Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification. Appl Energy. 2012;95:22–30. https://doi.org/10.1016/j.apenergy.2012.01.042.

  92. Wang S, Ru B, Lin H, Sun W, Luo Z. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol. 2015;182:120–7. https://doi.org/10.1016/j.biortech.2015.01.127.

  93. Jakab E, Faix O, Till F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrolysis. 1997;40:171–86. https://doi.org/10.1016/S0165-2370(97)00046-6.

  94. Trendewicz A, Evans R, Dutta A, Sykes R, Carpenter D, Braun R. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics. Biomass Bioenergy. 2015;74:15–25. https://doi.org/10.1016/j.biombioe.2015.01.001.

    Article  CAS  Google Scholar 

  95. Ross AB, Jones JM, Kubacki ML, Bridgeman T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol. 2008;99:6494–504. https://doi.org/10.1016/j.biortech.2007.11.036.

    Article  CAS  Google Scholar 

  96. Debiagi PEA, Trinchera M, Frassoldati A, Faravelli T, Vinu R, Ranzi E. Algae characterization and multistep pyrolysis mechanism. J Anal Appl Pyrolysis. 2017;128:423–36. https://doi.org/10.1016/j.jaap.2017.08.007.

    Article  CAS  Google Scholar 

  97. Gai C, Zhang Y, Chen WT, Zhang P, Dong Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresour Technol. 2013;150:139–48. https://doi.org/10.1016/j.biortech.2013.09.137.

    Article  CAS  Google Scholar 

  98. Ojha DK, Viju D, Vinu R. Fast pyrolysis kinetics of alkali lignin: Evaluation of apparent rate parameters and product time evolution. Bioresour Technol. 2017;241:142–51. https://doi.org/10.1016/j.biortech.2017.05.084.

    Article  CAS  Google Scholar 

  99. Carstensen H-H, Dean AM. Development of detailed kinetic models for the thermal conversion of biomass via first principle methods and rate estimation rules. In: Computational modeling in lignocellulosic biofuel production, ACS Symposium Series. Washington: ACS Publications; 2010. p. 201–43. https://doi.org/10.1021/bk-2010-1052.ch010.

  100. Debiagi PEA, Gentile G, Pelucchi M, Frassoldati A, Cuoci A, Faravelli T, Ranzi E. Detailed kinetic mechanism of gas-phase reactions of volatiles released from biomass pyrolysis. Biomass Bioenergy. 2016;93:60–71. https://doi.org/10.1016/j.biombioe.2016.06.015.

    Article  CAS  Google Scholar 

  101. Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley AP, Law CK. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog Energy Combust Sci. 2012;38:468–501. https://doi.org/10.1016/j.pecs.2012.03.004.

    Article  CAS  Google Scholar 

  102. Frassoldati A, Grana R, Faravelli T, Ranzi E, Oßwald P, Kohse-Höinghaus K. Detailed kinetic modeling of the combustion of the four butanol isomers in premixed low-pressure flames. Combust Flame. 2012;159:2295–311. https://doi.org/10.1016/j.combustflame.2012.03.002.

    Article  CAS  Google Scholar 

  103. Grana R, Frassoldati A, Faravelli T, Niemann U, Ranzi E, Seiser R, Cattolica R, Seshadri K. An experimental and kinetic modeling study of combustion of isomers of butanol. Combust Flame. 2010;157:2137–54. https://doi.org/10.1016/j.combustflame.2010.05.009.

    Article  CAS  Google Scholar 

  104. Pelucchi M, Cavallotti C, Ranzi E, Frassoldati A, Faravelli T. Relative reactivity of oxygenated fuels: alcohols, aldehydes, ketones, and methyl esters. Energy Fuels. 2016;30:8665–79. https://doi.org/10.1021/acs.energyfuels.6b01171.

    Article  CAS  Google Scholar 

  105. Pelucchi M, Ranzi E, Frassoldati A, Faravelli T. Alkyl radicals rule the low temperature oxidation of long chain aldehydes. Proc Combust Inst. 2017;36:393–401. https://doi.org/10.1016/j.proci.2016.05.051.

    Article  CAS  Google Scholar 

  106. Ince A, Carstensen HH, Reyniers MF, Marin GB. First-principles based group additivity values for thermochemical properties of substituted aromatic compounds. AIChE J. 2015;61:3858–70. https://doi.org/10.1002/aic.15008.

    Article  CAS  Google Scholar 

  107. Wagnon SW, Thion S, Nilsson EJK, Mehl M, Serinyel Z, Zhang K, Dagaut P, Konnov AA, Dayma G, Pitz WJ. Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole. Combust Flame. 2018;189:325–36. https://doi.org/10.1016/j.combustflame.2017.10.020.

    Article  CAS  Google Scholar 

  108. Pelucchi M, Cavallotti C, Cuoci A, Faravelli T, Frassoldati A, Ranzi E. Detailed kinetics of substituted phenolic species in pyrolysis bio-oils. React Chem Eng. 2019;4:490–506. https://doi.org/10.1039/c8re00198g.

    Article  CAS  Google Scholar 

  109. Wang K, Dean AM. Rate rules and reaction classes, Comput. Aided Chem. Eng. Amsterdam: Elsevier; 2019. p. 203–57. https://doi.org/10.1016/B978-0-444-64087-1.00004-8.

  110. Bridgwater AV. Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J. 2003;91:87–102. https://doi.org/10.1016/S1385-8947(02)00142-0.

    Article  CAS  Google Scholar 

  111. Calonaci M, Grana R, Barker Hemings E, Bozzano G, Dente M, Ranzi E. Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy Fuels. 2010;24:5727–34. https://doi.org/10.1021/ef1008902.

    Article  CAS  Google Scholar 

  112. Fantozzi F, Frassoldati A, Bartocci P, Cinti G, Quagliarini F, Bidini G, Ranzi EM. An experimental and kinetic modeling study of glycerol pyrolysis. Appl Energy. 2016;184:68–76. https://doi.org/10.1016/j.apenergy.2016.10.018.

    Article  CAS  Google Scholar 

  113. Hemings EB, Cavallotti C, Cuoci A, Faravelli T, Ranzi E. A detailed kinetic study of pyrolysis and oxidation of glycerol (Propane-1,2,3-triol). Combust Sci Technol. 2012;184:1164–78. https://doi.org/10.1080/00102202.2012.664006.

    Article  CAS  Google Scholar 

  114. Dente M, Pierucci S, Ranzi E, Bussani G. New improvements in modeling kinetic schemes for hydrocarbons pyrolysis reactors. Chem Eng Sci. 1992;47:2629–34. https://doi.org/10.1016/0009-2509(92)87104-X.

    Article  CAS  Google Scholar 

  115. Violi A, Truong TN, Sarofim AF. Kinetics of hydrogen abstraction reactions from polycyclic aromatic hydrocarbons by H atoms. J Phys Chem A. 2004;108:4846–52. https://doi.org/10.1021/jp026557d.

    Article  CAS  Google Scholar 

  116. Pelucchi M, Cavallotti C, Faravelli T, Klippenstein SJ. H-Abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation. Phys Chem Chem Phys. 2018;20:10607–27. https://doi.org/10.1039/C7CP07779C.

    Article  CAS  Google Scholar 

  117. Pelucchi M, Somers KP, Yasunaga K, Burke U, Frassoldati A, Ranzi E, Curran HJ, Faravelli T. An experimental and kinetic modeling study of the pyrolysis and oxidation of n-C3C5 aldehydes in shock tubes. Combust Flame. 2015;162:265–86. https://doi.org/10.1016/j.combustflame.2014.07.027.

    Article  CAS  Google Scholar 

  118. Ackermann T. S. W. Benson: Thermochemical kinetics. Methods for the estimation of thermochemical data and rate parameters. John Wiley & Sons, Inc., New York, 1968. XII und 223 Seiten, 4 Abbildungen, Preis: 94 s. Berichte der Bunsengesellschaft für Phys Chemie. 1969;73:119–244. https://doi.org/10.1002/bbpc.19690730226.

    Article  Google Scholar 

  119. Djokic MR, Van Geem KM, Cavallotti C, Frassoldati A, Ranzi E, Marin GB. An experimental and kinetic modeling study of cyclopentadiene pyrolysis: first growth of polycyclic aromatic hydrocarbons. Combust Flame. 2014;161:2739–51. https://doi.org/10.1016/j.combustflame.2014.04.013.

    Article  CAS  Google Scholar 

  120. Hemings EB, Bozzano G, Dente M, Ranzi E. Detailed kinetics of the pyrolysis and oxidation of anisole. Chem Eng Trans. 2011;24:61–6. https://doi.org/10.3303/CET1124011.

    Article  Google Scholar 

  121. Nowakowska M, Herbinet O, Dufour A, Glaude PA. Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification. Combust Flame. 2014;161:1474–88. https://doi.org/10.1016/j.combustflame.2013.11.024.

    Article  CAS  Google Scholar 

  122. Thomas S, Ledesma EB, Wornat MJ. The effects of oxygen on the yields of the thermal decomposition products of catechol under pyrolysis and fuel-rich oxidation conditions. Fuel. 2007;86:2581–95. https://doi.org/10.1016/j.fuel.2007.02.003.

    Article  CAS  Google Scholar 

  123. Norinaga K, Shoji T, Kudo S, Hayashi J. Detailed chemical kinetic modelling of vapour-phase cracking of multi-component molecular mixtures derived from the fast pyrolysis of cellulose. Fuel. 2013;103:141–50. https://doi.org/10.1016/j.fuel.2011.07.045.

    Article  CAS  Google Scholar 

  124. Norinaga K, Yang H, Tanaka R, Appari S, Iwanaga K, Takashima Y, Kudo S, Shoji T, Ichiro HJ. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking. Biomass Bioenergy. 2014;69:144–54. https://doi.org/10.1016/j.biombioe.2014.07.008.

    Article  CAS  Google Scholar 

  125. Yang HM, Appari S, Kudo S, Hayashi JI, Norinaga K. Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin. Ind Eng Chem Res. 2015;54:6855–64. https://doi.org/10.1021/acs.iecr.5b01289.

    Article  CAS  Google Scholar 

  126. Saggese C, Frassoldati A, Cuoci A, Faravelli T, Ranzi E. A wide range kinetic modeling study of pyrolysis and oxidation of benzene. Combust Flame. 2013;160:1168–90. https://doi.org/10.1016/j.combustflame.2013.02.013.

    Article  CAS  Google Scholar 

  127. Saggese C, Ferrario S, Camacho J, Cuoci A, Frassoldati A, Ranzi E, Wang H, Faravelli T. Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame. Combust Flame. 2015;162:3356–69. https://doi.org/10.1016/j.combustflame.2015.06.002.

    Article  CAS  Google Scholar 

  128. Pejpichestakul W, Ranzi E, Pelucchi M, Frassoldati A, Cuoci A, Parente A, Faravelli T. Examination of a soot model in premixed laminar flames at fuel-rich conditions. Proc Combust Inst. 2019;37:1013–21. https://doi.org/10.1016/j.proci.2018.06.104.

    Article  CAS  Google Scholar 

  129. Safarian S, Unnþórsson R, Richter C. A review of biomass gasification modelling. Renew Sustain Energy Rev. 2019;110:378–91. https://doi.org/10.1016/j.rser.2019.05.003.

    Article  CAS  Google Scholar 

  130. Di Blasi C. Modeling and simulation of combustion processes of charring and non-charring solid fuels. Prog Energy Combust Sci. 1993;19:71–104. https://doi.org/10.1016/0360-1285(93)90022-7.

    Article  Google Scholar 

  131. Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. 2008;34:47–90. https://doi.org/10.1016/j.pecs.2006.12.001.

    Article  CAS  Google Scholar 

  132. Gentile G, Debiagi P, Cuoci A, Frassoldati A, Ranzi E, Faravelli T. A computational framework for the pyrolysis of anisotropic biomass particles. Chem Eng J. 2017;321:458–73. https://doi.org/10.1016/j.cej.2017.03.113.

  133. Bennadji H, Smith K, Shabangu S, Fisher EM. Low-temperature pyrolysis of woody biomass in the thermally thick regime. Energy Fuels. 2013;27:1453–9. https://doi.org/10.1021/ef400079a.

    Article  CAS  Google Scholar 

  134. Wang L, Skreiberg Ø, Gronli M, Specht GP, Antal MJ. Is elevated pressure required to achieve a high fixed-carbon yield of charcoal from biomass? Part 2: The importance of particle size. Energy Fuels. 2013;27:2146–56. https://doi.org/10.1021/ef400041h.

    Article  CAS  Google Scholar 

  135. Park WC, Atreya A, Baum HR. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame. 2010;157:481–94. https://doi.org/10.1016/j.combustflame.2009.10.006.

    Article  CAS  Google Scholar 

  136. Paulsen AD, Mettler MS, Dauenhauer PJ. The role of sample dimension and temperature in cellulose pyrolysis. Energy Fuels. 2013;27:2126–34. https://doi.org/10.1021/ef302117j.

    Article  CAS  Google Scholar 

  137. Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev. 2016;57:1126–40. https://doi.org/10.1016/j.rser.2015.12.185.

    Article  CAS  Google Scholar 

  138. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy. 2011;35:3748–62. https://doi.org/10.1016/j.biombioe.2011.06.023.

    Article  CAS  Google Scholar 

  139. Shankar Tumuluru J, Sokhansanj S, Hess JR, Wright CT, Boardman RD. A review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol. 2011;7:384–401. https://doi.org/10.1089/ind.2011.7.384.

    Article  CAS  Google Scholar 

  140. Ribeiro J, Godina R, Matias J, Nunes L. Future perspectives of biomass torrefaction: review of the current state-of-the-art and research development. Sustainability. 2018;10:2323. https://doi.org/10.3390/su10072323.

    Article  CAS  Google Scholar 

  141. Aguado R, Olazar M, Barona A, Bilbao J. Char-formation kinetics in the pyrolysis of sawdust in a conical spouted bed reactor. J Chem Technol Biotechnol. 2000;75:583–8. https://doi.org/10.1002/1097-4660(200007)75:7<583::AID-JCTB261>3.0.CO;2-B.

    Article  CAS  Google Scholar 

  142. Ateş F, Pütün E, Pütün AE. Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. J Anal Appl Pyrolysis. 2004;71:779–90. https://doi.org/10.1016/j.jaap.2003.11.001.

    Article  CAS  Google Scholar 

  143. Westerhof RJM, Wim BDWF, Van Swaaij WPM, Kersten SRA. Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units. Ind Eng Chem Res. 2010;49:1160–8. https://doi.org/10.1021/ie900885c.

    Article  CAS  Google Scholar 

  144. Neves D, Thunman H, Matos A, Tarelho L, Gómez-Barea A. Characterization and prediction of biomass pyrolysis products. Prog Energy Combust Sci. 2011;37:611–30. https://doi.org/10.1016/j.pecs.2011.01.001.

    Article  CAS  Google Scholar 

  145. Senneca O, Salatino P. A semi-detailed kinetic model of char combustion with consideration of thermal annealing. Proc Combust Inst. 2011;33:1763–70. https://doi.org/10.1016/j.proci.2010.08.011.

    Article  CAS  Google Scholar 

  146. Frigerio S, Thunman H, Leckner B, Hermansson S. Estimation of gas phase mixing in packed beds. Combust Flame. 2008;153:137–48. https://doi.org/10.1016/j.combustflame.2007.05.006.

    Article  CAS  Google Scholar 

  147. Ravaghi-Ardebili Z, Manenti F, Corbetta M, Pirola C, Ranzi E. Biomass gasification using low-temperature solar-driven steam supply. Renew Energy. 2015;74:671–80. https://doi.org/10.1016/j.renene.2014.07.021.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our sincere acknowledgments to Paola Giudicianni, Corinna Grottola and Raffaele Ragucci from the IRC/CNR, for their support and for providing additional data presented in this work. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – projektnummer 215035359 – TRR 129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Debiagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debiagi, P., Faravelli, T., Hasse, C., Ranzi, E. (2020). Kinetic Modeling of Solid, Liquid and Gas Biofuel Formation from Biomass Pyrolysis. In: Fang, Z., Smith Jr, R.L., Xu, L. (eds) Production of Biofuels and Chemicals with Pyrolysis. Biofuels and Biorefineries, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_2

Download citation

Publish with us

Policies and ethics