Skip to main content

Exploring Hierarchical Concepts: Theoretical and Application Comparisons

  • Chapter
  • First Online:
Advanced Studies in Behaviormetrics and Data Science

Abstract

Phenomena are usually multidimensional and their complexity cannot be directly explored via observable variables. For this reason, a hierarchical structure of nested latent concepts representing different levels of abstraction of the phenomenon under study may be considered. In this paper, we provide a comparison between a procedure based on hierarchical clustering methods and a novelty model recently proposed, called Ultrametric Correlation Matrix (UCM) model. The latter aims at reconstructing the data correlation matrix via an ultrametric correlation matrix and supplies a parsimonious representation of multidimensional phenomena through a partition of the observable variables defining a reduced number of latent concepts. Moreover, the UCM model highlights two main features related to concepts: the correlation among concepts and the internal consistency of a concept. The performances of the UCM model and the procedure based on hierarchical clustering methods are illustrated by an application to the Holzinger data set which represents a real demonstration of a hierarchical factorial structure. The evaluation of the different methodological approaches—the UCM model and the procedure based on hierarchical clustering methods—is provided in terms of classification of variables and goodness of fit, other than of their suitability to analyse bottom-up latent structures of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper we use the term objects as a synonym of both units and variables.

  2. 2.

    It is available on psych package in R.

References

  1. Bobisud, H. M., & Bobisud, L. E. (1972). A metric for classifications. Taxon, 21(5/6), 607–613.

    Article  MATH  Google Scholar 

  2. Cavicchia, C., Vichi, M., & Zaccaria, G. (2019). The ultrametric correlation matrix for modelling hierarchical latent concepts. Submitted.

    Google Scholar 

  3. Cavicchia, C., Vichi, M., & Zaccaria, G. (2019). Dimensionality reduction via hierarchical factorial structure. In G. C. Porzio, F. Greselin, & S. Balzano (Eds.), CLADAG 2019, 11–13 September 2019, Cassino: Book of Short Papers (pp. 116–119), Cassino: Centro Editoriale di Ateneo Università di Cassino e del Lazio Meridionale. Retrieved from http://cea.unicas.it/e_book/Porzio.pdf.

  4. Cliff, A. D., Haggett, P., Smallman-Raynor, M. R., Stroup, D. F., & Williamson, G. D. (1995). The application of multidimensional scaling methods to epidemiological data. Statistical Methods in Medical Research, 4(2), 102–123.

    Article  Google Scholar 

  5. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.

    Article  MATH  Google Scholar 

  6. Dellacherie, C., Martinez, S., & San Martin, J. (2014). Inverse M-matrix and ultrametric matrices. Lecture Notes in Mathematics. Springer International Publishing.

    Google Scholar 

  7. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Wiley Series in Probability and Statistics.

    Google Scholar 

  8. Florek, K., Łukaszewicz, J., Perkal, J., Steinhaus, H., & Zubrzycki, S. (1951). Sur la liaison et la division des points d’un ensemble fini. In Colloquium Mathematicum (Vol. 2, No. 3/4, pp. 282–285).

    Google Scholar 

  9. Gordon, A. D. (1987). A review of hierarchical classification. Journal of the Royal Statistical Society: Series A-G, 150(2), 119–137.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gordon, A. D. (1999). Classification (2nd ed.). Monographs on statistics & applied probability. Chapman & Hall/CRC.

    Google Scholar 

  11. Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3/4), 325–338.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hartigan, J. A. (1967). Representation of similarity matrices by trees. Journal of the American Statistical Association, 62(320), 1140–1158.

    Article  MathSciNet  Google Scholar 

  13. Holzinger, K. J., & Swineford, F. (1937). The bi-factor method. Psychometrika, 2(1), 41–54.

    Article  Google Scholar 

  14. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  MATH  Google Scholar 

  15. Jambu, M. (1978). Classification authomatique pour l’analyse des donnés, tome 1. Paris: Dunod.

    Google Scholar 

  16. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151.

    Article  Google Scholar 

  17. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data. An introduction to cluster analysis. New York: Wiley.

    MATH  Google Scholar 

  18. Lance, G. N., & Williams, W. T. (1966). A generalized sorting strategy for computer classifications. Nature, 212, 218.

    Article  Google Scholar 

  19. Lance, G. N., & Williams, W. T. (1967). A general theory of classificatory sorting strategy I. Hierarchical systems. The Computer Journal, 9(4), 373–380.

    Article  Google Scholar 

  20. Loehlin, J. C., & Beaujean, A. A. (2017). Latent variable models: an introduction to factor, path, and structural equation analysis (5th ed.). New York: Routledge.

    Google Scholar 

  21. McMorris, F. R., Meronk, D. B., & Neumann, D. A. (1983). A view of some consensus methods for tree. In J. Felsenstein (Ed.), Numerical taxonomy (pp. 122–126). Berlin: Springer.

    Google Scholar 

  22. McQuitty, L. L. (1960). Hierarchical linkage analysis for the isolation of types. Educational and Psychological Measurement, 20(1), 55–67.

    Article  Google Scholar 

  23. Schmid, J., & Leiman, J. (1957). The development of hierarchical factor solutions. Psychometrika, 22(1), 53–61.

    Google Scholar 

  24. Sokal, R. R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.

    Google Scholar 

  25. Strauss, J. S., Bartko, J. J., & Carpenter, W. T. (1973). The use of clustering techniques for the classification of psychiatric patients. The British Journal of Psychiatry, 122(570), 531–540.

    Article  Google Scholar 

  26. Ward, J. H. (1963). Hierarchical grouping to optimize and objective function. Journal of the American Statistical Association, 58(301), 236–244.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Vichi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavicchia, C., Vichi, M., Zaccaria, G. (2020). Exploring Hierarchical Concepts: Theoretical and Application Comparisons. In: Imaizumi, T., Nakayama, A., Yokoyama, S. (eds) Advanced Studies in Behaviormetrics and Data Science. Behaviormetrics: Quantitative Approaches to Human Behavior, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-15-2700-5_19

Download citation

Publish with us

Policies and ethics