Skip to main content

Construction and Biomedical Applications of Macrocycle-Based Supramolecular Topological Polymers

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

A number of macrocyclic host molecules with cavities such as crown ethers, cyclodextrins, calix[n]arenes, cucurbit[n]urils, and pillar[n]arenes have been exploited to encapsulate the guests for the construction of novel supramolecular systems and great potential applications in various fields such as biomedicine, photoelectricity, and catalysis. On the other aspect, great attentions have been attracted by supramolecular polymers (SPs), which is the intersection of supramolecular chemistry and polymer science. The properties and functions of SPs are strongly affected by their higher-level topological structures. Therefore, macrocycle-based supramolecular topological polymers (STPs) are superior in the complication and hierarchy of structures compared with linear SPs due to more diverse possible combinations between unique topological polymer structures and macrocycle-based supramolecular interactions. In this chapter, we aim to summarize the construction and biomedical applications of macrocycle-based STPs. Especially, we will discuss macrocycle-based STPs with diverse structures and responsive functional characteristics and latest applications in the biomedical applications. We want to clarify the distinct structure property features of macrocycle-based STPs and reveal their promising potential in biomedical applications. We hope this chapter could provide a reference or inspirations for chemists working on macrocycle-based STPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehn J-M (1988) Supramolecular chemistry – scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew Chem Int Ed Engl 27(1):89–112. https://doi.org/10.1002/anie.198800891

    Article  Google Scholar 

  2. Lehn J-M (2017) Supramolecular chemistry: where from? Where to? Chem Soc Rev 46(9):2378–2379. https://doi.org/10.1039/C7CS00115K

    Article  CAS  PubMed  Google Scholar 

  3. Webber MJ, Langer R (2017) Drug delivery by supramolecular design. Chem Soc Rev 46(21):6600–6620. https://doi.org/10.1039/C7CS00391A

    Article  CAS  PubMed  Google Scholar 

  4. Yang L, Tan X, Wang Z, Zhang X (2015) Supramolecular polymers: historical development, preparation, characterization, and functions. Chem Rev 115(15):7196–7239. https://doi.org/10.1021/cr500633b

    Article  CAS  PubMed  Google Scholar 

  5. Qu D-H, Wang Q-C, Zhang Q-W, Ma X, Tian H (2015) Photoresponsive host–guest functional systems. Chem Rev 115(15):7543–7588. https://doi.org/10.1021/cr5006342

    Article  CAS  PubMed  Google Scholar 

  6. Zhou J, Yu G, Huang F (2017) Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 46(22):7021–7053. https://doi.org/10.1039/C6CS00898D

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, Nalluri SKM, Stoddart JF (2017) Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem Soc Rev 46(9):2459–2478. https://doi.org/10.1039/C7CS00185A

    Article  CAS  PubMed  Google Scholar 

  8. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89(26):7017–7036. https://doi.org/10.1021/ja01002a035

    Article  CAS  Google Scholar 

  9. Zheng B, Wang F, Dong S, Huang F (2012) Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 41(5):1621–1636. https://doi.org/10.1039/C1CS15220C

    Article  CAS  PubMed  Google Scholar 

  10. Tso W-W, Fung W-P, Tso M-YW (1981) Variability of crown ether toxicity. J Inorg Biochem 14(3):237–244. https://doi.org/10.1016/S0162-0134(00)80003-3

    Article  CAS  Google Scholar 

  11. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  12. Crini G (2014) Review: a history of Cyclodextrins. Chem Rev 114(21):10940–10975. https://doi.org/10.1021/cr500081p

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Liu Y (2010) Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev 39(2):495–505. https://doi.org/10.1039/B816354P

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65(9):1215–1233. https://doi.org/10.1016/j.addr.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  15. Villalonga R, Cao R, Fragoso A (2007) Supramolecular chemistry of Cyclodextrins in enzyme technology. Chem Rev 107(7):3088–3116. https://doi.org/10.1021/cr050253g

    Article  CAS  PubMed  Google Scholar 

  16. Shinkai S (1993) Calixarenes – the third generation of supramolecules. Tetrahedron 49(40):8933–8968. https://doi.org/10.1016/S0040-4020(01)91215-3

    Article  CAS  Google Scholar 

  17. Nimse SB, Kim T (2013) Biological applications of functionalized calixarenes. Chem Soc Rev 42(1):366–386. https://doi.org/10.1039/C2CS35233H

    Article  CAS  PubMed  Google Scholar 

  18. Dondoni A, Marra A (2010) Calixarene and calixresorcarene glycosides: their synthesis and biological applications. Chem Rev 110(9):4949–4977. https://doi.org/10.1021/cr100027b

    Article  CAS  PubMed  Google Scholar 

  19. Behrend R, Meyer E, Rusche F (1905) I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd. Justus Liebigs Ann Chem 339(1):1–37. https://doi.org/10.1002/jlac.19053390102

    Article  Google Scholar 

  20. Freeman WA, Mock WL, Shih NY (1981) Cucurbituril. J Am Chem Soc 103(24):7367–7368. https://doi.org/10.1021/ja00414a070

    Article  CAS  Google Scholar 

  21. Kim J, Jung I-S, Kim S-Y, Lee E, Kang J-K, Sakamoto S, Yamaguchi K, Kim K (2000) New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc 122(3):540–541. https://doi.org/10.1021/ja993376p

    Article  CAS  Google Scholar 

  22. Assaf KI, Nau WM (2015) Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem Soc Rev 44(2):394–418. https://doi.org/10.1039/C4CS00273C

    Article  CAS  PubMed  Google Scholar 

  23. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115(22):12320–12406. https://doi.org/10.1021/acs.chemrev.5b00341

    Article  CAS  PubMed  Google Scholar 

  24. Shen F-F, Chen K, Zhang Y-Q, Zhu Q-J, Tao Z, Cong H (2016) Mono- and dihydroxylated symmetrical octamethylcucurbiturils and allylated derivatives. Org Lett 18(21):5544–5547. https://doi.org/10.1021/acs.orglett.6b02789

    Article  CAS  PubMed  Google Scholar 

  25. Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X (2012) Cucurbituril chemistry: a tale of supramolecular success. RSC Adv 2(4):1213–1247. https://doi.org/10.1039/C1RA00768H

    Article  CAS  Google Scholar 

  26. Shetty D, Khedkar JK, Park KM, Kim K (2015) Can we beat the biotin–avidin pair?: cucurbit[7]uril-based ultrahigh affinity host–guest complexes and their applications. Chem Soc Rev 44(23):8747–8761. https://doi.org/10.1039/C5CS00631G

    Article  CAS  PubMed  Google Scholar 

  27. Ogoshi T, Kanai S, Fujinami S, Yamagishi T-a, Nakamoto Y (2008) Para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc 130(15):5022–5023. https://doi.org/10.1021/ja711260m

    Article  CAS  PubMed  Google Scholar 

  28. Ogoshi T, Yamagishi T-a (2013) Pillararenes: versatile synthetic receptors for supramolecular chemistry. Eur J Org Chem 2013(15):2961–2975. https://doi.org/10.1002/ejoc.201300079

    Article  CAS  Google Scholar 

  29. Ogoshi T, Demachi K, Kitajima K, Yamagishi T-a (2011) Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure. Chem Commun 47(25):7164–7166. https://doi.org/10.1039/C1CC12333E

    Article  CAS  Google Scholar 

  30. Xue M, Yang Y, Chi X, Zhang Z, Huang F (2012) Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc Chem Res 45(8):1294–1308. https://doi.org/10.1021/ar2003418

    Article  CAS  PubMed  Google Scholar 

  31. Ogoshi T, Yamagishi T-a, Nakamoto Y (2016) Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev 116(14):7937–8002. https://doi.org/10.1021/acs.chemrev.5b00765

    Article  CAS  PubMed  Google Scholar 

  32. Zhu Z, Hong M, Guo D, Shi J, Tao Z, Chen J (2014) All-solid-state Lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J Am Chem Soc 136(47):16461–16464. https://doi.org/10.1021/ja507852t

    Article  CAS  PubMed  Google Scholar 

  33. Jie K, Liu M, Zhou Y, Little MA, Bonakala S, Chong SY, Stephenson A, Chen L, Huang F, Cooper AI (2017) Styrene purification by guest-induced restructuring of pillar[6]arene. J Am Chem Soc 139(8):2908–2911. https://doi.org/10.1021/jacs.6b13300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu G, Yu W, Shao L, Zhang Z, Chi X, Mao Z, Gao C, Huang F (2016) Fabrication of a targeted drug delivery system from a pillar[5]arene-based supramolecular diblock copolymeric amphiphile for effective cancer therapy. Adv Funct Mater 26(48):8999–9008. https://doi.org/10.1002/adfm.201601770

    Article  CAS  Google Scholar 

  35. Kaczmarek A, Kennedy JF (2007) Int J Biol Macromol 40(4):396–397. https://doi.org/10.1016/j.ijbiomac.2006.09.005

    Article  CAS  Google Scholar 

  36. Dong R, Zhou Y, Zhu X (2014) Supramolecular dendritic polymers: from synthesis to applications. Acc Chem Res 47(7):2006–2016. https://doi.org/10.1021/ar500057e

    Article  CAS  PubMed  Google Scholar 

  37. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Supramolecular polymers. Chem Rev 101(12):4071–4098. https://doi.org/10.1021/cr990125q

    Article  CAS  PubMed  Google Scholar 

  38. de Greef TFA, Meijer EW (2008) Supramolecular polymers. Nature 453:171. https://doi.org/10.1038/453171a

    Article  CAS  PubMed  Google Scholar 

  39. Dong S, Zheng B, Wang F, Huang F (2014) Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Acc Chem Res 47(7): 1982–1994. https://doi.org/10.1021/ar5000456

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Wang Z, Zhang X (2012) Characterization of supramolecular polymers. Chem Soc Rev 41(18):5922–5932. https://doi.org/10.1039/C2CS35084J

    Article  CAS  PubMed  Google Scholar 

  41. Ma X, Tian H (2014) Stimuli-responsive supramolecular polymers in aqueous solution. Acc Chem Res 47(7):1971–1981. https://doi.org/10.1021/ar500033n

    Article  CAS  PubMed  Google Scholar 

  42. Goor OJGM, Hendrikse SIS, Dankers PYW, Meijer EW (2017) From supramolecular polymers to multi-component biomaterials. Chem Soc Rev 46(21):6621–6637. https://doi.org/10.1039/C7CS00564D

    Article  CAS  PubMed  Google Scholar 

  43. Webber MJ, Appel EA, Meijer EW, Langer R (2015) Supramolecular biomaterials. Nat Mater 15:13. https://doi.org/10.1038/nmat4474

    Article  CAS  Google Scholar 

  44. Xue M, Yang Y, Chi X, Yan X, Huang F (2015) Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem Rev 115(15): 7398–7501. https://doi.org/10.1021/cr5005869

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Yang Y, Xu F, Liang T, Wen H, Tian W (2019) Pillararene-based supramolecular polymers. Chem Commun 55:271. https://doi.org/10.1039/C8CC08085B

    Article  CAS  Google Scholar 

  46. Tian W, Li X, Wang J (2017) Supramolecular hyperbranched polymers. Chem Commun 53(17):2531–2542. https://doi.org/10.1039/C6CC09678F

    Article  CAS  Google Scholar 

  47. Yebeutchou RM, Tancini F, Demitri N, Geremia S, Mendichi R, Dalcanale E (2008) Host–guest driven self-assembly of linear and star supramolecular polymers. Angew Chem Int Ed 47(24):4504–4508. https://doi.org/10.1002/anie.200801002

    Article  CAS  Google Scholar 

  48. Dong R, Pang Y, Su Y, Zhu X (2015) Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomater Sci 3(7):937–954. https://doi.org/10.1039/C4BM00448E

    Article  CAS  PubMed  Google Scholar 

  49. Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335(6070):813–817. https://doi.org/10.1126/science.1205962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen W, Kretzschmann A, Tian W, Wu S (2018) Nonlinear supramolecular polymers for therapeutic applications. Adv Ther 1800103. https://doi.org/10.1002/adtp.201800103

  51. Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98(5):2045–2076. https://doi.org/10.1021/cr970025p

    Article  CAS  PubMed  Google Scholar 

  52. Lu Y, Aimetti AA, Langer R, Gu Z (2016) Bioresponsive materials. Nat Rev Mater 2:16075. https://doi.org/10.1038/natrevmats.2016.75. https://www.nature.com/articles/natrevmats201675#supplementary-information

    Article  CAS  Google Scholar 

  53. Dong R, Zhou Y, Huang X, Zhu X, Lu Y, Shen J (2014) Functional supramolecular polymers for biomedical applications. Adv Mater 27(3):498–526. https://doi.org/10.1002/adma.201402975

    Article  CAS  PubMed  Google Scholar 

  54. Zheng Y, Li S, Weng Z, Gao C (2015) Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 44(12):4091–4130. https://doi.org/10.1039/c4cs00528g

    Article  CAS  PubMed  Google Scholar 

  55. Wang D, Zhao T, Zhu X, Yan D, Wang W (2015) Bioapplications of hyperbranched polymers. Chem Soc Rev 44(12):4023–4071. https://doi.org/10.1039/c4cs00229f

    Article  CAS  PubMed  Google Scholar 

  56. Huang F, Anslyn EV (2015) Introduction: supramolecular chemistry. Chem Rev 115(15): 6999–7000. https://doi.org/10.1021/acs.chemrev.5b00352

    Article  CAS  PubMed  Google Scholar 

  57. Huang F, Gibson HW (2004) Formation of a supramolecular hyperbranched polymer from self-organization of an AB2 monomer containing a crown ether and two paraquat moieties. J Am Chem Soc 126(45):14738–14739. https://doi.org/10.1021/ja044830e

    Article  CAS  PubMed  Google Scholar 

  58. Ge Z, Hu J, Huang F, Liu S (2009) Responsive supramolecular gels constructed by crown ether based molecular recognition. Angew Chem Int Ed 48(10):1798–1802. https://doi.org/10.1002/anie.200805712

    Article  CAS  Google Scholar 

  59. Li H, Fan X, Tian W, Zhang H, Zhang W, Yang Z (2014) A supramolecular hyperbranched polymer based on molecular recognition between benzo-21-crown-7 and secondary ammonium salt. Chem Commun 50(93):14666–14669. https://doi.org/10.1039/c4cc07171a

    Article  CAS  Google Scholar 

  60. Li L, He L, Wang B, Ge P, Jing L, Liu H, Gong C, Zhang B, Zhang J, Bu W (2018) Secondary dialkylammonium salt/crown ether[2]pseudorotaxanes as nanostructured platforms for proton transport. Chem Commun 54(58):8092–8095. https://doi.org/10.1039/c8cc04518f

    Article  CAS  Google Scholar 

  61. Yu B, Wang B, Guo S, Zhang Q, Zheng X, Lei H, Liu W, Bu W, Zhang Y, Chen X (2013) pH-controlled reversible formation of a supramolecular hyperbranched polymer showing fluorescence switching. Chem Eur J 19(15):4922–4930. https://doi.org/10.1002/chem.201204315

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J, Zhu J, Lu C, Gu Z, He T, Yang A, Qiu H, Zhang M, Yin S (2016) A hyperbranched fluorescent supramolecular polymer with aggregation induced emission (AIE) properties. Polym Chem 7:4317–4321. https://doi.org/10.1039/c6py00872k

    Article  CAS  Google Scholar 

  63. Nakahata M, Takashima Y, Hashidzume A, Harada A (2013) ReDOX-generated mechanical motion of a supramolecular polymeric actuator based on host–guest interactions. Angew Chem Int Ed 52(22):5731–5735. https://doi.org/10.1002/anie.201300862

    Article  CAS  Google Scholar 

  64. Sun R, Xue C, Ma X, Gao M, Tian H, Li Q (2013) Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of Bis(p-sulfonatocalix[4]arene) and pseudorotaxane. J Am Chem Soc 135(16):5990–5993. https://doi.org/10.1021/ja4016952

    Article  CAS  PubMed  Google Scholar 

  65. Harada A, Takashima Y, Nakahata M (2014) Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc Chem Res 47(7):2128–2140. https://doi.org/10.1021/ar500109h

    Article  CAS  PubMed  Google Scholar 

  66. Huan X, Wang D, Dong R, Tu C, Zhu B, Yan D, Zhu X (2012) Supramolecular ABC Miktoarm star terpolymer based on host-guest inclusion complexation. Macromolecules 45(15):5941–5947. https://doi.org/10.1021/ma300693h

    Article  CAS  Google Scholar 

  67. Liu Y, Yu C, Jin H, Jiang B, Zhu X, Zhou Y, Lu Z, Yan D (2013) A supramolecular janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution. J Am Chem Soc 135(12):4765–4770. https://doi.org/10.1021/ja3122608

    Article  CAS  PubMed  Google Scholar 

  68. Zhang D, Liu Y, Fan Y, Yu C, Zheng Y, Jin H, Fu L, Zhou Y, Yan D (2016) Hierarchical self-assembly of a dandelion-like supramolecular polymer into nanotubes for use as highly efficient aqueous light-harvesting systems. Adv Funct Mater 26:7652–7661. https://doi.org/10.1002/adfm.201603118

    Article  CAS  Google Scholar 

  69. Yang Z, Fan X, Tian W, Wang D, Zhang H, Bai Y (2014) Nonionic cyclodextrin based binary system with upper and lower critical solution temperature transitions via supramolecular inclusion interaction. Langmuir 30(25):7319–7326. https://doi.org/10.1021/la501278n

    Article  CAS  PubMed  Google Scholar 

  70. Zhang H, Fan X, Tian W, Suo R, Yang Z, Bai Y, Zhang W (2015) Ultrasound-driven secondary self-assembly of amphiphilic β-cyclodextrin dimers. Chem Eur J 21(13):5000–5008. https://doi.org/10.1002/chem.201405707

    Article  CAS  PubMed  Google Scholar 

  71. Bai Y, Fan X, Tian W, Liu T, Yao H, Yang Z, Zhang H, Zhang W (2015) Morphology transitions of supramolecular hyperbranched polymers induced by double supramolecular driving forces. Polym Chem 6:732–737. https://doi.org/10.1039/c4py01092b

    Article  CAS  Google Scholar 

  72. Bai Y, Fan X, Yao H, Yang Z, Liu T, Zhang H, Zhang W, Tian W (2015) Probing into the supramolecular driving force of an amphiphilic β-cyclodextrin dimer in various solvents: host-guest recognition or hydrophilic-hydrophobic interaction? J Phys Chem B 119(35): 11893–11899. https://doi.org/10.1021/acs.jpcb.5b05317

    Article  CAS  PubMed  Google Scholar 

  73. Liu T, Wang S, Song Y, Li J, Yan H, Tian W (2017) ABx-type amphiphilic macromonomer-based supramolecular hyperbranched polymers for controllable self-assembly. Polym Chem 8:1306–1314. https://doi.org/10.1039/c6py02215d

    Article  CAS  Google Scholar 

  74. Fang R, Liu Y, Wang Z, Zhang X (2013) Water-soluble supramolecular hyperbranched polymers based on host-enhanced π–π interaction. Polym Chem 4:900–903. https://doi.org/10.1039/c2py21037a

    Article  CAS  Google Scholar 

  75. Liu Y, Huang Z, Liu K, Kelgtermans H, Dehaen W, Wang Z, Zhang X (2014) Porphyrin-containing hyperbranched supramolecular polymers: enhancing 1O2-generation efficiency by supramolecular polymerization. Polym Chem 5:53–56. https://doi.org/10.1039/c3py01036h

    Article  CAS  Google Scholar 

  76. Yang H, Ma Z, Wang Z, Zhang X (2014) Fabricating covalently attached hyperbranched polymers by combining photochemistry with supramolecular polymerization. Polym Chem 5:1471–1476. https://doi.org/10.1039/c3py01237a

    Article  CAS  Google Scholar 

  77. Zhang K, Tian J, Hanifi D, Zhang Y, Sue AC, Zhou T, Zhang L, Zhao X, Liu Y, Li Z (2013) Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water. J Am Chem Soc 135(47):17913–17918. https://doi.org/10.1021/ja4086935

    Article  CAS  PubMed  Google Scholar 

  78. Wang W, Wang X, Cao J, Liu J, Qi B, Zhou X, Zhang S, Gabel D, Nau WM, Assaf KI, Zhang H (2018) The chaotropic effect as an orthogonal assembly motif for multi-responsive dodecaborate-cucurbituril supramolecular networks. Chem Commun 54(17):2098–2101. https://doi.org/10.1039/c7cc08078f

    Article  CAS  Google Scholar 

  79. Guo D, Liu Y (2012) Calixarene-based supramolecular polymerization in solution. Chem Soc Rev 41(18):5907–5921. https://doi.org/10.1039/c2cs35075k

    Article  CAS  PubMed  Google Scholar 

  80. Rudzevich Y, Rudzevich V, Moon C, Schnell I, Fischer K, Böhmer V (2005) Self-assembly of programmed building blocks into structurally uniform dendrimers. J Am Chem Soc 127(41):14168–14169. https://doi.org/10.1021/ja055357n

    Article  CAS  PubMed  Google Scholar 

  81. Haino T, Matsumoto Y, Fukazawa Y (2005) Supramolecular nano networks formed by molecular-recognition-directed self-assembly of Ditopic calix[5]arene and dumbbell [60]fullerene. J Am Chem Soc 127(25):8936–8937. https://doi.org/10.1021/ja0524088

    Article  CAS  PubMed  Google Scholar 

  82. Haino T, Hirai E, Fujiwara Y, Kashihara K (2010) Supramolecular cross-linking of [60]fullerene-tagged polyphenyl-acetylene by the host–guest interaction of calix[5]arene and [60]fullerene. Angew Chem Int Ed 49(43):7899–7903. https://doi.org/10.1002/anie.201004074

    Article  CAS  Google Scholar 

  83. Guo D, Chen K, Zhang H, Liu Y (2009) Nano-supramolecular assemblies constructed from water-soluble bis (calix[5]arenes) with porphyrins and their photoinduced electron transfer properties. Chem Asian J 4(3):436–445. https://doi.org/10.1002/asia.200800410

    Article  CAS  PubMed  Google Scholar 

  84. Li C (2014) Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem Commun 50(83):12420–12433. https://doi.org/10.1039/c4cc03170a

    Article  CAS  Google Scholar 

  85. Wang X, Deng H, Li J, Zheng K, Jia X, Li C (2013) A neutral supramolecular hyperbranched polymer fabricated from an AB2-type copillar[5]arene. Macromol Rapid Commun 34:1856–1862. https://doi.org/10.1002/marc.201300731

    Article  CAS  PubMed  Google Scholar 

  86. Li C, Han K, Li J, Zhang Y, Chen W, Yu Y, Jia X (2013) Supramolecular polymers based on efficient pillar[5]arene-neutral guest motifs. Chem Eur J 19(36):11892–11897. https://doi.org/10.1002/chem.201301022

    Article  CAS  PubMed  Google Scholar 

  87. Wang Y, Ping G, Li C (2016) Efficient complexation between pillar[5]arenes and neutral guests: from host-guest chemistry to functional materials. Chem Commun 52(64):9858–9872. https://doi.org/10.1039/c6cc03999e

    Article  CAS  Google Scholar 

  88. Sun S, Hu X, Chen D, Shi J, Dong Y, Lin C, Pan Y, Wang L (2013) Pillar[5]arene-based side-chain polypseudorotaxanes as an anion-responsive fluorescent sensor. Polym Chem 4:2224–2229. https://doi.org/10.1039/c3py00162h

    Article  CAS  Google Scholar 

  89. Shao L, Sun J, Hua B, Huang F (2018) An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host-guest recognition: construction and application in explosive detection. Chem Commun 54(38):4866–4869. https://doi.org/10.1039/c8cc02077a

    Article  CAS  Google Scholar 

  90. Miyauchi M, Harada A (2004) Construction of supramolecular polymers with alternating α-, β-cyclodextrin units using conformational change induced by competitive guests. J Am Chem Soc 126(37):11418–11419. https://doi.org/10.1021/ja046562q

    Article  CAS  PubMed  Google Scholar 

  91. Wang F, Han C, He C, Zhou Q, Zhang J, Wang C, Li N, Huang F (2008) Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers. J Am Chem Soc 130(34):11254–11255. https://doi.org/10.1021/ja8035465

    Article  CAS  PubMed  Google Scholar 

  92. Tomimasu N, Kanaya A, Takashima Y, Yamaguchi H, Harada A (2009) Social self-sorting: alternating supramolecular oligomer consisting of isomers. J Am Chem Soc 131(34): 12339–12343. https://doi.org/10.1021/ja903988c

    Article  CAS  PubMed  Google Scholar 

  93. Huang Z, Yang L, Liu Y, Wang Z, Scherman OA, Zhang X (2014) Supramolecular polymerization promoted and controlled through self-sorting. Angew Chem Int Ed 53(21):5351–5355. https://doi.org/10.1002/anie.201402817

    Article  CAS  Google Scholar 

  94. Li H, Fan X, Shang X, Qi M, Zhang H, Tian W (2016) A triple-monomer methodology to construct controllable supramolecurlar hyperbanched alternating polymers. Polym Chem 7:4322–4325. https://doi.org/10.1039/c6py00869k

    Article  CAS  Google Scholar 

  95. Li H, Fan X, Min X, Qian Y, Tian W (2017) Controlled supramolecular architecture transformation from homopolymer to copolymer through competitive self-sorting method. Macromol Rapid Commun 38(5):1600631. https://doi.org/10.1002/marc.201600631

    Article  CAS  Google Scholar 

  96. Li Z, Zhang Y, Zhang C, Chen L, Wang C, Tan H, Yu Y, Li X, Yang H (2014) Cross-linked supramolecular polymer gels constructed from discrete multi-pillar[5]arene metallacycles and their multiple stimuli-responsive behavior. J Am Chem Soc 136(24):8577–8589. https://doi.org/10.1021/ja413047r

    Article  CAS  PubMed  Google Scholar 

  97. Li H, Chen W, Xu F, Fan X, Liang T, Qi X, Tian W (2018) A color-tunable fluorescent supramolecular hyperbranched polymer constructed by pillar[5]arene-based host-guest recognition and metal ion coordination interaction. Macromol Rapid Commun 39(10):1800053. https://doi.org/10.1002/marc.201800053

    Article  CAS  Google Scholar 

  98. Yao X, Chen L, Chen X, Zhang Z, Zheng H, He C, Zhang J, Chen X (2014) Intracellular pH-sensitive metallo-supramolecular nanogels for anticancer drug delivery. ACS Appl Mater Interfaces 6(10):7816–7822. https://doi.org/10.1021/am501093a

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Y, Duan J, Cai L, Ma D, Xue W (2016) Supramolecular aggregate as a high-efficiency gene carrier mediated with optimized assembly structure. ACS Appl Mater Interfaces 8(43):29343–29355. https://doi.org/10.1021/acsami.6b11390

    Article  CAS  PubMed  Google Scholar 

  100. Wang S, Chen K-J, Wu T-H, Wang H, Lin W-Y, Ohashi M, Chiou P-Y, Tseng H-R (2010) Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of. Cancer Cells 49(22):3777–3781. https://doi.org/10.1002/anie.201000062

    Article  CAS  Google Scholar 

  101. Luo G-F, Xu X-D, Zhang J, Yang J, Gong Y-H, Lei Q, Jia H-Z, Li C, Zhuo R-X, Zhang X-Z (2012) Encapsulation of an adamantane-DOXorubicin prodrug in pH-responsive polysaccharide capsules for controlled release. ACS Appl Mater Interfaces 4(10):5317–5324. https://doi.org/10.1021/am301258a

    Article  CAS  PubMed  Google Scholar 

  102. Ping Y, Hu Q, Tang G, Li J (2013) FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and reDOX-sensitive PEG. Biomaterials 34(27):6482–6494. https://doi.org/10.1016/j.biomaterials.2013.03.071

    Article  CAS  PubMed  Google Scholar 

  103. Wang H, Wang Y, Wang Y, Hu J, Li T, Liu H, Zhang Q, Cheng Y (2015) Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew Chem Int Ed Engl 54(40):11647–11651. https://doi.org/10.1002/anie.201501461

    Article  CAS  PubMed  Google Scholar 

  104. Xu F-J (2018) Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: from strategic design to nucleic acid delivery applications. Prog Polym Sci 78:56–91. https://doi.org/10.1016/j.progpolymsci.2017.09.003

    Article  CAS  Google Scholar 

  105. Yin L, Song Z, Kim KH, Zheng N, Gabrielson NP, Cheng J (2013) Non-viral gene delivery via membrane-penetrating, mannose-targeting supramolecular self-assembled nanocomplexes. Adv Mater 25(22):3063–3070. https://doi.org/10.1002/adma.201205088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ren Y, Li R-Q, Cai Y-R, Xia T, Yang M, Xu F-J (2016) Effective codelivery of lncRNA and pDNA by pullulan-based nanovectors for promising therapy of hepatocellular carcinoma. Adv Funct Mater 26(40):7314–7325. https://doi.org/10.1002/adfm.201603041

    Article  CAS  Google Scholar 

  107. Wang H, Liu Y, Xu C, Wang X, Chen G-R, James TD, Zang Y, Li J, Ma X, He X-P (2018) Supramolecular glyco-poly-cyclodextrin functionalized thin-layer manganese dioxide for targeted stimulus-responsive bioimaging. Chem Commun 54(32):4037–4040. https://doi.org/10.1039/C8CC00920A

    Article  CAS  Google Scholar 

  108. Dong R, Ravinathan SP, Xue L, Li N, Zhang Y, Zhou L, Cao C, Zhu X (2016) Dual-responsive aggregation-induced emission-active supramolecular nanoparticles for gene delivery and bioimaging. Chem Commun 52(51):7950–7953. https://doi.org/10.1039/C6CC02794F

    Article  CAS  Google Scholar 

  109. Garrigue P, Tang J, Ding L, Bouhlel A, Tintaru A, Laurini E, Huang Y, Lyu Z, Zhang M, Fernandez S, Balasse L, Lan W, Mas E, Marson D, Weng Y, Liu X, Giorgio S, Iovanna J, Pricl S, Guillet B, Peng L (2018) Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc Natl Acad Sci 115(45):11454–11459. https://doi.org/10.1073/pnas.1812938115

    Article  CAS  PubMed  Google Scholar 

  110. Li H, Wu J, Yin J-F, Wang H, Wu Y, Kuang G-C (2018) Photoresponsive, water-soluble supramolecular dendronized polymer with specific lysosome-targetable bioimaging application in living cells. Macromol Rapid Commun 1800714. https://doi.org/10.1002/marc.201800714

  111. Li J-M, Wang Y-Y, Zhao M-X, Tan C-P, Li Y-Q, Le X-Y, Ji L-N, Mao Z-W (2012) Multifunctional QD-based co-delivery of siRNA and DOXorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking. Biomaterials 33(9):2780–2790. https://doi.org/10.1016/j.biomaterials.2011.12.035

    Article  CAS  PubMed  Google Scholar 

  112. Yu J, Chen Y, Zhang Y-H, Xu X, Liu Y (2016) Supramolecular assembly of coronene derivatives for drug delivery. Org Lett 18(18):4542–4545. https://doi.org/10.1021/acs.orglett.6b02183

    Article  CAS  PubMed  Google Scholar 

  113. Zhang H, Fan X, Suo R, Li H, Yang Z, Zhang W, Bai Y, Yao H, Tian W (2015) Reversible morphology transitions of supramolecular polymer self-assemblies for switch-controlled drug release. Chem Commun 51(84):15366–15369. https://doi.org/10.1039/C5CC05579B

    Article  CAS  Google Scholar 

  114. Zhang H, Tian W, Suo R, Yue Y, Fan X, Yang Z, Li H, Zhang W, Bai Y (2015) Photo-controlled host–guest interaction as a new strategy to improve the preparation of “breathing” hollow polymer nanospheres for controlled drug delivery. J Mater Chem B 3(43):8528–8536. https://doi.org/10.1039/C5TB01665G

    Article  CAS  PubMed  Google Scholar 

  115. Chen H, Jia H, Tham HP, Qu Q, Xing P, Zhao J, Phua SZF, Chen G, Zhao Y (2017) Theranostic prodrug vesicles for imaging guided Codelivery of Camptothecin and siRNA in synergetic Cancer therapy. ACS Appl Mater Interfaces 9(28):23536–23543. https://doi.org/10.1021/acsami.7b06936

    Article  CAS  PubMed  Google Scholar 

  116. Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459(1):70–83. https://doi.org/10.1016/j.ijpharm.2013.11.041

    Article  CAS  PubMed  Google Scholar 

  117. Dong R, Zhou L, Wu J, Tu C, Su Y, Zhu B, Gu H, Yan D, Zhu X (2011) A supramolecular approach to the preparation of charge-tunable dendritic polycations for efficient gene delivery. Chem Commun 47(19):5473–5475. https://doi.org/10.1039/C1CC10934K

    Article  CAS  Google Scholar 

  118. Qi M, Duan S, Yu B, Yao H, Tian W, Xu F-J (2016) PGMA-based supramolecular hyperbranched polycations for gene delivery. Polym Chem 7(26):4334–4341. https://doi.org/10.1039/C6PY00759G

    Article  CAS  Google Scholar 

  119. Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168–1171. https://doi.org/10.1126/science.1125949

    Article  CAS  PubMed  Google Scholar 

  120. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2002) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47. https://doi.org/10.1038/nbt767

    Article  CAS  PubMed  Google Scholar 

  121. Zhu Q, Qiu F, Zhu B, Zhu X (2013) Hyperbranched polymers for bioimaging. RSC Adv 3(7):2071–2083. https://doi.org/10.1039/C2RA22210H

    Article  CAS  Google Scholar 

  122. Kim J-H, Park K, Nam HY, Lee S, Kim K, Kwon IC (2007) Polymers for bioimaging. Prog Polym Sci 32(8):1031–1053. https://doi.org/10.1016/j.progpolymsci.2007.05.016

    Article  CAS  Google Scholar 

  123. Dong R, Chen H, Wang D, Zhuang Y, Zhu L, Su Y, Yan D, Zhu X (2012) Supramolecular fluorescent nanoparticles for targeted cancer imaging. ACS Macro Lett 1(10):1208–1211. https://doi.org/10.1021/mz300375c

    Article  CAS  Google Scholar 

  124. Yu G, Zhao R, Wu D, Zhang F, Shao L, Zhou J, Yang J, Tang G, Chen X, Huang F (2016) Pillar[5]arene-based amphiphilic supramolecular brush copolymers: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polym Chem 7(40):6178–6188. https://doi.org/10.1039/C6PY01402J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank National Natural Science Foundation of China (21674086, 21374088) and Natural Science Basic Research Plan in Shaanxi Province of China (2018JZ2003) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, W., Liu, C., Song, X., Xiao, X., Qiu, S., Tian, W. (2020). Construction and Biomedical Applications of Macrocycle-Based Supramolecular Topological Polymers. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_65

Download citation

Publish with us

Policies and ethics