Skip to main content

Responsive Supramolecular Vesicles Based on Host-Guest Recognition for Biomedical Applications

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Fabrication of responsive materials is an important research area, which is intimately associated with advanced applications such as smart delivery systems, stimulus-responsive actuators, and soft robots. To achieve responsive materials, the utilization of noncovalent forces to integrate organic building units is a favorable approach. Such supramolecular self-assembly is sensitive to specific stimuli such as light, pH, temperature, and redox agents. Among noncovalent forces, host-guest interaction occurring between macrocyclic hosts and guest molecules can combine two or more species into an amphiphile system that gives rise to diverse micro-/nanostructures after the self-assembly. Compared to normal amphiphiles, host-guest amphiphiles show high sensitivity to external stimuli, demonstrating advantages in the fabrication of smart materials. In this chapter, we discuss the preparation, characterization, and application of external stimulus-responsive vesicle systems self-assembled from integrated host-guest building blocks. By summarizing recent important developments, we introduce the preparation of vesicular structures according to the type of macrocylic hosts. Then, general principles for achieving stimulus responsiveness are discussed. Finally, we highlight some biomedical applications of responsive supramolecular vesicles prepared from host-guest amphiphiles. It is expected that this chapter would provide useful information to researchers who are interested in the areas of supramolecular chemistry, self-assembly, responsive materials, and supramolecular theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Busseron E, Ruff Y, Moulin E, Giuseppone N (2013) Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5:7098

    CAS  PubMed  Google Scholar 

  2. Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335:813

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Stupp SI, Palmer LC (2014) Supramolecular chemistry and self-assembly in organic materials design. Chem Mater 26:507

    CAS  Google Scholar 

  4. Thota BNS, Urner LH, Haag R (2016) Supramolecular architectures of dendritic amphiphiles in water. Chem Rev 116:2079

    CAS  PubMed  Google Scholar 

  5. Du JZ, Tang YQ, Lewis AL, Armes SP (2005) pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J Am Chem Soc 127:17982

    CAS  PubMed  Google Scholar 

  6. Cai YS, Guo ZQ, Chen JM, Li WL, Zhong LB, Gao Y, Jing L, Chi LF, Tian H, Zhu WH (2016) Enabling light work in helical self-assembly for dynamic amplification of chirality with photoreversibility. J Am Chem Soc 138:2219

    CAS  PubMed  Google Scholar 

  7. Al-Ahmady Z, Kostarelos K (2016) Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem Rev 116:3883

    CAS  PubMed  Google Scholar 

  8. Chen X, He Y, Kim YJ, Lee M (2016) Reversible, short α-peptide assembly for controlled capture and selective release of enantiomers. J Am Chem Soc 138:5773

    CAS  PubMed  Google Scholar 

  9. Zheng HQ, Zhang YN, Liu LF, Wan W, Guo P, Nyström AM, Zou XD (2016) One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138:962

    CAS  PubMed  Google Scholar 

  10. Liu ZS, Calvert P (2000) Multilayer hydrogels as muscle-like actuators. Adv Mater 12:288

    CAS  Google Scholar 

  11. Zheng WJ, An N, Yang JH, Zhou JX, Chen YM (2015) Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl Mater Interfaces 7:1758

    CAS  PubMed  Google Scholar 

  12. Wang KC, Lv XL, Feng DW, Li J, Chen SM, Sun JL, Song L, Xie YB, Li JR, Zhou HC (2016) Pyrazolate-based porphyrinic metal-organic framework with extraordinary base-resistance. J Am Chem Soc 138:914

    CAS  PubMed  Google Scholar 

  13. Nakamura T, Kimura H, Okuhara T, Yamamura M, Nabeshima T (2016) A hierarchical self-assembly system built up from preorganized tripodal helical metal complexes. J Am Chem Soc 138:794

    CAS  PubMed  Google Scholar 

  14. Kim YJ, Kang J, Shen B, Wang YQ, He Y, Lee M (2015) Open-closed switching of synthetic tubular pores. Nat Commun 6:8650

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen B, He Y, Kim YJ, Wang YQ, Lee M (2016) Spontaneous capture of carbohydrate guests through folding and zipping of self-assembled ribbons. Angew Chem Int Ed 55:2382

    CAS  Google Scholar 

  16. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775

    CAS  PubMed  Google Scholar 

  17. Chi XD, Zhang HC, Vargas-Zúñiga GI, Peters GM, Sessler JL (2016) A dual-Responsive bola-type supra-amphiphile constructed from a water-soluble calix[4]pyrrole and a tetraphenylethene-containing pyridine bis-N-oxide. J Am Chem Soc 138:5829

    CAS  PubMed  Google Scholar 

  18. Zhou ZX, Yan XZ, Cook TR, Saha ML, Stang PJ (2016) Engineering functionalization in a supramolecular polymer: hierarchical self-organization of triply orthogonal non-covalent interactions on a supramolecular coordination complex platform. J Am Chem Soc 138:806

    CAS  PubMed  Google Scholar 

  19. Yao Y, Chi XD, Zhou YJ, Huang FH (2014) A bola-type supra-amphiphile constructed from a water-soluble pillar[5]arene and a rod-coil molecule for dual fluorescent sensing. Chem Sci 5:2778

    CAS  Google Scholar 

  20. Zhou Y, Jie K, Huang F (2017) A redox-responsive supramolecular amphiphile fabricated by selenium-containing pillar [5] arene-based host-guest recognition. Org Chem Front 4:2387

    CAS  Google Scholar 

  21. Zhang HC, Shen J, Liu ZN, Bai Y, An W, Hao AY (2009) Controllable vesicles based on unconventional cyclodextrin inclusion complexes. Carbohydr Res 344:2028

    CAS  PubMed  Google Scholar 

  22. Zhang HC, Xin FF, An W, Hao AY, Wang X, Zhao XH, Liu ZN, Sun LZ (2010) Oxidizing-responsive vesicles made from “tadpole-like supramolecular amphiphiles” based on inclusion complexes between driving molecules and β-cyclodextrin. Colloid Surf A 363:78

    CAS  Google Scholar 

  23. Zhao YL, Stoddart JF (2009) Azobenzene-based light-responsive hydrogel system. Langmuir 25:8442

    CAS  PubMed  Google Scholar 

  24. Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A (2010) Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed 49:7461

    CAS  Google Scholar 

  25. Zuo MZ, Qian WR, Li TH, Hu XY, Jiang JL, Wang LY (2018) Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl Mater Interfaces 10:39214

    CAS  PubMed  Google Scholar 

  26. Wang K, Wang CY, Wang Y, Li H, Bao CY, Liu JY, Xiao SXA, Zhang A, Yang YW (2013) Electrospun nanofibers and multi-responsive supramolecular assemblies constructed from a pillar[5]arene-based receptor. Chem Commun 49:10528

    CAS  Google Scholar 

  27. Nakahata M, Takashima Y, Harada A (2014) Redox-responsive macroscopic gel assembly based on discrete dual interactions. Angew Chem Int Ed 53:3617

    CAS  Google Scholar 

  28. Guo SW, Liang TXZ, Song YS, Cheng M, Hu XY, Zhu JJ, Wang LY (2017) Supramolecular polymersomes constructed from water-soluble pillar[5]arene and cationic poly(glutamamide)s and their applications in targeted anticancer drug delivery. Polym Chem 8:5718

    CAS  Google Scholar 

  29. Jiao DZ, Geng J, Loh XJ, Das D, Lee TC, Scherman OA (2012) Supramolecular peptide amphiphile vesicles through host-guest complexation. Angew Chem Int Ed 51:9633

    CAS  Google Scholar 

  30. Wu X, Gao L, Hu XY, Wang LY (2016) Supramolecular drug delivery systems based on water-soluble pillar[n]arenes. Chem Rec 16:1216

    CAS  PubMed  Google Scholar 

  31. Soussan E, Cassel S, Blanzat M, Rico-Lattes I (2009) Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Int Ed 48:274

    CAS  Google Scholar 

  32. Sinico C, Fadda AM (2009) Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv 6:813

    CAS  PubMed  Google Scholar 

  33. Dong RH, Liu WM, Hao JC (2012) Soft vesicles in the synthesis of hard materials. Acc Chem Res 45:504

    CAS  PubMed  Google Scholar 

  34. Li LJ, Zheng XR, Yu BR, He LP, Zhang J, Liu HM, Cong Y, Bu WF (2016) Supramolecular polymerization induced self-assembly into micelle and vesicle via acid-base controlled formation of fluorescence responsive supramolecular hyperbranched polymers. Polym Chem 7:287

    CAS  Google Scholar 

  35. Yan Y, Jiang LX, Huang JB (2011) Unveil the potential function of CD in surfactant systems. Phys Chem Chem Phys 13:9074

    CAS  PubMed  Google Scholar 

  36. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743

    CAS  PubMed  Google Scholar 

  37. Valle EMMD (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033

    Google Scholar 

  38. Crini G (2014) A history of cyclodextrins. Chem Rev 114:10940

    CAS  PubMed  Google Scholar 

  39. Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Koizumi K, Smith SM, Takaha T (1998) Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem Rev 98:1787

    CAS  PubMed  Google Scholar 

  40. Liu GY, Jin Q, Liu XS, Lv LP, Chen CJ, Ji J (2011) Biocompatible vesicles based on PEO-b-PMPC/α-cyclodextrin inclusion complexes for drug delivery. Soft Matter 7:662

    CAS  Google Scholar 

  41. Jing B, Chen X, Wang XD, Yang CJ, Xie YZ, Qiu HY (2007) Self-assembly vesicles made from a cyclodextrin supramolecular complex. Chem Eur J 13:9137

    CAS  PubMed  Google Scholar 

  42. Yan Q, Yuan JY, Cai ZN, Xin Y, Kang Y, Yin YW (2010) Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc 132:9268

    CAS  PubMed  Google Scholar 

  43. Chen HZ, Jia H, Jun H, Tham P, Qu QY, Xing PY, Zhao J, Phua SZF, Chen G, Zhao YL (2017) Theranostic prodrug vesicles for imaging guided codelivery of camptothecin and siRNA in synergetic cancer therapy. ACS Appl Mater Interfaces 9:23536

    CAS  PubMed  Google Scholar 

  44. Wang YP, Ma N, Wang ZQ, Zhang X (2007) Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with α-cyclodextrin. Angew Chem Int Ed 46:2823

    CAS  Google Scholar 

  45. Nalluri SKM, Ravoo BJ (2010) Light-responsive molecular recognition and adhesion of vesicles. Angew Chem Int Ed 49:5371

    CAS  Google Scholar 

  46. Zhang JJ, Shen XH (2013) Temperature-induced reversible transition between vesicle and supramolecular hydrogel in the aqueous ionic liquid-β-cyclodextrin system. J Phys Chem B 117:145

    Google Scholar 

  47. Zhu JL, Liu KL, Wen YT, Song X, Li J (2016) Host-guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery. Nanoscale 8:1332

    CAS  PubMed  Google Scholar 

  48. Zhou CC, Cheng XH, Yan Y, Wang J, Huang JB (2014) Reversible transition between SDS@2β-CD microtubes and vesicles triggered by temperature. Langmuir 30:3381

    Google Scholar 

  49. Jiang LX, Peng Y, Yan Y, Huang JB (2011) Aqueous self-assembly of SDS@2β-CD complexes: lamellae and vesicles. Soft Matter 7:1726

    CAS  Google Scholar 

  50. Jiang LX, Peng Y, Yan Y, Deng ML, Wang YL, Huang JB (2010) “Annular ring” microtubes formed by SDS@2β-CD complexes in aqueous solution. Soft Matter 6:1731

    CAS  Google Scholar 

  51. Jiang LX, Yan Y, Drechsler M, Huang JB (2012) Enzyme-triggered model self-assembly in surfactant-cyclodextrin systems. Chem Commun 48:7347

    CAS  Google Scholar 

  52. Sun T, Yan H, Xing PY, Su J, Li SY, Hao A (2013) Cu(II)-triggered release of paclitaxel from a supramolecular complex. Supramol Chem 25:302

    CAS  Google Scholar 

  53. Li SY, Xing PY, Hou YH, Yang JS, Yang XZ, Wang B, Hao AY (2013) Formation of a sheet-like hydrogel from vesicles via precipitates based on an ionic liquid-based surfactant and β-cyclodextrin. J Mol Liq 188:74

    CAS  Google Scholar 

  54. Sun T, Li YM, Zhang HC, Li JY, Xin FF, Kong L, Hao AY (2011) pH-reversible vesicles based on the “supramolecular amphiphiles” formed by cyclodextrin and anthraquinone derivate. Colloids Surf A Physicochem Eng Asp 375:87

    CAS  Google Scholar 

  55. Sun T, Guo Q, Zhang C, Hao JC, Xing PY, Su J, Li SY, Hao AY, Liu GC (2012) Self-assembled vesicles prepared from amphiphilic cyclodextrins as drug carriers. Langmuir 28:8625

    CAS  PubMed  Google Scholar 

  56. Sun T, Zhang HC, Yan H, Li JY, Cheng GH, Hao AY, Qiao HW, Xin FF (2011) Sensitive fluorescent vesicles based on the supramolecular inclusion of β-cyclodextrins with N-alkylamino-l-anthraquinone. Supramol Chem 23:351

    CAS  Google Scholar 

  57. Ma MF, Luan TX, Yang MM, Liu B, Wang YJ, An W, Wang B, Tang RP, Hao AY (2017) Self-assemblies of cyclodextrin derivatives modified by ferrocene with multiple stimulus responsiveness. Soft Matter 13:1534

    CAS  PubMed  Google Scholar 

  58. Sun T, Yan H, Liu GC, Hao JC, Su J, Li SY, Xing PY, Hao AY (2012) Strategy of directly employing paclitaxel to construct vesicles. J Phys Chem B 116:14628

    CAS  PubMed  Google Scholar 

  59. Sun LZ, Zhang HC, An W, Hao AY, Hao JC (2010) Vesicles prepared by β-cyclodextrins inclusion complexes based on switching supramolecular interaction models induced by mixed solvents. J Incl Phenom Macrocycl Chem 68:277

    CAS  Google Scholar 

  60. Sun T, Ma MF, Yan H, Shen J, Su J, Hao AY (2013) Vesicular particles directly assembled from the cyclodextrin/UR-144 supramolecular amphiphiles. Colloids Surf A Physicochem Eng Asp 424:105

    CAS  Google Scholar 

  61. An W, Zhang HC, Sun LZ, Hao AY, Hao JC, Xin FF (2010) Reversible vesicles based on one and two head supramolecular cyclodextrin amphiphile induced by methanol. Carbohydr Res 345:914

    CAS  PubMed  Google Scholar 

  62. Li SY, Zhang L, Wang B, Ma MF, Xing PY, Chu XX, Zhang YM, Hao AY (2015) An easy approach for constructing vesicles by using aromatic molecules with β-cyclodextrin. Soft Matter 11:1767

    PubMed  Google Scholar 

  63. Zhou CC, Cheng XH, Zhao Q, Yan Y, Wang J, Huang JB (2013) Self-assembly of nonionic surfactant tween 20@2β-CD inclusion complexes in dilute solution. Langmuir 29:13175

    CAS  PubMed  Google Scholar 

  64. Ma MF, Sun T, Xing PY, Li ZL, Li SY, Su J, Chu XX, Hao AY (2014) A supramolecular curcumin vesicle and its application in controlling curcumin release. Colloids Surf A Physicochem Eng Asp 459:157

    CAS  Google Scholar 

  65. Kong L, Sun T, Xin FF, Zhao WJ, Zhang HC, Li ZL, Li YM, Hou YH, Li SY, Hao AY (2011) Lithium chloride-induced organogel transformed from precipitate based on cyclodextrin complexes. Colloids Surf A Physicochem Eng Asp 392:156

    CAS  Google Scholar 

  66. Ma MF, Xu SG, Xing PY, Li SY, Chu XX, Hao AY (2015) A multistimuli-responsive supramolecular vesicle constructed by cyclodextrins and tyrosine. Colloid Polym Sci 293:891

    CAS  Google Scholar 

  67. Li SY, Hao AY, Shen J, Shang NZ, Wang C (2018) UV and pH-responsive supra-amphiphile driven by combined interactions for controlled self-assembly behaviors. Soft Matter 14:2112

    CAS  PubMed  Google Scholar 

  68. Sun T, Li YM, Zhang HC, Li JY, Xin FF, Kong L, Hao AY (2011) pH-reversible vesicles based on the “supramolecular amphiphiles” formed by cyclodextrin and anthraquinone derivate. Colloids Surf A Physicochem Eng Asp 87:375

    Google Scholar 

  69. Ma MF, Guan Y, Zhang C, Hao JC, Xing PY, Su J, Li SY, Chu XX, Hao AY (2014) Stimulus-responsive supramolecular vesicles with effective anticancer activity prepared by cyclodextrin and ftorafur. Colloids Surf A Physicochem Eng Asp 454:38

    CAS  Google Scholar 

  70. Ma MF, Kong LD, Du ZY, Xie ZY, Chen L, Chen RJ, Li ZQ, Liu J, Li ZL, Hao AY (2019) A novel stimulus-responsive temozolomide supramolecular vesicle based on host-guest recognition. Colloid Polym Sci 297:261

    CAS  Google Scholar 

  71. Ma MF, Shang WQ, Xing PY, Li SY, Chu XX, Hao AY, Liu GC, Zhang YM (2015) A supramolecular vesicle of camptothecin for its water dispersion and controllable releasing. Carbohydr Res 402:208

    CAS  PubMed  Google Scholar 

  72. Zhang HC, Li YY, Sun HY, Xin FF, Liu ZN, Hao AY, Li JY, Shen J, Xu SG, An W, Sun LZ, Sun T, Zhao WJ, Li YM, Li K (2011) Fluorescent vesicular particles assembled by inclusion complexes between cyclodextrins and BPB. J Disper Sci Technol 32:834

    CAS  Google Scholar 

  73. Zhang HC, Liu ZN, Xin FF, An W, Hao AY, Li JY, Li YY, Sun LZ, Sun T, Zhao WJ, Li YM, Kong L (2011) Successively-responsive drug-carrier vesicles assembled by ‘supramolecular amphiphiles’. Carbohydr Res 346:294

    CAS  PubMed  Google Scholar 

  74. Zhang HC, An W, Liu ZN, Hao AY, Hao JC, Shen J, Zhao XH, Sun HY, Sun LZ (2010) Redox-responsive vesicles prepared from supramolecular cyclodextrin amphiphiles. Carbohydr Res 345:87

    CAS  PubMed  Google Scholar 

  75. Zhang HC, Shen J, Liu ZN, Hao AY, Bai Y, An W (2010) Multi-responsive cyclodextrin vesicles assembled by ‘supramolecular bola-amphiphiles’. Supramol Chem 22:297

    CAS  Google Scholar 

  76. Zhao Q, Wang Y, Yan Y, Huang JB (2014) Smart nanocarrier: self-assembly of bacteria-like vesicles with photoswitchable cilia. ACS Nano 8:11341

    CAS  PubMed  Google Scholar 

  77. Sun T, Zhang HC, Kong L, Qiao HW, Li YM, Xin FF, Hao AY (2011) Controlled transformation from nanorods to vesicles induced by cyclomaltoheptaoses (β-cyclodextrins). Carbohydr Res 346:285

    CAS  PubMed  Google Scholar 

  78. Tao W, Liu Y, Jiang BB, Yu SR, Huang W, Zhou YF, Yan DY (2012) A linear-hyperbranched supramolecular amphiphile and its self-assembly into vesicles with great ductility. J Am Chem Soc 134:762

    CAS  PubMed  Google Scholar 

  79. Gutsche CD, Dhawan B, No KH, Muthukrishnan R (1981) Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J Am Chem Soc 103:3792

    Google Scholar 

  80. Wang K, Guo DS, Zhao MY, Liu Y (2014) A supramolecular vesicle based on the complexation of p-sulfonatocalixarene with protamine and its trypsin-triggered controllable-release properties. Chem Eur J 22:1475

    PubMed  Google Scholar 

  81. Wang K, Guo DS, Wang X, Liu Y (2011) Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano 5:2880

    CAS  PubMed  Google Scholar 

  82. Guo DS, Wang K, Wang YX, Liu Y (2012) Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc 134:10244

    CAS  PubMed  Google Scholar 

  83. Assaf KI, Nau WM (2015) Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem Soc Rev 44:394

    CAS  PubMed  Google Scholar 

  84. Freeman WA, Mock WL, Shih NY (1981) Cucurbituril. J Am Chem Soc 103:7367

    CAS  Google Scholar 

  85. Barrow SJ, Kasera S, Rowland MJ, Barrio JD, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115:12320

    CAS  PubMed  Google Scholar 

  86. Xu XD, Li X, Chen HZ, Qu QY, Zhao LZ, Ågren H, Zhao YL (2015) Host-guest interaction-mediated construction of hydrogels and nanovesicles for drug delivery. Small 11:5901

    CAS  PubMed  Google Scholar 

  87. Jeon YJ, Bharadwaj PK, Choi SW, Lee JW, Kim K (2002) Supramolecular amphiphiles: spontaneous formation of vesicles triggered by formation of a charge-transfer complex in a host. Angew Chem Int Ed 41:4474

    CAS  Google Scholar 

  88. Loh XJ, Barrio JD, Lee TC, Scherman OA (2014) Supramolecular polymeric peptide amphiphile vesicles for the encapsulation of basic fibroblast growth factor. Chem Commun 50:3033

    CAS  Google Scholar 

  89. Ogoshi T, Kanai S, Fujinami SH, Yamagishi T, Nakamoto Y (2008) Para-bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc 130:5022

    CAS  PubMed  Google Scholar 

  90. Xue M, Yang Y, Chi XD, Zhang ZB, Huang FH (2012) Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc Chem Res 45:1294

    CAS  PubMed  Google Scholar 

  91. Kakuta T, Yamagishi T, Ogoshi T (2018) Stimuli-responsive supramolecular assemblies constructed from pillar[n]arenes. Acc Chem Res 51:1656

    CAS  PubMed  Google Scholar 

  92. Zhou QZ, Jiang HJ, Chen R, Qiu FL, Dai GL, Han D (2014) A triply-responsive pillar[6]arene-based supramolecular amphiphile for tunable formation of vesicles and controlled release. Chem Commun 50:10658

    CAS  Google Scholar 

  93. Wang Q, Zhang P, Xu JZ, Xia B, Tian L, Chen JQ, Li J, Lu F, Shen QM, Lu XM, Huang W, Fan QL (2018) NIR-absorbing dye functionalized supramolecular vesicles for chemo-photothermal synergistic therapy. ACS Appl Bio Mater 1:70

    Google Scholar 

  94. Jie KC, Zhou YJ, Yao Y, Shi BB, Huang FH (2015) CO2-responsive pillar[5]arene-based molecular recognition in water: establishment and application in gas-controlled self-assembly and release. J Am Chem Soc 137:10472

    CAS  PubMed  Google Scholar 

  95. Xia DY, Yu GC, Li JY, Huang FH (2014) Photo-responsive self-assembly based on a water-soluble pillar[6]arene and an azobenzene-containing amphiphile in water. Chem Commun 50:3606

    CAS  Google Scholar 

  96. Hu XY, Liu X, Zhang W, Qin S, Yao CH, Li Y, Cao DR, Peng LM, Wang LY (2016) Controllable construction of biocompatible supramolecular micelles and vesicles by water-soluble phosphate pillar[5,6]arenes for selective anti-cancer drug delivery. Chem Mater 28:3778

    CAS  Google Scholar 

  97. Wu X, Li Y, Lin C, Hu XY, Wang LY (2015) GSH- and pH-responsive drug delivery system constructed by water-soluble pillar[5]arene and lysine derivative for controllable drug release. Chem Commun 51:6832

    CAS  Google Scholar 

  98. Hu XY, Gao L, Mosel S, Ehlers M, Zellermann E, Jiang H, Knauer SK, Wang LY, Schmuck C (2018) From supramolecular vesicles to micelles: controllable construction of tumor-targeting nanocarriers based on host-guest interaction between a pillar[5]arene-based prodrug and a RGD-sulfonate guest. Small 14:1803952

    Google Scholar 

  99. Guo SW, Song YS, He YL, Hu XY, Wang LY (2018) Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly. Angew Chem Int Ed 57:3163

    CAS  Google Scholar 

  100. Wang S, Yao CH, Ni MF, Xu ZQ, Cheng M, Hu XY, Shen YZ, Lin C, Wang LY, Jia DZ (2017) Thermo- and oxidation-responsive supramolecular vesicles constructed from self-assembled pillar[6]arene-ferrocene based amphiphilic supramolecular diblock copolymers. Polym Chem 8:682

    CAS  Google Scholar 

  101. Guo SW, Liu X, Yao CH, Lu CX, Chen QX, Hu XY, Wang LY (2016) Photolysis of a bola-type supra-amphiphile promoted by water-soluble pillar [5] arene-induced assembly. Chem Commun 52:10751

    CAS  Google Scholar 

  102. Shao W, Liu X, Sun GP, Hu XY, Zhu JJ, Wang LY (2018) GSH-and pH-responsive drug delivery system constructed by water-soluble pillar [5] arene and lysine derivative for controllable drug release. Chem Commun 54:9462

    CAS  Google Scholar 

  103. Zuo MZ, Qian WR, Xu ZQ, Shao W, Hu XY, Zhang DM, Jiang JL, Sun XQ, Wang LY (2018) Multiresponsive supramolecular theranostic nanoplatform based on pillar[5]arene and diphenylboronic acid derivatives for integrated glucose sensing and insulin delivery. Small 14:1801942

    Google Scholar 

  104. Yu GC, Xue M, Zhang ZB, Li JY, Han CY, Huang FH (2012) A water-soluble pillar[6]arene: synthesis, host-guest chemistry, and its application in dispersion of multiwalled carbon nanotubes in water. J Am Chem Soc 134:13248

    CAS  PubMed  Google Scholar 

  105. Li ZT, Yang J, Yu GC, He JM, Abliz Z, Huang FH (2014) Water-soluble pillar[7]arene: synthesis, pH-controlled complexation with paraquat, and application in constructing supramolecular vesicles. Org Lett 16:2066

    CAS  PubMed  Google Scholar 

  106. Ghosh A, Haverick M, Stump K, Yang X, Tweedle MF, Goldberger JE (2012) Fine-tuning the pH trigger of self-assembly. J Am Chem Soc 134:3647

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yu GC, Zhou XY, Zhang ZB, Han CY, Mao ZW, Gao CY, Huang FH (2012) Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J Am Chem Soc 134:19489

    CAS  PubMed  Google Scholar 

  108. Yang K, Chang YC, Wen J, Lu YC, Pei YX, Cao SP, Wang F, Pei ZC (2016) Supramolecular vesicles based on complex of Trp-modified pillar[5]arene and galactose derivative for synergistic and targeted drug delivery. Chem Mater 28:1990

    CAS  Google Scholar 

  109. Pei Q, Hu XL, Wang L, Liu S, Jing XB, Xie ZG (2017) Cyclodextrin/paclitaxel dimer assembling vesicles: reversible morphology transition and cargo delivery. ACS Appl Mater Interfaces 9:26740

    CAS  PubMed  Google Scholar 

  110. Hu XY, Jia KK, Cao Y, Li Y, Qin S, Zhou F, Lin C, Zhang DM, Wang LY (2015) Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery. Chem Eur J 21:1208

    CAS  PubMed  Google Scholar 

  111. Sun T, Wang QB, Bi YK, Chen XL, Liu LS, Ruan CH, Zhao ZF, Jiang C (2017) Supramolecular amphiphiles based on cyclodextrin and hydrophobic drugs. J Mater Chem B 5:2644

    CAS  PubMed  Google Scholar 

  112. Chang YC, Hou CX, Ren JL, Xin XT, Pei YX, Lu YC, Cao SP, Pei ZC (2016) Multifunctional supramolecular vesicles based on the complex of ferrocenecarboxylic acid capped pillar[5]arene and a galactose derivative for targeted drug delivery. Chem Commun 52:9578

    CAS  Google Scholar 

  113. Yu GC, Yu W, Shao L, Zhang ZH, Chi XD, Mao ZW, Gao CY, Huang FH (2016) Fabrication of a targeted drug delivery system from a pillar[5]arene-based supramolecular diblock copolymeric amphiphile for effective cancer therapy. Adv Funct Mater 26:8999

    CAS  Google Scholar 

  114. Gao L, Wang TT, Jia KK, Wu X, Yao CH, Shao W, Zhang DM, Hu XY, Wang LY (2017) Glucose-responsive supramolecular vesicles based on water-soluble pillar[5]arene and pyridylboronic acid derivatives for controlled insulin delivery. Chem Eur J 23:6605

    CAS  PubMed  Google Scholar 

  115. Cao Y, Hu XY, Li Y, Zou XC, Xiong SH, Lin C, Shen YZ, Wang LY (2014) Multistimuli-responsive supramolecular vesicles based on water-soluble pillar[6]arene and SAINT complexation for controllable drug release. J Am Chem Soc 136:10762

    CAS  PubMed  Google Scholar 

  116. Jiang L, Huang X, Chen D, Yan H, Li XY, Du XZ (2017) Supramolecular vesicles coassembled from disulfide-linked benzimidazolium amphiphiles and carboxylate-substituted pillar[6]arenes that are responsive to five stimuli. Angew Chem Int Ed 56:2655

    CAS  Google Scholar 

  117. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271

    CAS  PubMed  Google Scholar 

  118. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131

    CAS  PubMed  Google Scholar 

  119. Nayak N, Gopidas KR (2015) Unusual self-assembly of a hydrophilic β-cyclodextrin inclusion complex into vesicles capable of drug encapsulation and release. J Mater Chem B 3:3425

    CAS  PubMed  Google Scholar 

  120. Meng LB, Zhang WY, Li DQ, Li Y, Hu XY, Wang LY, Li G (2015) pH-responsive supramolecular vesicles assembled by water-soluble pillar[5]arene and a BODIPY photosensitizer for chemo-photodynamic dual therapy. Chem Commun 51:14381

    CAS  Google Scholar 

  121. Duan QP, Cao Y, Li Y, Hu XY, Xiao TX, Lin C, Pan Y, Wang LY (2013) pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J Am Chem Soc 135:10542

    CAS  PubMed  Google Scholar 

  122. Yang B, Dong X, Lei Q, Zhuo RX, Feng J, Zhang XZ (2015) Host-guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs. ACS Appl Mater Interfaces 7:22084

    CAS  PubMed  Google Scholar 

  123. Zhang HC, Ma X, Nguyen KT, Zhao YL (2013) Biocompatible pillararene-assembly-based carriers for dual bioimaging. ACS Nano 7(7):7853

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the Singapore National Research Foundation Investigatorship (No. NRF-NRFI2018-03), the PhD Start-up Scientific Research Foundation of Jining Medical University (No. 2017JYQD03), and NSFC Cultivation Project of Jining Medical University (No. JYP2018KJ12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengyao Xing or Yanli Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ma, M., Xing, P., Zhao, Y. (2020). Responsive Supramolecular Vesicles Based on Host-Guest Recognition for Biomedical Applications. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_59

Download citation

Publish with us

Policies and ethics