Skip to main content

Construction of Glyco-nanostructures Through the Self-Assembly of Saccharide-Containing Macrocyclic Amphiphiles

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 1265 Accesses

Abstract

Glyco-nanostructures (GNSs) have aroused great interest during the past decades thanks to their wide applications including, nanomedicine, nanoreactor and nanosensors. Consequently, a lot of methods, such as self-assembly of glycopolymers, post-modification of organic/inorganic particles and glycodendrimers, and so forth have been developed for the production of GNSs. In this chapter, we mainly summarize the recent advances in the fabrication of GNSs with an emphasis on a new and unique strategy of self-assembly of macrocyclic amphiphiles. This interesting method not only can tailor the GNSs with well-defined and diverse structures through precisely locating hydrophilic and hydrophobic parts on the respective sides of macrocycles, but also endow the GNSs with good dynamic and reversible nature due to the involvement of host-guest interactions. Moreover, the mediation of noncovalent interactions of these GNSs may benefit us to further understand the biological process, such as cell-cell and cell-pathogen interactions, as well as immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kiessling LL, Splain RA (2010) Chemical approaches to glycobiology. Annu Rev Biochem 79:619–653

    CAS  PubMed  Google Scholar 

  2. Wiederschain GY (2009) Essentials of glycobiology. Biochem Mosc 74:1056–1056

    CAS  Google Scholar 

  3. Neri P, Sessler JL, Wang MX (2016) Calixarenes and beyond. Springer, Cham

    Google Scholar 

  4. Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH (2016) Carbohydrates in supramolecular chemistry. Chem Rev 116:1693–1752

    CAS  PubMed  Google Scholar 

  5. Kang B, Opatz T, Landfester K, Wurm FR (2015) Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chem Soc Rev 44:8301–8325

    CAS  PubMed  Google Scholar 

  6. Krannig KS, Schlaad H (2014) Emerging bioinspired polymers: glycopolypeptides. Soft Matter 10:4228–4235

    CAS  PubMed  Google Scholar 

  7. Zhang Q, Su L, Collins J, Chen G, Wallis R, Mitchell DA, Haddleton DM, Becer CR (2014) Dendritic cell lectin-targeting sentinel-like unimolecular glycoconjugates to release an anti-HIV drug. J Am Chem Soc 136:4325–4332

    CAS  PubMed  Google Scholar 

  8. Hu X-L, Chu L, Dong X, Chen G-R, Tang T, Chen D, He X-P, Tian H (2019) Multivalent glycosheets for double light-driven therapy of multidrug-resistant bacteria on wounds. Adv Funct Mater 29:1806986–1806995

    Google Scholar 

  9. Xu Y, Zhang K, Reghu S, Lin Y, Chan-Park MB, Liu XW (2019) Synthesis of antibacterial glycosylated polycaprolactones bearing imidazoliums with reduced hemolytic activity. Biomacromolecules 20:949–958

    CAS  PubMed  Google Scholar 

  10. Rodriguez-Perez L, Ramos-Soriano J, Perez-Sanchez A, Illescas BM, Munoz A, Luczkowiak J, Lasala F, Rojo J, Delgado R, Martin N (2018) Nanocarbon-based glycoconjugates as multivalent inhibitors of ebola virus infection. J Am Chem Soc 140:9891–9898

    CAS  PubMed  Google Scholar 

  11. Hoogendoorn S, van Puijvelde GH, Kuiper J, van der Marel GA, Overkleeft HS (2014) A multivalent ligand for the mannose-6-phosphate receptor for endolysosomal targeting of an activity-based probe. Angew Chem Int Ed 53:10975–10978

    CAS  Google Scholar 

  12. Lin K, Kasko AM (2014) Carbohydrate-based polymers for immune modulation. ACS Macro Lett 3:652–657

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jie K, Zhou Y, Yao Y, Huang F (2015) Macrocyclic amphiphiles. Chem Soc Rev 44:3568–3587

    CAS  PubMed  Google Scholar 

  14. Yu G, Jie K, Huang F (2015) Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev 115:7240–7303

    CAS  PubMed  Google Scholar 

  15. Martinez A, Ortiz Mellet C, Garcia Fernandez JM (2013) Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate-protein interactions. Chem Soc Rev 42:4746–4773

    CAS  PubMed  Google Scholar 

  16. Mazzaglia A, Forde D, Garozzo D, Malvagna P, Ravoo BJ, Darcy R (2004) Multivalent binding of galactosylated cyclodextrin vesicles to lectin. Org Biomol Chem 2:957–960

    CAS  PubMed  Google Scholar 

  17. Micali N, Villari V, Mazzaglia A, Scolaro LM, Valerio A, Rencurosi A, Lay L (2006) Cyclodextrin nanoaggregates and their assembly with protein: a spectroscopic investigation. Nanotechnology 17:3239–3244

    CAS  Google Scholar 

  18. Mazzaglia A, Valerio A, Villari V, Rencurosi A, Lay L, Spadaro S, Monsù Scolaro L, Micali N (2006) Probing specific protein recognition by size-controlled glycosylated cyclodextrin nanoassemblies. New J Chem 30:1662–1668

    CAS  Google Scholar 

  19. McNicholas S, Rencurosi A, Lay L, Mazzaglia A, Sturiale L, Perez M, Darcy R (2007) Amphiphilic N-glycosyl-thiocarbamoyl cyclodextrins: synthesis, self-assembly, and fluorimetry of recognition by lens culinaris lectin. Biomacromolecules 8:1851–1857

    CAS  PubMed  Google Scholar 

  20. Ye Z, Zhang Q, Wang S, Bharate P, Varela-Aramburu S, Lu M, Seeberger PH, Yin J (2016) Tumour-targeted drug delivery with mannose-functionalized nanoparticles self-assembled from amphiphilic beta-Cyclodextrins. Chem-Eur J 22:15216–15221

    CAS  PubMed  Google Scholar 

  21. Zhang Z, Ding J, Chen X, Xiao C, He C, Zhuang X, Chen L, Chen X (2013) Intracellular pH-sensitive supramolecular amphiphiles based on host–guest recognition between benzimidazole and β-cyclodextrin as potential drug delivery vehicles. Polym Chem 4:3265–3271

    CAS  Google Scholar 

  22. Yan Q, Zhang H, Zhao Y (2014) CO2-switchable supramolecular block glycopolypeptide assemblies. ACS Macro Lett 3:472–476

    CAS  Google Scholar 

  23. Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40:2254–2266

    CAS  PubMed  Google Scholar 

  24. Voskuhl J, Ravoo BJ (2009) Molecular recognition of bilayer vesicles. Chem Soc Rev 38:495–505

    CAS  PubMed  Google Scholar 

  25. Vico RV, Voskuhl J, Ravoo BJ (2011) Multivalent interaction of cyclodextrin vesicles, carbohydrate guests, and lectins: a kinetic investigation. Langmuir 27:1391–1397

    CAS  PubMed  Google Scholar 

  26. Voskuhl J, Stuart MC, Ravoo BJ (2010) Sugar-decorated sugar vesicles: lectin-carbohydrate recognition at the surface of cyclodextrin vesicles. Chemistry 16:2790–2796

    CAS  PubMed  Google Scholar 

  27. Yan Q, Xin Y, Zhou R, Yin Y, Yuan J (2011) Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chem Commun 47:9594–9596

    CAS  Google Scholar 

  28. Zhao M, Li B, Wang P, Lu L, Zhang Z, Liu L, Wang S, Li D, Wang R, Zhang F (2018) Supramolecularly engineered NIR-II and upconversion nanoparticles in vivo assembly and disassembly to improve bioimaging. Adv Mater 30:e1804982

    PubMed  Google Scholar 

  29. Peng L, You M, Wu C, Han D, Öçsoy I, Chen T, Chen Z, Tan W (2014) Reversible phase transfer of nanoparticles based on photoswitchable host–guest chemistry. ACS Nano 8:2555–2561

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Samanta A, Stuart MC, Ravoo BJ (2012) Photoresponsive capture and release of lectins in multilamellar complexes. J Am Chem Soc 134:19909–19914

    CAS  PubMed  Google Scholar 

  31. Gallego-Yerga L, Lomazzi M, Sansone F, Ortiz Mellet C, Casnati A, Garcia Fernandez JM (2014) Glycoligand-targeted core-shell nanospheres with tunable drug release profiles from calixarene-cyclodextrin heterodimers. Chem Commun 50:7440–7443

    CAS  Google Scholar 

  32. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115:12320–12406

    CAS  PubMed  Google Scholar 

  33. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 36:621–630

    CAS  PubMed  Google Scholar 

  34. Kim J, Ahn Y, Park KM, Kim Y, Ko YH, Oh DH, Kim K (2007) Carbohydrate wheels: cucurbituril-based carbohydrate clusters. Angew Chem Int Ed 46:7393–7395

    CAS  Google Scholar 

  35. Lee HK, Park KM, Jeon YJ, Kim D, Oh DH, Kim HS, Park CK, Kim K (2005) Vesicle formed by amphiphilc cucurbit [6] uril: versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin. J Am Chem Soc 127:5006–5007

    CAS  PubMed  Google Scholar 

  36. Liu Y, Yang H, Wang Z, Zhang X (2013) Cucurbit[8]uril-based supramolecular polymers. Chem Asian J 8:1626–1632

    CAS  PubMed  Google Scholar 

  37. Yang L, Tan X, Wang Z, Zhang X (2015) Supramolecular polymers: historical development, preparation, characterization, and functions. Chem Rev 115:7196–7239

    CAS  PubMed  Google Scholar 

  38. Yang L, Yang H, Li F, Zhang X (2013) Supramolecular glycolipid based on host-enhanced charge transfer interaction. Langmuir 29:12375–12379

    CAS  PubMed  Google Scholar 

  39. Hayashida O, Kato M, Akagi K, Aoyama Y (1999) Interaction of sugar and anion in water via hydrogen bonding: chain-length dependent agglutination of oligosaccharide clusters induced by multivalent anion binding. J Am Chem Soc 121:11597–11598

    CAS  Google Scholar 

  40. Nakai T, Kanamori T, Sando S, Aoyama Y (2003) Remarkably size-regulated cell invasion by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. J Am Chem Soc 125:8465–8475

    CAS  PubMed  Google Scholar 

  41. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521

    CAS  PubMed  Google Scholar 

  42. Aleandri S, Casnati A, Fantuzzi L, Mancini G, Rispoli G, Sansone F (2013) Incorporation of a calixarene-based glucose functionalised bolaamphiphile into lipid bilayers for multivalent lectin recognition. Org Biomol Chem 11:4811–4817

    CAS  PubMed  Google Scholar 

  43. Avvakumova S, Fezzardi P, Pandolfi L, Colombo M, Sansone F, Casnati A, Prosperi D (2014) Gold nanoparticles decorated by clustered multivalent cone-glycocalixarenes actively improve the targeting efficiency toward cancer cells. Chem Commun 50:11029–11032

    CAS  Google Scholar 

  44. Ogoshi T, Kanai S, Fujinami S, Yamagishi TA, Nakamoto Y (2008) Para-Bridged symmetrical pillar [5] arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc 130:5022–5023

    CAS  PubMed  Google Scholar 

  45. Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW (2017) Biological and related applications of pillar[n]arenes. Chem Commun 53:677–696

    CAS  Google Scholar 

  46. Xue M, Yang Y, Chi XD, Zhang ZB, Huang F (2012) Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc Chem Res 45:1294–1308

    CAS  PubMed  Google Scholar 

  47. Nierengarten I, Buffet K, Holler M, Vincent SP, Nierengarten J-F (2013) A mannosylated pillar[5]arene derivative: chiral information transfer and antiadhesive properties against uropathogenic bacteria. Tetrahedron Lett 54:2398–2402

    CAS  Google Scholar 

  48. Yu G, Ma Y, Han C, Yao Y, Tang G, Mao Z, Gao C, Huang F (2013) A sugar-functionalized amphiphilic pillar[5]arene: synthesis, self-assembly in water, and application in bacterial cell agglutination. J Am Chem Soc 135:10310–10313

    CAS  PubMed  Google Scholar 

  49. Chakrabarty R, Mukherjee PS, Stang PJ (2011) Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem Rev 111:6810–6918

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Datta S, Saha ML, Stang PJ (2018) Hierarchical assemblies of supramolecular coordination complexes. Acc Chem Res 51:2047–2063

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou F, Li S, Cook TR, He Z, Stang PJ (2014) Saccharide-functionalized organoplatinum(II) metallacycles. Organometallics 33:7019–7022

    CAS  Google Scholar 

  52. Datta S, Saha ML, Lahiri N, Yu G, Louie J, Stang PJ (2018) Hierarchical self-assembly of a water-soluble organoplatinum(II) metallacycle into well-defined nanostructures. Org Lett 20:7020–7023

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank financial support of CPSF (No. 2017M621354 and 2018T110335) for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, G., Chen, G. (2020). Construction of Glyco-nanostructures Through the Self-Assembly of Saccharide-Containing Macrocyclic Amphiphiles. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_41

Download citation

Publish with us

Policies and ethics