Skip to main content

Naphthol-Based Macrocycles

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Macrocyclic receptors are the primary workhorses in supramolecular chemistry. In particular, macrocyclic arenes are versatile receptors because their structures can be tailor-made and readily functionalized. In this chapter, we discuss the recent advances on naphthol-based macrocyclic receptors, namely, calix[n]naphthalenes, zorb[n]arenes, oxatub[n]arenes, naphthalenophanes, and naphthotubes. The emphasis will be on their design and synthesis, structural features, and host-guest properties. Given the success of calixarenes and their analogues, we believe that naphthol-based macrocycles will find wide applications provided we endow them with unprecedented molecular recognition ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gale PA, Steed JW (2012) Supramolecular chemistry: from molecules to nanomaterials, Molecular recognition, vol 3. Wiley, Chichester

    Google Scholar 

  2. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    CAS  Google Scholar 

  3. Chen Y, Liu Y (2010) Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev 39:495–505

    CAS  PubMed  Google Scholar 

  4. Böhmer V (1995) Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed Eng 34:713–745

    Google Scholar 

  5. Ikeda A, Shinkai S (1997) Novel cavity design using calix [n] arene skeletons: toward molecular recognition and metal binding. Chem Rev 97:1713–1734

    CAS  PubMed  Google Scholar 

  6. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) The cucurbit [n] uril family. Angew Chem Int Ed 44:4844–4870

    CAS  Google Scholar 

  7. Wu J, Yang Y-W (2018) New opportunities in synthetic macrocyclic arenes. Chem Commun. https://doi.org/10.1039/C8CC09374A

  8. Hardie MJ (2010) Recent advances in the chemistry of cyclotriveratrylene. Chem Soc Rev 39:516–527

    CAS  PubMed  Google Scholar 

  9. Guo D-S, Liu Y (2012) Calixarene-based supramolecular polymerization in solution. Chem Soc Rev 41:5907–5921

    CAS  PubMed  Google Scholar 

  10. Ogoshi T, Kanai S, Fujinami S, Yamagishi T-A, Nakamoto Y (2008) Para-bridged symmetrical pillar [5] arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc 130:5022–5023

    CAS  PubMed  Google Scholar 

  11. Cragg PJ, Sharma K (2012) Pillar [5] arenes: fascinating cyclophanes with a bright future. Chem Soc Rev 41:597–607

    CAS  PubMed  Google Scholar 

  12. Yang L-P, Liu W-E, Jiang W (2016) Naphthol-based macrocyclic receptors. Tetrahedron Lett 57:3978–3985

    CAS  Google Scholar 

  13. Georghiou PE, Li Z, Ashram M, Chowdhury S, Mizyed S, Tran AH, Al-Saraierh H, Miller DO (2005) Calixnaphthalenes: deep, electron-rich naphthalene ring-containing calixarenes. The first decade. Synlett 2005:0879–0891

    Google Scholar 

  14. Georghiou PE, Li Z (1993) Calix [4] naphthalenes: cyclic tetramers of 1-naphthol and formaldehyde. Tetrahedron Lett 34:2887–2890

    CAS  Google Scholar 

  15. Georghiou PE, Ashram M, Li Z, Chaulk SG (1995) Syntheses of calix [4] naphthalenes derived from 1-naphthol. J Org Chem 60:7284–7289

    CAS  Google Scholar 

  16. Andreetti GD, Boehmer V, Jordon JG, Tabatabai M, Ugozzoli F, Vogt W, Wolff A (1993) Dissymmetric calix [4] arenes with C4-and C2-symmetry. Synthesis, x-ray structures, conformational fixation, and proton NMR spectroscopic studies. J Org Chem 58:4023–4032

    CAS  Google Scholar 

  17. Georghiou PE, Ashram M, Clase HJ, Bridson JN (1998) Spirodienone and bis (spirodienone) derivatives of calix [4] naphthalenes. J Org Chem 63:1819–1826

    CAS  Google Scholar 

  18. Chowdhury S, Georghiou PE (2002) Synthesis and properties of a new member of the calixnaphthalene family: a C 2-symmetrical endo-calix[4]naphthalene. J Org Chem 67:6808–6811

    CAS  PubMed  Google Scholar 

  19. Shorthill BJ, Granucci RG, Powell DR, Glass TE (2002) Synthesis of 3, 5-and 3, 6-linked calix [n] naphthalenes. J Org Chem 67:904–909

    CAS  PubMed  Google Scholar 

  20. Shorthill BJ, Glass TE (2001) Naphthalene-based calixarenes: unusual regiochemistry of a friedel−crafts alkylation. Org Lett 3:577–579

    CAS  PubMed  Google Scholar 

  21. Georghiou PE, Tran AH, Stroud SS, Thompson DW (2006) Supramolecular complexation studies of [60] fullerene with calix [4] naphthalenes–a reinvestigation. Tetrahedron 62:2036–2044

    CAS  Google Scholar 

  22. Ashram M, Mizyed S, Georghiou PE (2001) Synthesis of hexahomotrioxacalix [3] naphthalenes and a study of their alkali-metal cation binding properties. J Org Chem 66:1473–1479

    CAS  PubMed  Google Scholar 

  23. Mizyed S, Ashram M, Miller DO, Georghiou PE (2001) Supramolecular complexation of [60] fullerene with hexahomotrioxacalix [3] naphthalenes: a new class of naphthalene-based calixarenes. J Chem Soc Perkin Trans 2:1916–1919

    Google Scholar 

  24. Poh B-L, Lim CS, Khoo KS (1989) A water-soluble cyclic tetramer from reacting chromotropic acid with formaldehyde. Tetrahedron Lett 30:1005–1008

    CAS  Google Scholar 

  25. Poh B-L, Chin LY, Lee CW (1995) A cyclic tetramer from reacting 4-amino-5-hydroxynaphthalene-2, 7-disulfonic acid with formaldehyde and its complexation with polyaromatic hydrocarbons in water. Tetrahedron Lett 36:3877–3880

    CAS  Google Scholar 

  26. Poh B-L, Tan CM (1993) Contribution of guest-host CH-π interaction to the stability of complexes formed from cyclotetrachromotropylene as host and alcohols and sugars as guests in water. Tetrahedron 49:9581–9592

    CAS  Google Scholar 

  27. Poh B-L, Chow YM (1992) Transport method for determining the association constants of complexes formed between aromatic hydrocarbons andα-andβ-cyclodextrin in water. J Incl Phenom Mol Recognit Chem 14:85–90

    CAS  Google Scholar 

  28. Poh B-L, Tan CM (1995) Crown ethers as guests of cyclotetrachromotropylene in water. Tetrahedron 51:953–958

    CAS  Google Scholar 

  29. Georghiou PE, Valluru G, Schneider C, Liang S, Woolridge K, Mulla K, Adronov A, Zhao Y (2014) Dispersion of single-walled carbon nanotubes into aqueous solutions using Poh's cyclotetrachromo-tropylene (CTCT). RSC Adv 4:31614–31617

    CAS  Google Scholar 

  30. Poh B-L, Tan C-M (2000) Complexation of nucleotides in water with cyclotetrachromotropylene. J Incl Phenom Macro 38:69–74

    CAS  Google Scholar 

  31. Tran AH, Miller DO, Georghiou PE (2005) Synthesis and complexation properties of “zorbarene”: a new naphthalene ring-based molecular receptor. J Org Chem 70:1115–1121

    CAS  PubMed  Google Scholar 

  32. Tran H-A, Georghiou PE (2007) Synthesis and complexation study of (1, 4-linked)-homothiaisocalixnaphthalenes. New J Chem 31:921–926

    CAS  Google Scholar 

  33. Tran H-A, Collins J, Georghiou PE (2008) Synthesis of “calixarene-like” N, N-ditosyldiaza [3.3](1, 4) naphthalenophanes. New J Chem 32:1175–1182

    CAS  Google Scholar 

  34. Jia F, He Z, Yang LP, Pan ZS, Yi M, Jiang RW, Jiang W (2015) Oxatub[4]arene: a smart macrocyclic receptor with multiple interconvertible cavities. Chem Sci 6:6731–6738

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jia F, Wang HY, Li DH, Yang LP, Jiang W (2016) Oxatub[4]arene: a molecular “transformer” capable of hosting a wide range of organic cations. Chem Commun 52:5666–5669

    CAS  Google Scholar 

  36. Jarvi ET, Whitlock HW Jr (1980) Synthesis and characterization of 1, 8, 15, 22-tetraoxa [8.8] paracyclophane-3, 5, 17, 19-tetrayne-10, 25-dicarboxylic acid, a novel water-soluble and donut-shaped molecule. J Am Chem Soc 102:657–662

    CAS  Google Scholar 

  37. Whitlock BJ, Jarvi ET, Whitlock HW (1981) Preparation and characterization of 1, 8, 19, 26-tetraoxa [8.8](2, 6) naphthalenophane-3, 5, 21, 23-tetrayne and related donut-shaped cyclophanes. J Org Chem 46:1832–1835

    CAS  Google Scholar 

  38. Jarvi ET, Whitlock HW (1982) 1, 8, 17, 24-tetraoxa [8.8](2, 6) naphthalenophane-3, 5, 19, 21-tetrayne-10, 30-dicarboxylic acid derivatives, novel complexors of aromatic guests. J Am Chem Soc 104:7196–7204

    CAS  Google Scholar 

  39. Sheridan RE, Whitlock HW (1986) Concave functionality: design of a phenol sticky host. J Am Chem Soc 108:7120–7121

    CAS  Google Scholar 

  40. Sheridan RE, Whitlock HW (1988) Concave functionality: some exceptionally large binding constants of phenol sticky hosts. J Am Chem Soc 110:4071–4073

    CAS  Google Scholar 

  41. Whitlock BJ, Whitlock HW (1990) Concave functionality: design criteria for nonaqueous binding sites. J Am Chem Soc 112:3910–3915

    CAS  Google Scholar 

  42. Whitlock BJ, Whitlock HW Jr (1988) Intracavity acetyl transfer. Tetrahedron Lett 29:6047–6050

    CAS  Google Scholar 

  43. Kennan AJ, Whitlock HW (1996) Host-catalyzed isoxazole ring opening: a rationally designed artificial enzyme. J Am Chem Soc 118:3027–3028

    CAS  Google Scholar 

  44. Whitesides VJDDGTH (1982) Dibenzoxanthene derivatives and related products from P-naphthol and aldehydes or acetals. J Org Chem 47:820–823

    Google Scholar 

  45. He Z, Yang X, Jiang W (2015) Synthesis, solid-state structures, and molecular recognition of chiral molecular tweezer and related structures based on a rigid bis-naphthalene cleft. Org Lett 17:3880–3883

    CAS  PubMed  Google Scholar 

  46. He Z, Jiang W, Schalley CA (2015) Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chem Soc Rev 44:779–789

    CAS  PubMed  Google Scholar 

  47. Yao H, Yang LP, Pang XY, Li JR, Jiang W (2018) Self-assembly of two-dimensional structures in water from rigid and curved amphiphiles with a low molecular weight. Chem Commun 54:10847–10850

    CAS  Google Scholar 

  48. Yao H, Yang L-P, He Z-F, Li J-R, Jiang W (2017) A phase-selective, bis-urea organogelator with a curved bis-naphthalene core. Chin Chem Lett 28:782–786

    CAS  Google Scholar 

  49. Yao H, Suan J-N, Ke H, Yang L-P, Li J-R, Jiang W (2017) Synthesis of bis-naphthalene and their derivatives and their complexation with organic cation. Chinese J Org Chem 37:603–607

    CAS  Google Scholar 

  50. He Z, Ye G, Jiang W (2015) Imine macrocycle with a deep cavity: guest-selected formation of syn/anti configuration and guest-controlled reconfiguration. Chemistry 21:3005–3012

    CAS  PubMed  Google Scholar 

  51. Purse BW, Rebek J (2005) Functional cavitands: chemical reactivity in structured environments. P Natl Acad Sci USA 102:10777–10782

    CAS  Google Scholar 

  52. Vögtle CSF (1992) Molecules with Large Cavities in Supramolecular Chemistry. Angew Chem Int Ed Engl 31:528–549

    Google Scholar 

  53. Adriaenssens L, Ballester P (2013) Hydrogen bonded supramolecular capsules with functionalized interiors: the controlled orientation of included guests. Chem Soc Rev 42:3261–3277

    CAS  PubMed  Google Scholar 

  54. Huang G, He Z, Cai CX, Pan F, Yang D, Rissanen K, Jiang W (2015) Bis-urea macrocycles with a deep cavity. Chem Commun 51:15490–15493

    CAS  Google Scholar 

  55. Huang G, Valkonen A, Rissanen K, Jiang W (2016) Endo-functionalized molecular tubes: selective encapsulation of neutral molecules in non-polar media. Chem Commun 52:9078–9081

    CAS  Google Scholar 

  56. Shewale MN, Lande DN, Gejji SP (2017) Density functional investigations on the selective binding of an endo-functionalized bis-urea macrocycle. J Phys Chem A 121:288–297

    CAS  PubMed  Google Scholar 

  57. Lande DN, Gejji SP (2018) Supramolecular binding of bis-naphthalene cleft based molecular tubes. Chemistry Select 3:10537–10542

    CAS  Google Scholar 

  58. Shorthill BJ, Avetta CT, Glass TE (2004) Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube. J Am Chem Soc 126:12732–12733

    CAS  PubMed  Google Scholar 

  59. Avetta CT, Shorthill BJ, Ren C, Glass TE (2012) Molecular tubes for lipid sensing: tube conformations control analyte selectivity and fluorescent response. J Org Chem 77:851–857

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank NSFC, SZSTI, and SUSTech for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yao, H., Jiang, W. (2020). Naphthol-Based Macrocycles. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_40

Download citation

Publish with us

Policies and ethics