Skip to main content

Host-Guest Chemistry of a Tetracationic Cyclophane, Namely, Cyclobis (paraquat-p-phenylene)

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

In the year of 1988, Sir Fraser Stoddart, the chemistry Nobel Laureate of 2016 for his contribution in the development of molecular machines, designed and developed a rectangle-shaped host molecule, namely, cyclobis(paraquat-p-phenylene) (CBPQT4+). This tetracationic cyclophane represents another milestone in the river of supramolecular chemistry, because (i) CBPQT4+ is relatively synthetically accessible and (ii) CBPQT4+ can recognize a variety of π-electron guests in both fully oxidized state and biscationic diradical state, driven by donor-acceptor and radical-pairing interactions, respectively. In this chapter, we are going to make a rough discussion of the following issues of CBPQT4+, including (i) the structural feature of CBPQT4+; (ii) its preparation including the template-directed synthesis; (iii) its binding behavior in its oxidative and radical states, namely, CBPQT4+ and CBPQT2(•+), respectively; (iv) mechanically interlocked molecules including rotaxanes and catenanes containing CBPQT4+ as a macrocyclic building block whose switchable features have been taken advantage of in the design of molecular switches and machines; and (v) the extended derivatives of CBPQT4+. Even although a few other groups also employed CBPQT4+ ring for self-assembly and molecular recognition, in this chapter, we mainly focus on the works of the group led by Stoddart, the inventor of this tetracationic cyclophane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Pedersen CJ. Cyclic polyethers and their complexes with metal salts. (1967) J Am Chem Soc 89:7017; (b) Pedersen CJ. Cyclic polyethers and their complexes with metal salts. (1967) J. Am Chem Soc 89:2495

    Google Scholar 

  2. (a) Lehn JM. Supramolecular chemistry. (1993) Science 260:1762–1763; (b) Lehn JM. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self‐organization. (1990) Angew Chem Int Ed 29:1304–1319

    Google Scholar 

  3. (a) Cram DJ, Cram JM. Host-guest chemistry. (1974) Science 183:803–809; (b) Cram DJ. The design of molecular hosts, guests, and their complexes (Nobel Lecture). (1988) Angew Chem Int Ed 27:1009–1020

    Google Scholar 

  4. Dietrichbuchecker CO, Sauvage JP, Kintzinger JP. Une nouvelle famille de molecules : les metallo-catenanes. (1983) Tetrahedron Lett 24:5095–5098

    Google Scholar 

  5. Hunter CA, Sanders JKM. The nature of .pi.-.pi. interactions. (1990) J Am Chem Soc 112:5525–5534

    Google Scholar 

  6. Monk PMS (1998) The viologens: physicochemical properties, synthesis and applications of the salts of 4,4′-bipyridine. Wiley, New York

    Google Scholar 

  7. (a) Harada A, Li J, Kamachi M. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. (1992) Nature 356:325–327; (b) Fujita M, Ibukuro F, Hagihara H, Ogura K. Quantitative self-assembly of a [2]catenane from two preformed molecular rings. (1994) Nature 367:720–723

    Google Scholar 

  8. (a) Hunter CA. Synthesis and structure elucidation of a new [2]-catenane. (1992) J Am Chem Soc 114:5303–5311; (b) Kolchinski AG, Busch DH, Alcock NW. Gaining control over molecular threading: benefits of second coordination sites and aqueous–organic interfaces in rotaxane synthesis. (1995) J Chem Soc Chem Commun 1289–1291

    Google Scholar 

  9. (a) Hoffart DJ, Tiburcio J, de la Torre A, Knight LK, Loeb SJ. Cooperative ion–ion interactions in the formation of interpenetrated molecules. (2008) Angew Chem Int Ed 47:97–101; (2008) Angew Chem 120:103–107; (b) Lestini E, Nikitin K, Muller-Bunz H, Fitzmaurice D. Introducing negative charges into bis‐p‐phenylene crown ethers: a study of bipyridinium‐based [2]pseudorotaxanes and [2]rotaxanes. (2008) Chem Eur J 14:1095–1106

    Google Scholar 

  10. (a) Beer PD, Sambrook MR, Curiel D. Anion-templated assembly of interpenetrated and interlocked structures. (2006) Chem Commun 2105–2117; (b) Vickers MS, Beer PD. Anion templated assembly of mechanically interlocked structures. (2007) Chem Soc Rev 36:211–225; (c) Mullen KM, Beer PD. Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. (2009) Chem Soc Rev 38:1701–1713

    Google Scholar 

  11. Waals VD (1873) J. D. Ph. D Dissertation. Leiden

    Google Scholar 

  12. (a) Cram DJ, Tanner ME, Thomas R. The taming of cyclobutadiene. (1991) Angew Chem Int Ed 30:1024–1027; (b) Mal P, Breiner B, Rissanen K, Nitschke JR. White phosphorus is air-stable within a self-assembled tetrahedral capsule. (2009) Science 324:1697–1699

    Google Scholar 

  13. (a) Mock WL, Irra TA, Wepsiec JP, Manimaran TL. Cycloaddition induced by cucurbituril. a case of Pauling principle catalysis. (1983) J Org Chem 48:3619–3620; (b) Yoshizawa M, Tamura M, Fujita M. Diels-alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. (2006) Science 312:251–254

    Google Scholar 

  14. (a) Schill G (1971) Catenanes, rotaxanes and knots. Academic, New York; (b) Amabilino DB, Stoddart JF. Interlocked and intertwined structures and superstructures. (1995) Chem Rev 95:2725–2828; (c) Dietrich-Buchecker JPSCO (1999) Molecular catenanes, rotaxanes and knots: a journey through the world of molecular topology. Wiley, New York

    Google Scholar 

  15. (a) French D. The schardinger dextrins. (1957) Adv Carbohydr Chem 12:189–280; (b) Szejtli J. Introduction and general overview of cyclodextrin chemistry. (1998) Chem Rev 98:1743–1753; (c) Freudenberg K, Cramer F, Die Konstitution der Schardinger-Dextrine α, β, und γ. Naturforsch Z (1948) B: Chem Sci 3:464–464

    Google Scholar 

  16. Sliwa W, Kozlowski C (1999) Calixarenes and resorcinarenes. Wiley-VCH, Weinheim

    Google Scholar 

  17. (a) Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. The cucurbit[n]uril family. (2005) Angew Chem Int Ed 44:4844–4870; (b) Behrend R, Meyer E, Rusche F. I. Ueber condensationsproducte aus glycoluril und formaldehyd. (1905) Liebigs Ann Chem 339:1–37

    Google Scholar 

  18. Ogoshi T, Kanai S, Fujinami S, Yamagishi TA, Nakamoto Y. para-Bridged symmetrical pillar[5]arenes: their lewis acid catalyzed synthesis and host–guest property. (2008) J Am Chem Soc 130:5022–5023

    Google Scholar 

  19. (a) Sauvage JP. From chemical topology to molecular machines (Nobel Lecture). (2017) Angew Chem Int Ed 56:11080–11093; (b) Stoddart JF. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (Nobel Lecture). (2017) Angew Chem Int Ed 56:11094–11125

    Google Scholar 

  20. Odell B, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ. Cyclobis(paraquat‐p‐phenylene). A tetracationic multipurpose receptor. (1988) Angew Chem Int Ed 27:1547–1550

    Google Scholar 

  21. Trabolsi A, Khashab N, Fahrenbach AC, Friedman DC, Colvin MT, Coti KK, Benitez D, Tkatchouk E, Olsen JC, Belowich ME, Carmielli R, Khatib HA, Goddard WA, Wasielewski MR, Stoddart JF. Radically enhanced molecular recognition. (2010) Nat Chem 2:42–49

    Google Scholar 

  22. Allwood BL, Spencer N, Shahriarizavareh H, Stoddart JF, Williams DJ. Complexation of paraquat by a bisparaphenylene-34-crown-10 derivative. (1987) J Chem Soc Chem Comm 1064–1066

    Google Scholar 

  23. Asakawa M, Dehaen W, Labbe G, Menzer S, Nouwen J, Raymo FM, Stoddart JF, Williams DJ. Improved template-directed synthesis of Cyclobis(paraquat-p-phenylene). (1996) J Org Chem 61:9591–9595

    Google Scholar 

  24. Sue CH, Basu S, Fahrenbach AC, Shveyd AK, Dey SK, Botros YY, Stoddart JF. Enabling tetracationic cyclophane production by trading templates. (2010) Chem Sci 1:119–125

    Google Scholar 

  25. Barnes JC, Juricek M, Vermeulen NA, Dale EJ, Stoddart JF. Synthesis of ExnBox cyclophanes. (2013) J Org Chem 78:11962–11969

    Google Scholar 

  26. Anelli PL, Ashton PR, Ballardini R, Balzani V, Delgado M, Gandolfi MT, Goodnow TT, Kaifer AE, Philp D, Pietraszkiewicz M, Prodi L, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ. Molecular meccano. 1. [2]rotaxanes and a [2]catenane made to order. (1992) J Am Chem Soc 114:193–218

    Google Scholar 

  27. (a) Cordova E, Bissell RA, Spencer N, Ashton PR, Stoddart JF, Kaifer AE. Novel rotaxanes based on the inclusion complexation of biphenyl guests by cyclobis(paraquat-p-phenylene). (1993) J Org Chem 58:6550–6552; (b) Cordova E, Bissell RA, Kaifer AE. Synthesis and electrochemical properties of redox-active [2]rotaxanes based on the inclusion complexation of 1,4-phenylenediamine and benzidine by cyclobis(paraquat-p-phenylene) (1995) J Org Chem 60:1033–1038

    Google Scholar 

  28. Ikeda T, Aprahamian I, Stoddart JF. Blue-colored donor−acceptor [2]rotaxane. (2007) Org Lett 9:1481–1484

    Google Scholar 

  29. Ballardini R, Balzani V, Credi A, Brown CL, Gillard RE, Montalti M, Philp D, Stoddart JF, Venturi M, White AJP, Williams BJ, Williams DJ. Controlling Ccatenations, properties and relative ring-component movements in catenanes with aromatic fluorine substituents. (1997) J Am Chem Soc 119:12503–12513

    Google Scholar 

  30. Castro R, Nixon KR, Evanseck JD, Kaifer AE. Effects of side arm length and structure of para-substituted phenyl derivatives on their binding to the host cyclobis(paraquat-p-phenylene). (1996) J Org Chem 61:7298–7303

    Google Scholar 

  31. Kosower EM, Cotter JL. Stable Free Radicals. II. The reduction of 1-methyl-4-cyanopyridinium ion to methylviologen cation radical. (1964) J Am Chem Soc 86:5524

    Google Scholar 

  32. Yoshizawa M, Kumazawa K, Fujita M. Room-temperature and solution-state observation of the mixed-valence cation radical dimer of tetrathiafulvalene, [(TTF)2]+•, within a self-assembled cage. (2005) J Am Chem Soc 127:13456–13457

    Google Scholar 

  33. Wu YL, Frasconi M, Gardner DM, McGonigal PR, Schneebeli ST, Wasielewski MR, Stoddart JF. Electron delocalization in a rigid cofacial naphthalene‐1,8:4,5‐bis(dicarboximide) dimer. (2014) Angew Chem Int Ed 53:9476–9481; Angew Chem 2014, 126:9630–9635

    Google Scholar 

  34. Fahrenbach AC, Zhu ZX, Cao D, Liu WG, Li H, Dey SK, Basu S, Trabolsi A, Botros YY, Goddard WA, Stoddart JF. Radically enhanced molecular switches. (2012) J Am Chem Soc 134:16275–16288

    Google Scholar 

  35. Ashton PR, Goodnow TT, Kaifer AE, Reddington MV, Slawin AMZ, Spencer N, Stoddart JF, Vicent C, Williams DJ. A [2]catenane made to order. (1989) Angew Chem Int Ed 28:1396–1399

    Google Scholar 

  36. (a) Spruell JM, Paxton WF, Olsen JC, Benitez D, Tkatchouk E, Stern CL, Trabolsi A, Friedman DC, Goddard WA, Stoddart JF. A push-button molecular switch. (2009) J Am Chem Soc 131:11571–11580; (b) Fang L, Basu S, Sue CH, Fahrenbach AC, Stoddart JF. Syntheses and dynamics of donor−acceptor [2]catenanes in water. (2011) J Am Chem Soc 133:396–399

    Google Scholar 

  37. Miljanic OS, Dichtel WR, Mortezaei S, Stoddart JF. Cyclobis(paraquat-p-phenylene)-based [2]catenanes prepared by kinetically controlled reactions involving alkynes. (2006) Org Lett 8:4835–4838

    Google Scholar 

  38. Asakawa M, Brown CL, Menzer S, Raymo FM, Stoddart JF, Williams DJ. Structure−reactivity relationship in interlocked molecular compounds and in their supramolecular model complexes. (1997) J Am Chem Soc 119:2614–2627

    Google Scholar 

  39. Koshkakaryan G, Cao D, Klivansky LM, Teat SJ, Tran JL, Liu Y. Dual selectivity expressed in [2 + 2 + 1] dynamic clipping of unsymmetrical [2]catenanes. (2010) Org Lett 12:1528–1531

    Google Scholar 

  40. Li SJ, Liu M, Zheng B, Zhu KL, Wang F, Li N, Zhao XL, Huang FH. Taco complex templated syntheses of a cryptand/paraquat [2]rotaxane and a [2]catenane by olefin metathesis. (2009) Org Lett 11:3350–3353

    Google Scholar 

  41. Miljanic OS, Stoddart JF. Dynamic donor–acceptor [2]catenanes. (2007) Proc Natl Acad Sci U S A 104:12966–12970

    Google Scholar 

  42. Barnes JC, Fahrenbach AC, Cao D, Dyar SM, Frasconi M, Giesener MA, Benitez D, Tkatchouk E, Chernyashevskyy O, Shin WH, Li H, Sampath S, Stern CL, Sarjeant AA, Hartlieb KJ, Liu ZC, Carmieli R, Botros YY, Choi JW, Slawin AMZ, Ketterson JB, Wasielewski MR, Goddard WA, Stoddart JF. A radically configurable six-state compound. (2013) Science 339:429–433

    Google Scholar 

  43. (a) Zhao YL, Shveyd AK, Stoddart JF. Solid-state structures and superstructures of two charged donor–acceptor rotaxanes. (2011) Tetrahedron Lett 52:2044–2047; (b) Nygaard S, Laursen BW, Hansen TS, Bond AD, Flood AH, Jeppesen JO. Preparation of cyclobis(paraquat‐p‐phenylene)‐based [2]rotaxanes without flexible glycol chains (2007) Angew Chem Int Ed 46:6093–6097; (2007) Angew Chem 119:6205–6209; (c) Anelli PL, Spencer N, Stoddart JF. A molecular shuttle. (1991) J Am Chem Soc 113:5131–5133; (d) Benniston AC, Harriman A, Lynch VM. Photoactive [2]rotaxanes: structure and photophysical properties of anthracene- and ferrocene-stoppered [2]rotaxanes. (1995) J Am Chem Soc 117:5275–5291; (e) Nygaard S, Leung KCF, Aprahamian I, Ikeda T, Saha S, Laursen BW, Kim SY, Hansen SW, Stein PC, Flood AH, Stoddart JF, Jeppesen JO. Functionally rigid bistable [2]rotaxanes. (2007) J Am Chem Soc 129:960–970; (f) Yoon I, Benitez D, Zhao YL, Miljanic OS, Kim SY, Tkatchouk E, Leung KCF, Khan SI, Goddard WA, Stoddart JF. Functionally rigid and degenerate molecular shuttles. (2009) Chem Eur J 15:1115–1122

    Google Scholar 

  44. Huisgen R, Szeimies G, Mobius L. 1.3‐Dipolare cycloadditionen, XXXII. kinetik der additionen organischer azide an CC‐mehrfachbindungen. (1967) Chem Ber-Recl 100:2494

    Google Scholar 

  45. Dichtel WR, Miljanic OS, Spruell JM, Heath JR, Stoddart JF. Efficient templated synthesis of donor−acceptor rotaxanes using click chemistry. (2006) J Am Chem Soc 128:10388–10390

    Google Scholar 

  46. Li H, Fahrenbach AC, Dey SK, Basu S, Trabolsi A, Zhu ZX, Botros YY, Stoddart JF. Mechanical bond formation by radical templation. (2010) Angew Chem Int Ed 49:8260–8265; Angew Chem 2010, 122:8436–8441

    Google Scholar 

  47. Li H, Zhu ZX, Fahrenbach AC, Savoie BM, Ke CF, Barnes JC, Lei JY, Zhao YL, Lilley LM, Marks TJ, Ratner MA, Stoddart JF. Mechanical bond-induced radical stabilization. (2013) J Am Chem Soc 135:456–467

    Google Scholar 

  48. Green JE, Choi JW, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shin YS, Tseng HR, Stoddart JF, Heath JR. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. (2007) Nature 445:414–417

    Google Scholar 

  49. Huang TJ, Brough B, Ho CM, Liu Y, Flood AH, Bonvallet PA, Tseng HR, Stoddart JF, Baller M, Magonov S. A nanomechanical device based on linear molecular motors. (2004) Appl Phys Lett 85:5391–5393

    Google Scholar 

  50. Patel K, Angelos S, Dichtel WR, Coskun A, Yang YW, Zink JI, Stoddart JF. Enzyme-responsive snap-top covered silica nanocontainers. (2008) J Am Chem Soc 130:2382–2383

    Google Scholar 

  51. Bissell RA, Cordova E, Kaifer AE, Stoddart JF. A chemically and electrochemically switchable molecular shuttle. (1994) Nature 369:133–137

    Google Scholar 

  52. Andersen SS, Share AI, Poulsen BL, Korner M, Duedal T, Benson CR, Hansen SW, Jeppesen JO, Flood AH. Mechanistic evaluation of motion in redox-driven rotaxanes reveals longer linkers hasten forward escapes and hinder backward translations. (2014) J Am Chem Soc 136:6373–6384

    Google Scholar 

  53. Fahrenbach AC, Barnes JC, Li H, Benitez D, Basuray AN, Fang L, Sue CH, Barin G, Dey SK, Goddard WA, Stoddart JF. Measurement of the ground-state distributions in bistable mechanically interlocked molecules using slow scan rate cyclic voltammetry. (2011) Proc Natl Acad Sci U S A 108:20416–20421

    Google Scholar 

  54. Asakawa M, Ashton PR, Balzani V, Credi A, Hamers C, Mattersteig G, Montalti M, Shipway AN, Spencer N, Stoddart JF, Tolley MS, Venturi M, White AJP, Williams DJ. A chemically and electrochemically switchable [2]catenane incorporating a tetrathiafulvalene unit. (1998) Angew Chem Int Ed 37:333–337

    Google Scholar 

  55. Li H, Fahrenbach AC, Coskun A, Zhu ZX, Barin G, Zhao YL, Botros YY, Sauvage JP, Stoddart JF. A light‐stimulated molecular switch driven by radical–radical interactions in water. (2011) Angew Chem Int Ed 50:6782–6788; Angew Chem 2011, 123:6914–6920

    Google Scholar 

  56. Li H, Cheng CY, McGonigal PR, Fahrenbach AC, Frasconi M, Liu WG, Zhu ZX, Zhao YL, Ke CF, Lei JY, Young RM, Dyar SM, Co DT, Yang YW, Botros YY, Goddard WA, Wasielewski MR, Astumian RD, Stoddart JF. Relative unidirectional translation in an artificial molecular assembly fueled by light. (2013) J Am Chem Soc 135:18609–18620

    Google Scholar 

  57. Asakawa M, Ashton PR, Menzer S, Raymo FM, Stoddart JF, White AJP, Williams DJ. Cyclobis(paraquat‐4,4′‐biphenylene)–an organic molecular square. (1996) Chem Eur J 2:877–893

    Google Scholar 

  58. Amabilino DB, Ashton PR, Brown CL, Cordova E, Godinez LA, Goodnow TT, Kaifer AE, Newton SP, Pietraszkiewicz M, Philp D, Raymo FM, Reder AS, Rutland MT, Slawin AMZ, Spencer N, Stoddart JF, Williams DJ. Molecular meccano. 2. self-assembly of [n]catenanes. (1995) J Am Chem Soc 117:1271–1293

    Google Scholar 

  59. Spruell JM, Coskun A, Friedman DC, Forgan RS, Sarjeant AA, Trabolsi A, Fahrenbach AC, Barin G, Paxton WF, Dey SK, Olson MA, Benitez D, Tkatchouk E, Colvin MT, Carmielli R, Caldwell ST, Rosair GM, Hewage SG, Duclairoir F, Seymour JL, Slawin AMZ, Goddard WA, Wasielewski MR, Cooke G, Stoddart JF. Highly stable tetrathiafulvalene radical dimers in [3]catenanes. (2010) Nat Chem 2:870–879

    Google Scholar 

  60. Lipke MC, Cheng T, Wu YL, Arslan H, Xiao H, Wasielewski MR, Goddard WA, Stoddart JF. Size-matched radical multivalency. (2017) J Am Chem Soc 139:3986–3998

    Google Scholar 

  61. Lipke MC, Wu YL, Roy I, Wang YP, Wasielewski MR, Stoddart JF. Shuttling Rates, Electronic states, and hysteresis in a ring-in-ring rotaxane. (2018) ACS Cent Sci 4:362–371

    Google Scholar 

  62. Cai K, Lipke MC, Liu ZC, Nelson J, Cheng T, Shi Y, Cheng CY, Shen DK, Han JM, Vemuri S, Feng YN, Stern CL, Goddard WA, Wasielewski MR, Stoddart JF. Molecular Russian dolls. (2018) Nat Commun 9:5275

    Google Scholar 

  63. Barnes JC, Juricek M, Strutt NL, Frasconi M, Sampath S, Giesener MA, McGrier PL, Bruns CJ, Stern CL, Sarjeant AA, Stoddart JF. ExBox: a polycyclic aromatic hydrocarbon scavenger. (2013) J Am Chem Soc 135:183–192

    Google Scholar 

  64. Juricek M, Barnes JC, Dale EJ, Liu WG, Strutt NL, Bruns CJ, Vermeulen NA, Ghooray KC, Sarjeant AA, Stern CL, Botros YY, Goddard WA, Stoddart JF. Ex2Box: interdependent modes of binding in a two-nanometer-long synthetic receptor. (2013) J Am Chem Soc 135:12736–12746

    Google Scholar 

  65. Sun JL, Frasconi M, Liu ZC, Barnes JC, Wang YP, Chen DY, Stern CL, Stoddart JF. Formation of ring-in-ring complexes between crown ethers and rigid TVBox8+. (2015) Chem Commun 51:1432–1435

    Google Scholar 

  66. Dale EJ, Vermeulen NA, Juricek M, Barnes JC, Young RM, Wasielewski MR, Stoddart JF. Supramolecular explorations: exhibiting the extent of extended cationic cyclophanes. (2016) Acc Chem Res 49:262–273

    Google Scholar 

  67. Barnes JC, Dale EJ, Prokofjevs A, Narayanan A, Gibbs-Hall IC, Juricek M, Stern CL, Sarjeant AA, Botros YY, Stupp SI, Stoddart JF. Semiconducting single crystals comprising segregated arrays of complexes of C60. (2015) J Am Chem Soc 137:2392–2399

    Google Scholar 

  68. Dale EJ, Vermeulen NA, Thomas AA, Barnes JC, Juricek M, Blackburn AK, Strutt NL, Sarjeant AA, Stern CL, Denmark SE, Stoddart JF. ExCage. (2014) J Am Chem Soc 136:10669–10682

    Google Scholar 

  69. Hafezi N, Holcroft JM, Hartlieb KJ, Dale EJ, Vermeulen NA, Stern CL, Sarjeant AA, Stoddart JF. Modulating the binding of polycyclic aromatic hydrocarbons inside a hexacationic cage by anion–π interactions. (2015) Angew Chem Int Ed 54:456–461

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, H., Jiao, T., Shen, L. (2020). Host-Guest Chemistry of a Tetracationic Cyclophane, Namely, Cyclobis (paraquat-p-phenylene). In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_4

Download citation

Publish with us

Policies and ethics