Skip to main content

Covalent Connection Dictates Programmable Self-Assembly of Peptides

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 1295 Accesses

Abstract

This chapter summarizes creation of well-defined peptide nanostructures via the strategies combining covalent connection and self-assembling propensity of peptides. Based on the mechanism for covalent connection facilitating formation of peptide nanostructures, the strategies for combination of covalent connection and peptide self-assembly are classified into three categories, covalent constraint, covalent capture, and covalent chaperon, which undergoes prior to, after, and simultaneous with the self-assembly of peptides, respectively. While covalent constraint allows for lowering the conformational space of peptides, covalent capture of peptide assemblies stabilizes the resulting nanostructures. Covalent chaperon, by combining the advantages of the other two counterpart strategies, enables formation of nanostructures benefiting from the cooperativity of the chemical reactions and peptide self-assembly. Creation of a variety of hierarchical functional nanostructures by combining peptide self-assembly with covalent reactions distinct with the counterparts obtained by conventional bottom-up approaches demonstrates the potential of this concept toward paving the way artificial materials toward sophisticated natural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anfinsen CB, Haber E (1961) Studies on the reduction and re-formation of protein disulfide bonds. J Biol Chem 236:1361–1363

    CAS  PubMed  Google Scholar 

  2. Burgess NC, Sharp TH, Thomas F, Wood CW, Thomson AR, Zaccai NR (2015) Modular design of self-assembling peptide-based nanotubes. J Am Chem Soc 137:10554–10562

    CAS  PubMed  Google Scholar 

  3. Carnall JMA, Waudby CA, Belenguer AM, Stuart MCA, Peyralans JJ-P, Otto S (2010) Mechanosensitive self-replication driven by self-organization. Science 327:1502–1506

    CAS  PubMed  Google Scholar 

  4. Chen C, Tan J, Hsieh M-C, Pan T, Goodwin JT, Mehta AK et al (2017) Design of multi-phase dynamic chemical networks. Nat Chem 9:799

    CAS  PubMed  Google Scholar 

  5. Chin JW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc Natl Acad Sci U S A 99:11020–11024

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Colomb-Delsuc M, Mattia E, Sadownik JW, Otto S (2015) Exponential self-replication enabled through a fibre elongation/breakage mechanism. Nat Commun 6:7427

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Pept Sci 94:1–18

    CAS  Google Scholar 

  8. Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Duim H, Otto S (2017) Beilstein J Org Chem 13:1189–1203

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Egnaczyk GF, Greis KD, Stimson ER, Maggio JE (2001) Photoaffinity cross-linking of Alzheimer’s disease amyloid fibrils reveals interstrand contact regions between assembled β-amyloid peptide subunits. Biochemistry 40:11706–11714

    CAS  PubMed  Google Scholar 

  11. Garcia-Manyes S, Beedle AEM (2017) Steering chemical reactions with force. Nat Rev Chem 1:0083

    CAS  Google Scholar 

  12. Gobeaux F, Fay N, Tarabout C, Mériadec C, Meneau F, Ligeti M et al (2012) Structural role of counterions adsorbed on self-assembled peptide nanotubes. J Am Chem Soc 134:723–733

    CAS  PubMed  Google Scholar 

  13. Gobeaux F, Fay N, Tarabout C, Meneau F, Mériadec C, Delvaux C et al (2013) Experimental observation of double-walled peptide nanotubes and monodispersity modeling of the number of walls. Langmuir 29:2739–2745

    CAS  PubMed  Google Scholar 

  14. Gobeaux F, Tarabout C, Fay N, Meriadec C, Ligeti M, Buisson D-A et al (2014) Directing peptide crystallization through curvature control of nanotubes. J Pept Sci 20:508–516

    CAS  PubMed  Google Scholar 

  15. Hartgerink JD (2004) Covalent capture: a natural complement to self-assembly. Curr Opin Chem Biol 8:604–609

    CAS  PubMed  Google Scholar 

  16. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688

    CAS  PubMed  Google Scholar 

  17. Hirst AR, Roy S, Arora M, Das AK, Hodson N, Murray P et al (2010) Biocatalytic induction of supramolecular order. Nat Chem 2:1089

    CAS  PubMed  Google Scholar 

  18. Krishnan-Ghosh Y, Balasubramanian S (2003) Dynamic covalent chemistry on self-templating peptides: formation of a disulfide-linked β-hairpin mimic. Angew Chem Int Ed 42:2171–2173

    CAS  Google Scholar 

  19. Lampel A, McPhee SA, Park H-A, Scott GG, Humagain S, Hekstra DR, Yoo B, Li T-D, Abzalimov RR, Greenbaum SG, Tuttle T, Hu C, Bettinger CJ, Ulijn RV (2017) Science 356:1064–1068

    CAS  PubMed  Google Scholar 

  20. Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR (1996) A self-replicating peptide. Nature 382:525

    CAS  PubMed  Google Scholar 

  21. Li IC, Hartgerink JD (2017) Covalent capture of aligned self-assembling nanofibers. J Am Chem Soc 139:8044–8050

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Foss CA, Summerfield DD, Doyle JJ, Torok CM, Dietz HC et al (2012) Targeting collagen strands by photo-triggered triple-helix hybridization. Proc Natl Acad Sci USA 109:14767–14772

    CAS  PubMed  Google Scholar 

  23. Liu S, Tang A, Xie M, Zhao Y, Jiang J, Liang G (2015) Oligomeric hydrogels self-assembled from reduction-controlled condensation. Angew Chem Int Ed 54:3639–3642

    CAS  Google Scholar 

  24. Malakoutikhah M, Peyralans JJP, Colomb-Delsuc M, Fanlo-Virgós H, Stuart MCA, Otto S (2013) Uncovering the selection criteria for the emergence of multi-building-block replicators from dynamic combinatorial libraries. J Am Chem Soc 135:18406–18417

    CAS  PubMed  Google Scholar 

  25. Mart RJ, Osborne RD, Stevens MM, Ulijn RV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2:822–835

    CAS  PubMed  Google Scholar 

  26. Muraoka T, Cui H, Stupp SI (2008) Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. J Am Chem Soc 130:2946–2947

    CAS  PubMed  Google Scholar 

  27. Pouget E, Dujardin E, Cavalier A, Moreac A, Valéry C, Marchi-Artzner V et al (2007) Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nat Mater 6:434

    CAS  PubMed  Google Scholar 

  28. Pouget E, Fay N, Dujardin E, Jamin N, Berthault P, Perrin L et al (2010) Elucidation of the self-assembly pathway of lanreotide octapeptide into β-sheet nanotubes: role of two stable intermediates. J Am Chem Soc 132:4230–4241

    CAS  PubMed  Google Scholar 

  29. Prins LJ, Scrimin P (2009) Covalent capture: merging covalent and noncovalent synthesis. Angew Chem Int Ed 48:2288–2306

    CAS  Google Scholar 

  30. Rajagopalan L, Chin CC, Rajarathnam K (2007) Role of intramolecular disulfides in stability and structure of a noncovalent homodimer. Biophys J 93:2129–2134

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rehder DS, Borges CR (2010) Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry 49:7748–7755

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sadownik JW, Ulijn RV (2010) Dynamic covalent chemistry in aid of peptide self-assembly. Curr Opin Biotechnol 21:401–411

    CAS  PubMed  Google Scholar 

  33. Sadownik JW, Mattia E, Nowak P, Otto S (2016) Diversification of self-replicating molecules. Nat Chem 8:264

    CAS  PubMed  Google Scholar 

  34. Saghatelian A, Yokobayashi Y, Soltani K, Ghadiri MR (2001) A chiroselective peptide replicator. Nature 409:797

    CAS  PubMed  Google Scholar 

  35. Sato K, Ji W, Palmer LC, Weber B, Barz M, Stupp SI (2017) Programmable assembly of peptide amphiphile via noncovalent-to-covalent bond conversion. J Am Chem Soc 139:8995–9000

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Severin K, Lee DH, Kennan AJ, Ghadiri MR (1997) A synthetic peptide ligase. Nature 389:706

    CAS  PubMed  Google Scholar 

  37. Tarabout C, Roux S, Gobeaux F, Fay N, Pouget E, Meriadec C et al (2011) Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact. Proc Natl Acad Sci U S A 108:7679–7684

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomas F, Burgess NC, Thomson AR, Woolfson DN (2016) Controlling the assembly of coiled–coil peptide nanotubes. Angew Chem Int Ed 55:987–991

    CAS  Google Scholar 

  39. Thomson AR, Wood CW, Burton AJ, Bartlett GJ, Sessions RB, Brady RL et al (2014) Computational design of water-soluble α-helical barrels. Science 346:485–488

    CAS  PubMed  Google Scholar 

  40. Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128:1070–1071

    CAS  PubMed  Google Scholar 

  41. Valéry C, Paternostre M, Robert B, Gulik-Krzywicki T, Narayanan T, Dedieu J-C et al (2003) Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc Natl Acad Sci U S A 100:10258–10262

    PubMed  PubMed Central  Google Scholar 

  42. Valery C, Artzner F, Paternostre M (2011) Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications. Soft Matter 7:9583–9594

    CAS  Google Scholar 

  43. Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV (2008) Enzyme-assisted self-assembly under thermodynamic control. Nat Nanotech 4:19

    Google Scholar 

  44. Yang Z, Gu H, Fu D, Gao P, Lam JK, Xu B (2004) Enzymatic formation of supramolecular hydrogels. Adv Mater 16:1440–1444

    CAS  Google Scholar 

  45. Yang Z, Liang G, Wang L, Xu B (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J Am Chem Soc 128:3038–3043

    CAS  PubMed  Google Scholar 

  46. Yang Z, Liang G, Xu B (2008) Enzymatic hydrogelation of small molecules. Acc Chem Res 41:315–326

    CAS  PubMed  Google Scholar 

  47. Yu Z, Tantakitti F, Yu T, Palmer LC, Schatz GC, Stupp SI (2016) Simultaneous covalent and noncovalent hybrid polymerizations. Science 351:497–502

    CAS  PubMed  Google Scholar 

  48. Zaccai NR, Chi B, Thomson AR, Boyle AL, Bartlett GJ, Bruning M et al (2011) A de novo peptide hexamer with a mutable channel. Nat Chem Biol 7:935

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng Z, Chen P, Xie M, Wu C, Luo Y, Wang W et al (2016) Cell environment-differentiated self-assembly of nanofibers. J Am Chem Soc 138:11128–11131

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, X., Lou, S., Yu, Z. (2020). Covalent Connection Dictates Programmable Self-Assembly of Peptides. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_39

Download citation

Publish with us

Policies and ethics