Skip to main content

CB[n]-Based Coordination Chemistry

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 1244 Accesses

Abstract

Cucurbit[n]urils (CB[n]s) are a family of molecular container hosts possessing a rigid hydrophobic cavity and two identical carbonyl-fringed portals. They have attracted much attention in supramolecular chemistry because of their superior molecular recognition properties in aqueous media. In particular, the interaction of CB[n] with various metal ions has established CB[n]-based coordination chemistry as an increasingly important area in CB[n] chemistry. This chapter highlights the advances and challenges in the field of CB[n]-based coordination chemistry. It deals mainly with the coordination of metal ions by cucurbit[n]urils and potential applications of CB[n]-based coordination complexes and polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cong H, Ni XL, Xiao X, Huang Y, Zhu QJ, Xue SF, Tao Z, Lindoy LF, Wei G (2016) Synthesis and separation of cucurbit[n]urils and their derivatives. Org Biomol Chem 14:4335–4364

    CAS  PubMed  Google Scholar 

  2. Sindelar V, Silvi S, Parker SE, Sobransingh D, Kaifer AE (2007) Proton and electron transfer control of the position of cucurbit[n]uril wheels in pseudorotaxanes. Adv Funct Mater 17:694–701

    CAS  Google Scholar 

  3. Wang W, Kaifer AE (2009) Cucurbituril and cyclodextrin complexes of dendrimers. Adv Polym Sci 222:205–235

    CAS  Google Scholar 

  4. Dsouza RN, Pischel U, Nau WM (2011) Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev 111:7941–7980

    CAS  PubMed  Google Scholar 

  5. Pemberton BC, Raghunathan R, Volla S, Sivaguru J (2012) From containers to catalysts: supramolecular catalysis within cucurbiturils. Chem Eur J 18:12178–12190

    CAS  PubMed  Google Scholar 

  6. Liu YL, Yang H, Wang ZQ, Zhang X (2013) Cucurbit[8]uril-based supramolecular polymers. Chem Asian J 8:1626–1632

    CAS  PubMed  Google Scholar 

  7. Isaacs L (2014) Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc Chem Res 47:2052–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Assaf KI, Nau WM (2015) Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem Soc Rev 44:394–418

    CAS  PubMed  Google Scholar 

  9. Ma X, Zhao YL (2015) Biomedical applications of supramolecular systems based on host−guest interactions. Chem Rev 115:7794–7839

    CAS  PubMed  Google Scholar 

  10. Tian J, Chen L, Zhang DW, Liu Y, Li ZT (2016) Supramolecular organic frameworks: engineering periodicity in water through host-guest chemistry. Chem Commun 52:6351–6362

    CAS  Google Scholar 

  11. Liu J, Lan Y, Yu ZY, Tan CSY, Parker RM, Abell C, Scherman OA (2017) Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: a versatile approach for supramolecular architectures and materials. Acc Chem Res 50:208–217

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fedin VP (2004) New lines of research in chemistry of chalcogenide complexes: from clusters to supramolecular compounds. Russ J Coordin Chem 30:151–158

    CAS  Google Scholar 

  13. Lü J, Lin JX, Cao MN, Cao R (2013) Cucurbituril: a promising organic building block for the design of coordination compounds and beyond. Coord Chem Rev 257:1334–1356

    Google Scholar 

  14. Ni XL, Xiao X, Cong H, Liang LL, Chen K, Cheng XJ, Ji NN, Zhu QJ, Xue SF, Tao Z (2013) Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem Soc Rev 42:9480–9508

    CAS  PubMed  Google Scholar 

  15. Ni XL, Xue SF, Tao Z, Zhu QJ, Lindoy LF, Wei G (2015) Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils. Coord Chem Rev 287:89–113

    CAS  Google Scholar 

  16. Ni XL, Xiao X, Cong H, Zhu QJ, Xue SF, Tao Z (2014) Self-assemblies based on the “outer-surface interactions” of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. Acc Chem Res 47:1386–1395

    CAS  PubMed  Google Scholar 

  17. Choudhury SD, Mohanty J, Pal H, Bhasikuttan AC (2010) Cooperative metal ion binding to a cucurbit[7]uril-thioflavin T complex: demonstration of a stimulus-responsive fluorescent supramolecular capsule. J Am Chem Soc 132:1395–1401

    CAS  PubMed  Google Scholar 

  18. Cao M, Lin J, Yang H, Cao R (2010) Facile synthesis of palladium nanoparticles with high chemical activity using cucurbit[6]uril as protecting agent. Chem Commun 46:5088–5090

    CAS  Google Scholar 

  19. Feng X, Chen K, Zhang YQ, Xue SF, Zhu QJ, Tao Z, Day AI (2011) Stable cucurbit[5]uril MOF structures as ‘beaded’ rings built on a p-hydroxybenzoic acid template – a small molecule absorption material. CrystEngComm 13:5049–5051

    CAS  Google Scholar 

  20. Ji NN, Cheng XJ, Zhao Y, Liang LL, Chen K, Xiao X, Zhang YQ, Zhu QJ, Xue SF, Tao Z (2014) Hexachloroplatinate(IV) anion induced cucurbituril supramolecular assembly with linear channels. Eur J Inorg Chem 2014:1435–1438

    CAS  Google Scholar 

  21. Han BX, Wang CZ, Chen K, Xiao X, Tao Z, Xue SF, Zhang YQ, Zhu QJ (2014) Coordination of K+/Ln3+ to perhydroxycucurbit[5]uril and the formation of supramolecular self-assemblies in the presence of [PMo12O40]3− anions: potential application in isolation of light lanthanides. CrystEngComm 16:1615–1619

    CAS  Google Scholar 

  22. Ji NN, Cheng XJ, Zhao Y, Liang LL, Ni XL, Xiao X, Zhu QJ, Xue SF, Dong N, Tao Z (2014) Tetrachloridometallate dianion-induced cucurbit[8]uril supramolecular assemblies with large channels and their potential applications for extraction coating on solid-phase microextraction fibers. Inorg Chem 53:21–23

    CAS  PubMed  Google Scholar 

  23. Cheng XJ, Ji NN, Zhao Y, Liang LL, Xiao X, Zhang YQ, Xue SF, Zhu QJ, Tao Z (2014) [CdCl4]2− anion-induced coordination of Ln3+ to cucurbit[8]uril and the formation of supramolecular self-assemblies: potential application in isolation of light lanthanides. CrystEngComm 16:144–147

    CAS  Google Scholar 

  24. Zhao Y, Liang LL, Chen K, Zhang T, Xiao X, Zhang YQ, Tao Z, Xue SF, Zhu QJ (2013) Inorganic anion-aided coordination of lanthanide metal ions to cucurbituril and supramolecular self-assembly: potential applications in the separation of light lanthanides. CrystEngComm 15:7987–7998

    CAS  Google Scholar 

  25. Sun T, Ji N, Qi M, Tao Z, Fu R (2014) Separation performance of cucurbit[8]uril and its coordinationcomplex with cadmium (II) in capillary gas chromatography. J Chromatogr A 1343:167–173

    CAS  PubMed  Google Scholar 

  26. Flinn A, Hough GC, Stoddart JF, Williams DJ (1992) Decamethylcucurbit[5]uril. Angew Chem Int Ed 31:1475–1477

    Google Scholar 

  27. Shen Y, Zou L, Wang Q (2017) Template-directed synthesis of cucurbituril analogues using propanediurea as a building block. New J Chem 41:7857–7860

    CAS  Google Scholar 

  28. Wu Y, Xu L, Shen Y, Wang Y, Zou L, Wang Q, Jiang X, Liu J, Tian H (2017) The smallest cucurbituril analogue with high affinity for ag+. Chem Commun 53:4070–4072

    CAS  Google Scholar 

  29. Rudkevich DM (2004) Emerging supramolecular chemistry of gases. Angew Chem Int Ed 43:558–571

    CAS  Google Scholar 

  30. Zhang H, Paulsen ES, Walker KA, Krakowiak KE, Dearden DV (2003) Cucurbit[6]uril pseudorotaxanes: distinctive gas-phase dissociation and reactivity. J Am Chem Soc 125:9284–9285

    CAS  PubMed  Google Scholar 

  31. Kellersberger KA, Anderson JD, Ward SM, Krakowiak KE, Dearden DV (2001) Encapsulation of N2, O2, methanol, or acetonitrile by decamethylcucurbit[5]uril(NH4+)2 complexes in the gas phase: influence of the guest on “lid” tightness. J Am Chem Soc 123:11316–11317

    CAS  PubMed  Google Scholar 

  32. Miyahara Y, Abe K, Inazu T (2002) “Molecular” molecular sieves: lid-free decamethylcucurbit[5]uril absorbs and desorbs gases selectively. Angew Chem Int Ed 41:3020–3023

    CAS  Google Scholar 

  33. Kim J, Jung IS, Kim SY, Lee E, Kang JK, Sakamoto S, Yamaguchi K, Kim K (2000) New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc 122:540–541

    CAS  Google Scholar 

  34. Day AI, Arnold AP (2000) Method for synthesis cucurbiturils[p]. WO.0068232, 1–8

    Google Scholar 

  35. Zhao J, Kim HJ, Oh J, Kim SY, Lee JW, Sakamoto S, Yamaguchi K, Kim K (2001) Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew Chem Int Ed 40:4233–4235

    CAS  Google Scholar 

  36. Wu F, Wu LH, Xiao X, Zhang YQ, Xue SF, Tao Z, Day AI (2012) Locating the cyclopentano cousins of the cucurbit[n]uril family. J Org Chem 77:606–613

    CAS  PubMed  Google Scholar 

  37. Ustrnul L, Kulhanek P, Lizal T, Sindelar V (2015) Pressocucurbit[5]uril. Org Lett 17:1022–1025

    CAS  PubMed  Google Scholar 

  38. Jon SY, Selvapalam N, Oh DH, Kang JK, Kim SY, Jeon YJ, Lee JW, Kim K (2003) Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J Am Chem Soc 125:10186–10187

    CAS  PubMed  Google Scholar 

  39. Buschmann HJ, Cleve E, Jansen K, Schollmeyer E (2001) Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution. Anal Chim Acta 437:157–163

    CAS  Google Scholar 

  40. Buschmann HJ, Cleve E, Jansen K, Wego A, Schollmeyer E (2001) Complex formation between cucurbit[n]urils and alkali, alkaline earth and ammonium ions in aqueous solution. J Incl Pheno Macro Chem 40:117–120

    CAS  Google Scholar 

  41. Zhao YJ, Xue SF, Zhu QJ, Zhang YQ, Tao Z, Wei ZB, Long LS (2006) A molecular bowl with barium ion as bottom. Chin. J Inorg Chem 22:129–133

    Google Scholar 

  42. Hu YF, Chen K, Liu JX, Lin RL, Sun WQ, Xue SF, Zhu QJ, Tao Z (2012) Complexation of decamethylcucurbit[5]uril with alkali metal ions. Polyhedron 31:632–637

    CAS  Google Scholar 

  43. Hu YF, Chen K, Lin RL, Sun WQ, Zhu J, Liu JX, Xue SF, Zhu QJ, Tao Z (2012) Ionic radius-dependent self-assembly of closed/opened molecular capsules based on pentacyclopentanocucurbit[5]uril. RSC Adv 2:5663–5668

    CAS  Google Scholar 

  44. Hu JX, Hu YF, Xiao X, Zhang YQ, Tao Z, Xue SF, Liu JX, Zhu QJ (2013) Coordination of Pentacyclohexanocucurbit[5]uril with alkali metal ions and supramolecular self-assembly in the absence and presence of inorganic anions. Eur J Inorg Chem 2013:3632–3640

    CAS  Google Scholar 

  45. Chen HY, Hou HT, Liang ZY, Tao Z, Zhang YQ, Zhou QD (2016) Coordination of alkali and alkaline-earth metal ions to perhydroxycucurbit[5]uril and formation of supramolecular selfassemblies in the presence of [SiW12O40]4− anions. Inorg Chim Acta 453:122–127

    CAS  Google Scholar 

  46. Liu JX, Long LS, Huang RB, Zheng LS (2006) Molecular capsules based on cucurbit[5]uril encapsulating “naked” anion chlorine. Cryst Growth Des 6:2611–2614

    CAS  Google Scholar 

  47. Wei LT, Zhang YQ, Zhou KZ, Zhan LL, Qu YX, Tao Z, Ma PH (2016) Coordination of fully substituted cyclopentano cucurbit[5]uril with alkaline earth cations in the presence of tetrachlorozincate anions. Inorg Chim Acta 453:277–283

    CAS  Google Scholar 

  48. Zhang Y, Bhadbhade M, Avdeev M, Price JR, Karatchevtseva I, Li Q, Tao Z, Wei G (2018) Thorium(IV) and uranium(IV) complexes with cucurbit[5]uril. Inorg Chem 57:8588–8598

    CAS  PubMed  Google Scholar 

  49. Liu JX, Long LS, Huang RB, Zheng LS (2007) Interesting anion-inclusion behavior of cucurbit[5]uril and its lanthanide-capped molecular capsule. Inorg Chem 46:10168–10173

    CAS  PubMed  Google Scholar 

  50. Kushwaha S, Rao SA, Sudhakar PP (2012) Fluorescent Uranyl ion lidded cucurbit[5]uril capsule. Inorg Chem 51:267–273

    CAS  PubMed  Google Scholar 

  51. Thuery P (2009) Uranyl ion complexes with cucurbit[5]uril: from molecular capsules to uranyl-organic frameworks. Cryst Growth Des 9:1208–1215

    CAS  Google Scholar 

  52. Liu JX, Hu YF, Lin RL, Sun WQ, Liu XH, Yao WR (2010) Anion channel structure through packing of cucurbit[5]uril-Pb2+ or cucurbit[5]uril-Hg2+ complexes. J Coord Chem 63:1369–1378

    CAS  Google Scholar 

  53. Zhang Y, Panjikar S, Chen K, Karatchevtseva I, Tao Z, Wei G (2019) Lanthanoid heteroleptic complexes with cucurbit[5]uril and dicarboxylate ligands: from discrete structures to one-dimensional and two-dimensional polymers. Inorg Chem 58:506–515

    CAS  PubMed  Google Scholar 

  54. Zhou FG, Wu LH, Lu XJ, Zhang YQ, Zhu QJ, Xue SF, Tao Z (2009) Molecular capsules based on methyl-substituted cucurbit[5]urils and strontium-capped. J Mol Struct 927:14–20

    CAS  Google Scholar 

  55. Liang LL, Chen K, Feng X, Zhang YQ, Zhu QJ, Xue SF, Tao Z (2011) Three cucurbit[5]uril-based heterometallic complexes. J Mol Struct 1006:87–90

    CAS  Google Scholar 

  56. Thuery P (2009) Lanthanide complexes with cucurbit[n]urils (n = 5, 6, 7) and perrhenate ligands: new examples of encapsulation of perrhenate anions. Inorg Chem 48:4497–4513

    CAS  PubMed  Google Scholar 

  57. Liu JX, Hu YF, Lin RL, Sun WQ, Chu XF, Xue SF, Zhu QJ, Tao Z (2012) Coordination complexes based on pentacyclohexanocucurbit[5]uril and lanthanide(III) ions: lanthanide contraction effect induced structural variation. CrystEngComm 14:6983–6989

    CAS  Google Scholar 

  58. Chen K, Liang LL, Liu HJ, Tao Z, Xue SF, Zhang YQ, Zhu QJ (2012) p-Hydroxybenzoic acid-assisted homochiral 1D-helical coordination polymers from calcium cations and cucurbit[5]uril. CrystEngComm 14:8049–8056

    CAS  Google Scholar 

  59. Chen K, Liang LL, Liu HJ, Zhang YQ, Xue SF, Tao Z, Xiao X, Zhu QJ, Lindoy LF, Wei G (2012) Hydroquinone-assisted assembly of coordination polymers from lanthanides and cucurbit[5]uril. CrystEngComm 14:7994–7999

    CAS  Google Scholar 

  60. Chen K, Liang LL, Zhang YQ, Zhu QJ, Xue SF, Tao Z (2011) Novel supramolecular assemblies based on coordination of samarium cation to cucurbit[5]uril. Inorg Chem 50:7754–7760

    CAS  PubMed  Google Scholar 

  61. Li ZF, Liang LL, Wu F, Zhou FG, Ni XL, Feng X, Xiao X, Zhang YQ, Xue SF, Zhu QJ, Clegg JK, Tao Z, Lindoy LF, Wei G (2013) An approach to networks based on coordination of alkyl-substituted cucurbit[5]urils and potassium ions. CrystEngComm 15:1994–2001

    CAS  Google Scholar 

  62. Ni XL, Lin JX, Zheng YY, Wu WS, Zhang YQ, Xue SF, Zhu QJ, Tao Z, Day AI (2008) Supramolecular bracelets and interlocking rings elaborated through the interrelationship of neighboring chemical environments of alkyl-substitution on cucurbit[5]uril. Cryst Growth Des 8:3446–3450

    CAS  Google Scholar 

  63. Li ZF, Wu F, Zhou FG, Ni XL, Feng X, Xiao X, Zhang YQ, Xue SF, Zhu QJ, Lindoy LF, Clegg JK, Tao Z, Wei G (2010) Approach to 10-unit “bracelet” frameworks based on coordination of alkyl-substituted cucurbit[5]urils and potassium ions. Cryst Growth Des 10:5113–5116

    CAS  Google Scholar 

  64. Cong H, Chen K, Wang CZ, Liang LL, Xue SF, Zhang YQ, Tao Z, Zhu QJ (2014) Coordination and supramolecular assemblies of neodymium cation with cucurbit[5]uril. Chin J Inorg Chem 30:2839–2846

    CAS  Google Scholar 

  65. Xiao X, Tao Z, Xue SF, Zhu QJ, Liu JX, Wei G (2011) Coordination polymers constructed from alkali metal ions and (HO)10cucurbit[5]uril. CrystEngComm 13:3794–3800

    CAS  Google Scholar 

  66. Behrend R, Meyer E, Rusche F (1905) Mittheilungen aus dem organixch-chemixchen laboratorium der technischen hochxcbule zu hannover. Justus Liebigs Ann Chem 339:1–37

    Google Scholar 

  67. Freeman WA, Mock WL, Shih NY (1981) Cucurbituril. J Am Chem Soc 103:7367–7378

    CAS  Google Scholar 

  68. Lu LB, Zhang YQ, Zhu QJ, Xue SF, Tao Z (2007) Synthesis and X-ray structure of the inclusion complex of dodecamethylcucurbit[6]uril with 1,4-dihydroxybenzene. Molecules 12:716–722

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Whang D, Heo J, Park JH, Kim K (1998) A molecular bowl with metal ion as bottom: reversible inclusion of organic molecules in cesium ion complexed cucurbituril. Angew Chem Int Ed 37:78–80

    CAS  Google Scholar 

  70. Chen WJ, Yu DH, Zhang YQ, Zhu QJ, Xue SF, Tao Z, Wei G (2011) Difference of coordination between alkali- and alkaline-earth-metal ions to a symmetrical α,α’,δ,δ’-tetramethylcucurbit[6]uril. Inorg Chem 50:6956–6964

    CAS  PubMed  Google Scholar 

  71. Hou HT, Chen WJ, Zhang YQ, Zhu QJ, Xue SF, Tao Z (2015) Coordination and supramolecular assemblies of meta-hexamethyl-substituted cucurbit[6]uril with alkali metal ions. Polyhedron 87:117–121

    CAS  Google Scholar 

  72. Danylyuk O, Fedin VP (2012) Solid-state supramolecular assemblies of tryptophan and tryptamine with cucurbit[6]uril. Cryst Growth Des 12:550–555

    CAS  Google Scholar 

  73. Gerasko OA, Mainicheva EA, Naumova MI, Neumaier M, Kappes MM, Lebedkin S, Fenske D, Fedin VP (2008) Sandwich-type tetranuclear lanthanide complexes with cucurbit[6]uril: from molecular compounds to coordination polymers. Inorg Chem 47:8869–8880

    CAS  PubMed  Google Scholar 

  74. Zeng JP, Cong H, Chen K, Xue SF, Zhang YQ, Zhu QJ, Liu JX, Tao Z (2011) A novel strategy to assemble achiral ligands to chiral helical polyrotaxane structures. Inorg Chem 50:6521–6525

    CAS  PubMed  Google Scholar 

  75. Thuery P (2009) Uranyl ion complexes of cucurbit[7]uril with zero-, one- and two-dimensionality. CrystEngComm 11:1150–1156

    CAS  Google Scholar 

  76. Thuery P (2012) Lanthanide ion complexes with 2-, 3-, or 4-sulfobenzoate and cucurbit[6]uril. Cryst Growth Des 12:1632–1640

    CAS  Google Scholar 

  77. Mainicheva EA, Tripolskaya AA, Gerasko OA, Naumov DY, Fedin VP (2006) Synthesis and crystal structures of PrIII and NdIII complexes with the macrocyclic cavitand cucurbit[6]uril. Russ Chem Bull 55:1566–1573

    CAS  Google Scholar 

  78. Tripolskaya AA, Mainicheva EA, Mitkina TV, Gerasko OA, Naumov DY, Fedin VP (2005) Sc(III), Eu(III), and Gd(III) complexes with macrocyclic cavitand cucurbit[6]uril: synthesis and crystal structures. Russ J Coord Chem 31:768–774

    CAS  Google Scholar 

  79. Thuery P (2010) Uranyl ion complexation by cucurbiturils in the presence of perrhenic, phosphoric, or polycarboxylic acids. Novel mixed-ligand uranyl-organic frameworks. Cryst Growth Des 10:716–725

    CAS  Google Scholar 

  80. Samsonenko DG, Gerasko OA, Lipkowski J, Virovets AV, Fedin VP (2002) Synthesis and crystal structure of the nanosized supramolecular SmIII complex with macrocyclic cavitand cucurbituril {[Sm(H2O)4]2(C36H36N24O12)3}Br6∙44H2O. Russ Chem Bull 51:1915–1918

    CAS  Google Scholar 

  81. Jeon YM, Kim J, Whang D, Kim K (1996) Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J Am Chem Soc 118:9790–9791

    CAS  Google Scholar 

  82. Gerasko OA, Virovets AV, Samsonenko DG, Tripolskaya AA, Fedin VP, Fenske D (2003) Synthesis and crystal structures of supramolecular compounds of cucurbit[n]urils (n = 6, 8) with polynuclear strontium aqua complexes. Russ Chem Bull 52:585–593

    CAS  Google Scholar 

  83. Samsonenko DG, Lipkowski J, Gerasko OA, Virovets AV, Sokolov MN, Fedin VP, Platas JG, Hernandez-Molina R, Mederos A (2002) Cucurbituril as a new macrocyclic ligand for complexation of lanthanide cations in aqueous solutions. Eur J Inorg Chem 2002:2380–2388

    Google Scholar 

  84. Thuery P (2011) L-cysteine as a chiral linker in lanthanide-cucurbit[6]uril one-dimensional assemblies. Inorg Chem 50:10558–10560

    CAS  PubMed  Google Scholar 

  85. Yang L, Wang X, Zhang Y, Li Z, Song H, Niu Y, Tao Z, Liu Q, Xiao X (2018) Structure and electrochemical studies on the complexation of hexacyclohexanocucurbit[6]uril with lead ion. Polyhedron 142:58–62

    CAS  Google Scholar 

  86. Mainicheva EA, Gerasko OA, Sheludyakova LA, Naumov DY, Karsanova II, Amirov RR, Fedin VP (2006) Use of the macrocyclic ligand cucurbit[6]uril for isolation of tetranuclear lanthanide aquahydroxo-carboxylate complexes from aqueous solutions. Russ Chem Bull 55:1956–1965

    CAS  Google Scholar 

  87. Gerasko OA, Mainicheva EA, Alberola A, Vicent C, Llusar R, Fedin VP (2008) Tetranuclear lanthanide aqua hydroxo complexes with macrocyclic ligand cucurbit[6]uril. Eur J Inorg Chem 2008:416–424

    Google Scholar 

  88. Feng X, Li ZF, Xue SF, Tao Z, Zhu QJ, Zhang YQ, Liu JX (2010) Complexation of cyclohexanocucurbit[6]uril with cadmium ions: X-ray crystallographic and electroche mical study. Inorg Chem 49:7638–7640

    CAS  PubMed  Google Scholar 

  89. Thuery P (2009) Uranyl-lanthanide heterometallic complexes with cucurbit[6]uril and perrhenate ligands. Inorg Chem 48:825–827

    CAS  PubMed  Google Scholar 

  90. Freeman WA (1984) Structures of the p-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand ‘cucurbituril’, C36H36N24O12. Acta Cryst B40:382–387

    CAS  Google Scholar 

  91. Liu JX, Dong CH, Long LS, Huang RB, Zheng LS (2009) From 1D zigzag chain to 1D tubular structure, weak field ligand-dependent assembly of cucurbit[6]uril-based tubular coordination polymer. Dalton Trans 36:7344–7346

    Google Scholar 

  92. Heo J, Kim SY, Whang D, Kim K (1999) Shape-induced, hexagonal, open frameworks: rubidium ion complexed cucurbituril. Angew Chem Int Ed 38:641–643

    CAS  Google Scholar 

  93. Thuery P (2011) Uranyl ion complexation by aliphatic dicarboxylic acids in the presence of cucurbiturils as additional ligands or structure-directing agents. Cryst Growth Des 11:2606–2620

    CAS  Google Scholar 

  94. Qin X, Ni XL, Hu JX, Chen K, Zhang YQ, Redshaw C, Zhu QJ, Xue SF, Tao Z (2013) Macrocycle-based metal ion complexation: a study of the lanthanide contraction effect towards hexacyclohexanocucurbit[6]uil. CrystEngComm 15:738–744

    CAS  Google Scholar 

  95. Zhao Y, Liang LL, Zhang T, Chen K, Xiao X, Zhang YQ, Tao Z, Xue SF, Zhu QJ (2013) Inorganic anion-aided coordination of lanthanide metal ions to cucurbituril and supramolecular self-assembly: potential applications in the separation of light lanthanides. CrystEngComm 15:7987–7998

    CAS  Google Scholar 

  96. Zhang DQ, Zhang YQ, Xue SF, Tao Z, Xiao X, Zhu QJ (2015) Coordination of lanthanides in the inverted cucurbituril supramolecular assemblies formed in the presence of tetrachloride zincate anion: potential applications for isolation of lighter lanthanides. Polyhedron 99:147–155

    CAS  Google Scholar 

  97. Zhang F, Yajima T, Li YZ, Xu GZ, Chen HL, Liu QT, Yamauchi O (2005) Iodine-assisted assembly of helical coordination polymers of cucurbituril and asymmetric copper(ii) complexes. Angew Chem Int Ed 44:3402–3407

    CAS  Google Scholar 

  98. Heo J, Kim J, Whang D, Kim K (2000) Columnar one-dimensional coordination polymer formed with a metal ion and a host-guest complex as building blocks: potassium ion complexed cucurbituril. Inorg Chim Acta 297:307–312

    CAS  Google Scholar 

  99. Qiu SC, Li Q, Zhang YQ, Xiao X, Tao Z, Zhu QJ, Zhang ZQ (2016) Coordination of alkali metal ions in the inverted cucurbit[6]uril supramolecular assemblies formed in the presence of tetrachlorozincate. Chin. J Inorg Chem 32:1303–1310

    CAS  Google Scholar 

  100. Theury P (2017) Uranyl complexes as scaffolding or spacers for cucurbit[6]uril molecules in homo- and heterometallic species, including a uranyl-lanthanide complex. Eur J Inorg Chem 2017:2876–2882

    Google Scholar 

  101. Zhang DQ, Sun T, Zhang YQ, Xue SF, Zhu QJ, Zhang JX, Tao Z (2015) Coordination of alkaline-earth metal ions in inverted cucurbit[6]uril supramolecular assemblies formed in the presence of tetrachloride zincates. Eur J Inorg Chem 2015:318–323

    CAS  Google Scholar 

  102. Kovalenko EA, Naumov DY, Fedin VP (2018) Coordination networks and supramolecular assemblies based on barium cation complexes with cucurbit[6]uril. Polyhedron 144:158–165

    CAS  Google Scholar 

  103. Thuery P (2008) Uranyl ion complexes with cucurbit[n]urils (n = 6, 7, and 8): a new family of uranyl-organic frameworks. Cryst Growth Des 8:4132–4143

    CAS  Google Scholar 

  104. Feng X, Lu XJ, Xue SF, Zhang YQ, Tao Z, Zhu QJ (2009) A novel two-dimensional network formed by complexation of cucurbituril with cadmium ions. Inorg Chem Commun 12:849–852

    CAS  Google Scholar 

  105. Cong H, Zhao Y, Liang LL, Chen K, Chen XJ, Xiao X, Zhang YQ, Zhu QJ, Xue SF, Tao Z (2014) Cucurbituril-based supramolecular self-assemblies formed in the presence of alkali metal and cadmium ions. Eur J Inorg Chem 2014:2262–2267

    CAS  Google Scholar 

  106. Chen K, Kang YS, Zhao Y, Yang JM, Lu Y, Sun WY (2014) Cucurbit[6]uril-based supramolecular sssemblies: possible application in radioactive cesium cation capture. J Am Chem Soc 136:16744–16747

    CAS  PubMed  Google Scholar 

  107. Sokolova MN, Mitkinaa TV, Geraskoa OA, Fedina VP, Virovetsa AV, Llusar R (2003) Coordination of bismuth(III) to cucurbit[8]uril. Preparation and x-ray structure of [{Bi(NO3)(H2O)5}2(Q8)][Bi(NO3) 3(H2O)4]2[Bi(NO3)5]2⋅Q8⋅19H2O. Z Anorg Allg Chem 629:2440–2442

    Google Scholar 

  108. Liu JX, Lin RL, Long LS, Huang RB, Zheng LS (2008) A novel inclusion complex form between Q[10] host and Q[5] guest stabilized by potassium ion coordination. Inorg Chem Commun 11:1085–1087

    CAS  Google Scholar 

  109. Cheng XJ, Liang LL, Chen K, Ji NN, Xiao X, Zhang JX, Zhang YQ, Xue SF, Zhu QJ, Ni XL, Tao Z (2013) Twisted cucurbit[14]uril. Angew Chem Int Ed 52:7252–7255

    CAS  Google Scholar 

  110. Li Q, Qiu SC, Zhang J, Chen K, Huang Y, Xiao X, Zhang Y, Li F, Zhang YQ, Xue SF, Zhu QJ, Tao Z, Lindoy LF, Wei G (2016) Twisted cucurbit[n]urils. Org Lett 18:4020–4023

    CAS  PubMed  Google Scholar 

  111. Qiu SC, Chen K, Wang Y, Hua ZY, Li F, Huang Y, Tao Z, Zhang YJ, Wei G (2017) Crystal structure analysis of twisted cucurbit[14]uril conformations. Inorg Chem Commun 86:49–53

    CAS  Google Scholar 

  112. Liang LL, Ni XL, Zhao Y, Chen K, Xiao X, Zhang YQ, Redshaw C, Zhu QJ, Xue SF, Tao Z (2013) Construction of cucurbit[7]uril based tubular nanochannels incorporating associated [CdCl4]2− and lanthanide ions. Inorg Chem 52:1909–1915

    CAS  PubMed  Google Scholar 

  113. Chen K, Cong H, Xiao X, Zhang YQ, Xue SF, Tao Z, Zhu QJ, Wei G (2011) Hydroquinone-induced framework based on direct coordination of rubidium ions to cucurbit[7]uril. CrystEngComm 13:5105–5110

    CAS  Google Scholar 

  114. Liang LL, Chen K, Ji NN, Cheng XJ, Zhao Y, Xiao X, Zhang YQ, Zhu QJ, Xue SF, Tao Z (2013) Tetrachloride transition-metal dianion-induced coordination and supramolecular self-assembly of strontium dications to cucurbit[8]uril. CrystEngComm 15:2416–2421

    CAS  Google Scholar 

  115. Ji NN, Cheng XJ, Liang LL, Xiao X, Zhang YQ, Xue SF, Tao Z, Zhu QJ (2013) The synthesis of networks based on the coordination of cucurbit[8]urils and alkali or alkaline earth ions in the presence of the polychloride transition-metal anions. CrystEngComm 15:7709–7717

    CAS  Google Scholar 

  116. Chen K, Liang LL, Cong H, Xiao X, Zhang YQ, Xue SF, Zhu QJ, Tao Z (2012) p-Hydroxybenzoic acid-induced formation of a novel framework based on direct coordination of caesium ions to cucurbit[8]uril. CrystEngComm 14:3862–3864

    CAS  Google Scholar 

  117. Isaacs L (2009) Cucurbit[n]urils: from mechanism to structure and function. Chem Commun 6:619–629

    Google Scholar 

  118. Yao YQ, Zhang YJ, Huang C, Zhu QJ, Tao Z, Ni XL, Wei G (2017) Cucurbit[10]uril-based smart supramolecular organic frameworks in selective isolation of metal cations. Chem Mater 29:5468–5472

    CAS  Google Scholar 

  119. Ren M, Pinkowicz D, Yoon M, Kim K, Zheng LM, Breedlove BK, Yamashita M (2013) Dy(III) single-ion magnet showing extreme sensitivity to (de)hydration. Inorg Chem 52:8342–8348

    CAS  PubMed  Google Scholar 

  120. Kim H, Kim Y, Yoon M, Lim S, Park SM, Seo G, Kim K (2010) Highly selective carbon dioxide sorption in an organic molecular porous material. J Am Chem Soc 132:12200–12202

    CAS  PubMed  Google Scholar 

  121. Zhao Y, Liang LL, Chen K, Ji NN, Cheng XJ, Xiao X, Zhang YQ, Xue SF, Zhu QJ, Dong N, Tao Z (2014) [CdCl4]2− anion-induced coordination of alkaline earth metal ions to cucurbit[7]uril, corresponding supramolecular self-assemblies and potential application. Dalton Trans 43:929–932

    CAS  PubMed  Google Scholar 

  122. Yang B, Gao ZZ, Lu JH, Zhu QJ, Xue SF, Tao Z, Prior TJ, Redshaw C, Wei G, Xiao X (2016) Interaction of a symmetrical α,α′,δ,δ′-tetramethylcucurbitij[6]uril with Ln3+: potential applications for isolation of lanthanides. CrystEngComm 26:5028–5035

    Google Scholar 

  123. Wang CZ, Zhao WX, Zhang YQ, Xue SF, Tao Z, Zhu QJ (2015) Interaction of Ln3+ with methyl-substituted cucurbit[n]urils (n=5,6) derived from 3α-methyl glycoluril. ChemPlusChem 80:1052–1059

    CAS  PubMed  Google Scholar 

  124. Zhou JJ, Yu X, Zhao YC, Xiao X, Zhang YQ, Xue SF, Tao Z, Liu JX, Zhu QJ (2014) Coordination of Ln3+ in ortho-tetramethyl-substituted cucurbituril supramolecular assemblies formed in the presence of cadmium nitrate: potential applications for isolation of heavier lanthanides. CrystEngComm 16:10674–10680

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gao, R.H., Tao, Z. (2020). CB[n]-Based Coordination Chemistry. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_31

Download citation

Publish with us

Policies and ethics